Hybrid k_T-factorization at NLO

Andreas van Hameren Institute of Nuclear Physics Polish Academy of Sciences Kraków

in collaboration with Leszek Motyka and Grzegorz Ziarko

and at larger scope with Etienne Blanco, Alessandro Giachino, Piotr Kotko

presented at RADCOR 2023 - 16th International Symposium on Radiative Corrections: 30-05-2023 - Applications of Quantum Field Theory to Phenomenology

This research was supported by grant No. 2019/35/B/ST2/03531 of the Polish National Science Centre.

in memory of Stanisław (Staszek) Jadach

$$d\sigma^{LO} = \int \frac{dx_{in}}{x_{in}} \frac{d\bar{x}_{\overline{in}}}{\bar{x}_{\overline{in}}} f_{in}(x_{in}) f_{\overline{in}}(\bar{x}_{\overline{in}}) dB(x_{in}, \bar{x}_{\overline{in}})$$

 $\begin{array}{l} \mbox{general: } \mathsf{K}^{\mu} = x_{\mathsf{K}}\mathsf{P}^{\mu} + \bar{x}_{\mathsf{K}}\bar{\mathsf{P}}^{\mu} + \mathsf{K}_{\perp}^{\mu} \\ \mbox{one in-state: } \mathsf{k}^{\mu}_{in} = x_{in}\mathsf{P}^{\mu} \\ \mbox{other in-state: } \mathsf{k}^{\mu}_{\overline{in}} = \quad \bar{x}_{\overline{in}}\bar{\mathsf{P}}^{\mu} \end{array}$

$$d\sigma^{\mathsf{NLO}} \stackrel{?}{=} \int \frac{dx_{\mathsf{in}}}{x_{\mathsf{in}}} \frac{d\bar{x}_{\overline{\mathsf{in}}}}{\bar{x}_{\overline{\mathsf{in}}}} \left\{ \mathsf{f}_{\mathsf{in}}(x_{\mathsf{in}}) \, \mathsf{f}_{\overline{\mathsf{in}}}(\bar{x}_{\overline{\mathsf{in}}}) \left[\frac{\alpha_{\mathsf{s}}}{2\pi} \, d\mathsf{V}(x_{\mathsf{in}}, \bar{x}_{\overline{\mathsf{in}}}) + \frac{\alpha_{\mathsf{s}}}{2\pi} \, d\mathsf{R}(x_{\mathsf{in}}, \bar{x}_{\overline{\mathsf{in}}}) \right] \right\}$$

$$\begin{split} d\sigma^{\mathsf{NLO}} \stackrel{?}{=} & \int \frac{dx_{\mathsf{in}}}{x_{\mathsf{in}}} \frac{d\bar{x}_{\overline{\mathsf{in}}}}{\bar{x}_{\overline{\mathsf{in}}}} \Biggl\{ f_{\mathsf{in}}(x_{\mathsf{in}}) \, f_{\overline{\mathsf{in}}}(\bar{x}_{\overline{\mathsf{in}}}) \Biggl[\frac{\alpha_{\mathsf{s}}}{2\pi} \, d\mathsf{V}(x_{\mathsf{in}}, \bar{x}_{\overline{\mathsf{in}}}) + \frac{\alpha_{\mathsf{s}}}{2\pi} \, d\mathsf{R}(x_{\mathsf{in}}, \bar{x}_{\overline{\mathsf{in}}}) \Biggr]_{\mathsf{cancelling}} \\ & + \Biggl[f_{\mathsf{in}}(x_{\mathsf{in}}) \, \frac{-\alpha_{\mathsf{s}}}{2\pi\varepsilon} \int_{\bar{x}_{\overline{\mathsf{in}}}}^{1} d\bar{z} \, \mathcal{P}_{\overline{\mathsf{in}}}(\bar{z}) f_{\overline{\mathsf{in}}} \Biggl(\frac{\bar{x}_{\mathsf{in}}}{\bar{z}} \Biggr) \\ & + f_{\overline{\mathsf{in}}}(\bar{x}_{\overline{\mathsf{in}}}) \, \frac{-\alpha_{\mathsf{s}}}{2\pi\varepsilon} \int_{x_{\mathsf{in}}}^{1} dz \, \mathcal{P}_{\mathsf{in}}(z) f_{\mathsf{in}} \Biggl(\frac{x_{\mathsf{in}}}{z} \Biggr) \Biggr] d\mathsf{B}(x_{\mathsf{in}}, \bar{x}_{\overline{\mathsf{in}}}) \Biggr\} \end{split}$$

$$\begin{split} d\sigma^{\mathsf{NLO}} \stackrel{?}{=} & \int \frac{dx_{\mathsf{in}}}{x_{\mathsf{in}}} \frac{d\bar{x}_{\overline{\imathn}}}{\bar{x}_{\overline{\imathn}}} \left\{ f_{\mathsf{in}}(x_{\mathsf{in}}) \, f_{\overline{\imathn}}(\bar{x}_{\overline{\imathn}}) \left[\frac{\alpha_{\mathsf{s}}}{2\pi} \, d\mathsf{V}(x_{\mathsf{in}}, \bar{x}_{\overline{\imathn}}) + \frac{\alpha_{\mathsf{s}}}{2\pi} \, d\mathsf{R}(x_{\mathsf{in}}, \bar{x}_{\overline{\imathn}}) \right]_{\mathsf{cancelling}} \\ & + \left[f_{\mathsf{in}}(x_{\mathsf{in}}) \, \frac{-\alpha_{\mathsf{s}}}{2\pi\varepsilon} \int_{\bar{x}_{\overline{\imathn}}}^{1} d\bar{z} \, \mathcal{P}_{\overline{\imathn}}(\bar{z}) f_{\overline{\imathn}}\left(\frac{\bar{x}_{\overline{\imathn}}}{\bar{z}} \right) \right. \\ & + f_{\overline{\imathn}}(\bar{x}_{\overline{\imathn}}) \, \frac{-\alpha_{\mathsf{s}}}{2\pi\varepsilon} \int_{x_{\mathsf{in}}}^{1} dz \, \mathcal{P}_{\mathsf{in}}(z) f_{\mathsf{in}}\left(\frac{x_{\mathsf{in}}}{z} \right) \right] d\mathsf{B}(x_{\mathsf{in}}, \bar{x}_{\overline{\imathn}}) \\ & + \left[\frac{\alpha_{\mathsf{s}}}{2\pi} \, f_{\mathsf{in}}^{\mathsf{NLO}}(x_{\mathsf{in}}) \, f_{\overline{\imathn}}(\bar{x}_{\overline{\imathn}}) + f_{\mathsf{in}}(x_{\mathsf{in}}) \, \frac{\alpha_{\mathsf{s}}}{2\pi} \, f_{\overline{\imathn}}^{\mathsf{NLO}}(\bar{x}_{\overline{\imathn}}) \right] d\mathsf{B}(x_{\mathsf{in}}, \bar{x}_{\overline{\imathn}}) \right\} \end{split}$$

$$\begin{split} d\sigma^{\mathsf{NLO}} &= \int \frac{dx_{\mathsf{in}}}{x_{\mathsf{in}}} \frac{d\bar{x}_{\overline{\imathn}}}{\bar{x}_{\overline{\imathn}}} \Biggl\{ f_{\mathsf{in}}(x_{\mathsf{in}}) \, f_{\overline{\imathn}}(\bar{x}_{\overline{\imathn}}) \Biggl[\frac{\alpha_{\mathsf{s}}}{2\pi} \, d\mathsf{V}(x_{\mathsf{in}}, \bar{x}_{\overline{\imathn}}) + \frac{\alpha_{\mathsf{s}}}{2\pi} \, d\mathsf{R}(x_{\mathsf{in}}, \bar{x}_{\overline{\imathn}}) \Biggr]_{\mathsf{cancelling}} \\ &+ \Biggl[f_{\mathsf{in}}(x_{\mathsf{in}}) \, \frac{-\alpha_{\mathsf{s}}}{2\pi\varepsilon} \int_{\bar{x}_{\overline{\imathn}}}^{1} d\bar{z} \, \mathcal{P}_{\overline{\imathn}}(\bar{z}) f_{\overline{\imathn}}\left(\frac{\bar{x}_{\overline{\imathn}}}{\bar{z}}\right) \\ &+ f_{\overline{\imathn}}(\bar{x}_{\overline{\imathn}}) \, \frac{-\alpha_{\mathsf{s}}}{2\pi\varepsilon} \int_{x_{\mathsf{in}}}^{1} dz \, \mathcal{P}_{\mathsf{in}}(z) f_{\mathsf{in}}\left(\frac{x_{\mathsf{in}}}{z}\right) \Biggr] d\mathsf{B}(x_{\mathsf{in}}, \bar{x}_{\overline{\imathn}}) \\ &+ \Biggl[\frac{\alpha_{\mathsf{s}}}{2\pi} \, f_{\mathsf{in}}^{\mathsf{NLO}}(x_{\mathsf{in}}) \, f_{\overline{\imathn}}(\bar{x}_{\overline{\imathn}}) + f_{\mathsf{in}}(x_{\mathsf{in}}) \, \frac{\alpha_{\mathsf{s}}}{2\pi} \, f_{\overline{\imathn}}^{\mathsf{NLO}}(\bar{x}_{\overline{\imathn}}) \Biggr] d\mathsf{B}(x_{\mathsf{in}}, \bar{x}_{\overline{\imathn}}) \Biggr\} \end{split}$$

$$\begin{split} f_{\rm in}^{\rm NLO}(x_{\rm in}) &- \frac{1}{\epsilon} \int_{x_{\rm in}}^{1} dz \, \mathcal{P}_{\rm in}(z) f_{\rm in}\left(\frac{x_{\rm in}}{z}\right) = {\rm finite} \\ f_{\overline{\rm in}}^{\rm NLO}(\bar{x}_{\overline{\rm in}}) &- \frac{1}{\epsilon} \int_{\bar{x}_{\overline{\rm in}}}^{1} d\bar{z} \, \mathcal{P}_{\rm in}(\bar{z}) f_{\overline{\rm in}}\left(\frac{\bar{x}_{\overline{\rm in}}}{\bar{z}}\right) = {\rm finite} \end{split}$$

$$d\sigma^{\mathsf{NLO}} = \int \frac{dx_{\mathsf{in}}}{-} \frac{d\bar{x}_{\mathsf{in}}}{-} \left\{ f_{\mathsf{in}}(x_{\mathsf{in}}) f_{\overline{\mathsf{in}}}(\bar{x}_{\overline{\mathsf{in}}}) \left[\frac{\alpha_{\mathsf{s}}}{2} d\mathsf{V}(x_{\mathsf{in}}, \bar{x}_{\overline{\mathsf{in}}}) + \frac{\alpha_{\mathsf{s}}}{2} d\mathsf{R}(x_{\mathsf{in}}, \bar{x}_{\overline{\mathsf{in}}}) \right] \right\}$$

Can I establish the same within hybrid k_T -factorization, for which the LO cross section formula is

$$d\sigma^{\text{LO}} = \int \frac{dx_{\text{in}}}{x_{\text{in}}} \frac{d^2 k_{\perp}}{\pi} \frac{d\bar{x}_{\overline{\text{in}}}}{\bar{x}_{\overline{\text{in}}}} F_{\text{in}}(x_{\text{in}}, k_{\perp}) f_{\overline{\text{in}}}(\bar{x}_{\overline{\text{in}}}) dB^{\star}(x_{\text{in}}, k_{\perp}, \bar{x}_{\overline{\text{in}}})$$
?

$$\begin{split} f_{\text{in}}^{\text{NLO}}(x_{\text{in}}) &- \frac{1}{\epsilon} \int_{x_{\text{in}}}^{1} dz \, \mathcal{P}_{\text{in}}(z) f_{\text{in}}\left(\frac{x_{\text{in}}}{z}\right) = \text{finite} \\ f_{\overline{\text{in}}}^{\text{NLO}}(\bar{x}_{\overline{\text{in}}}) &- \frac{1}{\epsilon} \int_{\bar{x}_{\overline{\text{in}}}}^{1} d\bar{z} \, \mathcal{P}_{\text{in}}(\bar{z}) f_{\overline{\text{in}}}\left(\frac{\bar{x}_{\overline{\text{in}}}}{\bar{z}}\right) = \text{finite} \end{split}$$

1

Auxiliary parton method (tree-level) $k_{in} = x_{in}P + k_{\perp}$

We desire to obtain the matrix element with one space-like gluon for the process $g^{\star}(\mathbf{k}_{in}) \omega_{\overline{in}}(\mathbf{k}_{\overline{in}}) \rightarrow \omega_1(\mathbf{p}_1) \omega_2(\mathbf{p}_2) \cdots \omega_n(\mathbf{p}_n)$ e.g. $g^{\star}(\mathbf{k}_{in}) g(\mathbf{k}_{\overline{in}}) \rightarrow g(\mathbf{p}_1) g(\mathbf{p}_2) g(\mathbf{p}_3)$

Auxiliary parton method (tree-level)

 $k_{\text{in}} = x_{\text{in}} P + k_{\scriptscriptstyle \perp}$

We desire to obtain the matrix element with one space-like gluon for the process $g^{*}(k_{in}) \omega_{\overline{in}}(k_{\overline{in}}) \rightarrow \omega_{1}(p_{1}) \omega_{2}(p_{2}) \cdots \omega_{n}(p_{n}) \quad \text{e.g.} \quad g^{*}(k_{in}) g(k_{\overline{in}}) \rightarrow g(p_{1}) g(p_{2}) g(p_{3})$

and do so by replacing the space-like gluon with an *on-shell auxiliary* quark pair $q(k_1(\Lambda)) \omega_{\overline{in}}(k_{\overline{in}}) \rightarrow q(k_2(\Lambda)) \omega_1(p_1) \omega_2(p_2) \cdots \omega_n(p_n)$

with special momenta $k_1^{\mu} = \Lambda P^{\mu} \quad , \quad k_2^{\mu} = p_{\Lambda}{}^{\mu} = (\Lambda - x_{in})P^{\mu} - k_{\perp}^{\mu} + \frac{|k_{\perp}|^2}{(\Lambda - x_{in})\nu^2} \bar{P}^{\mu}$

such that, while individually on-shell, their difference is $k_1^{\mu} - k_2^{\mu} = x_{in}P^{\mu} + k_{\perp}^{\mu} + \mathcal{O}(\Lambda^{-1}) = k_{in}^{\mu} + \mathcal{O}(\Lambda^{-1})$

Auxiliary parton method (tree-level)

We desire to obtain the matrix element with one space-like gluon for the process $q^*(k_{in}) \omega_{\overline{in}}(k_{\overline{in}}) \rightarrow \omega_1(p_1) \omega_2(p_2) \cdots \omega_n(p_n) \quad \text{e.g.} \quad g^*(k_{in}) g(k_{\overline{in}}) \rightarrow g(p_1) g(p_2) g(p_3)$

and do so by replacing the space-like gluon with an *on-shell auxiliary* quark pair $q(k_1(\Lambda)) \omega_{\overline{in}}(k_{\overline{in}}) \rightarrow q(k_2(\Lambda)) \omega_1(p_1) \omega_2(p_2) \cdots \omega_n(p_n)$

with special momenta $\begin{aligned} &k_1^\mu = \Lambda P^\mu \quad, \quad k_2^\mu = p_\Lambda{}^\mu = (\Lambda - x_{in})P^\mu - k_\perp^\mu + \frac{|k_\perp|^2}{(\Lambda - x_{in})\nu^2}\,\bar{P}^\mu \\ &\text{such that, while individually on-shell, their difference is} \\ &k_1^\mu - k_2^\mu = x_{in}P^\mu + k_\perp + \mathcal{O}(\Lambda^{-1}) = k_{in}^\mu + \mathcal{O}(\Lambda^{-1}) \end{aligned}$

The matrix element with the space-like gluon is obtained by taking $\Lambda \to \infty$ $\frac{1}{g_s^2 C_{aux}} \frac{x_{in}^2 |k_{\perp}|^2}{\Lambda^2} \left| \overline{\mathcal{M}}^{aux} \right|^2 (\Lambda P, k_{\overline{in}}; p_{\Lambda}, \{p_i\}_{i=1}^n) \xrightarrow{\Lambda \to \infty} \left| \overline{\mathcal{M}}^{\star} \right|^2 (k_{in}, k_{\overline{in}}; \{p_i\}_{i=1}^n)$

 $k_{in} = \chi_{in}P + k_{\perp}$

Auxiliary parton method (tree-level)

We desire to obtain the matrix element with one space-like gluon for the process $g^*(k_{in}) \omega_{\overline{in}}(k_{\overline{in}}) \rightarrow \omega_1(p_1) \omega_2(p_2) \cdots \omega_n(p_n)$ e.g. $g^*(k_{in}) g(k_{\overline{in}}) \rightarrow g(p_1) g(p_2) g(p_3)$

and do so by replacing the space-like gluon with an *on-shell auxiliary* quark pair $q(k_1(\Lambda)) \omega_{\overline{in}}(k_{\overline{in}}) \rightarrow q(k_2(\Lambda)) \omega_1(p_1) \omega_2(p_2) \cdots \omega_n(p_n)$

with special momenta $\begin{aligned} &k_1^\mu = \Lambda P^\mu \quad, \quad k_2^\mu = p_\Lambda{}^\mu = (\Lambda - x_{in})P^\mu - k_\perp^\mu + \frac{|k_\perp|^2}{(\Lambda - x_{in})\nu^2}\,\bar{P}^\mu \\ &\text{such that, while individually on-shell, their difference is} \\ &k_1^\mu - k_2^\mu = x_{in}P^\mu + k_\perp + \mathcal{O}\big(\Lambda^{-1}\big) = k_{in}^\mu + \mathcal{O}\big(\Lambda^{-1}\big) \end{aligned}$

The matrix element with the space-like gluon is obtained by taking $\Lambda \to \infty$ $\frac{1}{g_s^2 C_{aux}} \frac{x_{in}^2 |k_{\perp}|^2}{\Lambda^2} \left| \overline{\mathcal{M}}^{aux} \right|^2 \left(\Lambda P, k_{\overline{in}}; p_{\Lambda}, \{p_i\}_{i=1}^n \right) \xrightarrow{\Lambda \to \infty} \left| \overline{\mathcal{M}}^{\star} \right|^2 \left(k_{in}, k_{\overline{in}}; \{p_i\}_{i=1}^n \right)$ The factor $x_{in}^2 |k_{\perp}|^2$ ensures the correct on-shell limit, $1/\Lambda^2$ selects the leading power, $1/g_s^2$ corrects the power of the coupling.

One can use auxiliary quarks, as well as gluons, by including the color-correction factor $C_{\text{aux-q}} = \frac{N_c^2 - 1}{N_c} \quad , \quad C_{\text{aux-g}} = 2N_c$

 $k_{in} = x_{in}P + k_{\perp}$

 $\boldsymbol{\Lambda}$ effectively works as a regulator for linear denominators

$$\frac{1}{P \cdot K} \ \stackrel{\Lambda \to \infty}{\longleftarrow} \ \frac{2\Lambda}{(\Lambda P + K)^2} \quad \Longrightarrow \quad \text{In}\Lambda \ \text{in loop integrals}$$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

 Λ effectively works as a regulator for linear denominators

 $\frac{1}{P \cdot K} \ \stackrel{\Lambda \to \infty}{\longleftarrow} \ \frac{2\Lambda}{(\Lambda P + K)^2} \quad \Longrightarrow \quad \text{In}\Lambda \ \text{in loop integrals}$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)

 $d\mathsf{V}^{\star} = d\mathsf{V}^{\star\mathsf{fam}} + d\mathsf{V}^{\star\mathsf{unf}}$

 Λ effectively works as a regulator for linear denominators

 $\frac{1}{P \cdot K} \stackrel{\Lambda \to \infty}{\longleftarrow} \frac{2\Lambda}{(\Lambda P + K)^2} \implies \quad \text{In}\Lambda \text{ in loop integrals}$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)

 $d\mathsf{V}^{\star} = d\mathsf{V}^{\star\mathsf{fam}} + d\mathsf{V}^{\star\mathsf{unf}}$

 $dV^{\star fam}$ is independent of the type of auxiliary partons has the correct regular on-shell limit all $1/\epsilon^2$, $1/\epsilon$ poles look as if the space-like gluon were on-shell

 Λ effectively works as a regulator for linear denominators

 $\frac{1}{P \cdot K} \stackrel{\Lambda \to \infty}{\longleftarrow} \frac{2\Lambda}{(\Lambda P + K)^2} \implies \quad \text{In}\Lambda \text{ in loop integrals}$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)

 $d\mathsf{V}^{\star} = d\mathsf{V}^{\star\mathsf{fam}} + d\mathsf{V}^{\star\mathsf{unf}}$

 dV^{*fam} is independent of the type of auxiliary partons has the correct regular on-shell limit all $1/\epsilon^2$, $1/\epsilon$ poles look as if the space-like gluon were on-shell

For example, apply Λ limit on $A^{\text{loop}}(1_{\bar{Q}}, 6_Q, 2_{\bar{q}}, 3_q, 4_{e^+}, 5_{e^-})$ (Bern, Dixon, Kosower 1998) to get $A^{\text{loop}}(1^*, 2_{\bar{q}}, 3_q, 4_{e^+}, 5_{e^-})$. The pole-part is proportional to the tree-level amplitude with factor

$$\left\{-\frac{1}{\varepsilon^2}\left[\left(\frac{\mu^2}{-s_{p3}}\right)^{\varepsilon} + \left(\frac{\mu^2}{-s_{p2}}\right)^{\varepsilon}\right] - \frac{3}{2\varepsilon}\right\} A^{\text{tree}}(1^{\star}, 2_{\bar{q}}, 3_q, 4_{e^+}, 5_{e^-}) \ ,$$

with s_{p2} and s_{p3} involving only the longitudinal part of $k_1 = p + k_{\perp}$.

 Λ effectively works as a regulator for linear denominators

 $\frac{1}{P \cdot K} \stackrel{\Lambda \to \infty}{\longleftarrow} \frac{2\Lambda}{(\Lambda P + K)^2} \implies \quad \text{In}\Lambda \text{ in loop integrals}$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)

 $dV^{\star} = dV^{\star \mathsf{fam}} + dV^{\star \mathsf{unf}}$

 $dV^{\star fam}$ is independent of the type of auxiliary partons has the correct regular on-shell limit all $1/\epsilon^2$, $1/\epsilon$ poles look as if the space-like gluon were on-shell

 $dV^{\star unf} = a_{\epsilon}N_{c}\operatorname{Re}(\mathcal{V}_{aux}) dB^{\star}$ is proportional to Born result $a_{\epsilon} = \frac{\alpha_{\epsilon}}{2\pi}\frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)}$

 Λ effectively works as a regulator for linear denominators

 $\frac{1}{P \cdot K} \stackrel{\Lambda \to \infty}{\longleftarrow} \frac{2\Lambda}{(\Lambda P + K)^2} \implies \quad \text{In}\Lambda \text{ in loop integrals}$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)

 $d\mathsf{V}^{\star} = d\mathsf{V}^{\star\mathsf{fam}} + d\mathsf{V}^{\star\mathsf{unf}}$

 $dV^{\star fam}$ is independent of the type of auxiliary partons has the correct regular on-shell limit all $1/\epsilon^2$, $1/\epsilon$ poles look as if the space-like gluon were on-shell

$$\begin{split} d\mathsf{V}^{\star\mathsf{unf}} &= \mathfrak{a}_{\varepsilon}\mathsf{N}_{\mathsf{c}}\,\mathsf{Re}\big(\mathcal{V}_{\mathsf{aux}}\big)\,d\mathsf{B}^{\star} \quad \text{is proportional to Born result} \qquad \mathfrak{a}_{\varepsilon} &= \frac{\alpha_{\varepsilon}}{2\pi}\frac{(4\pi)^{\varepsilon}}{\Gamma(1-\varepsilon)}\\ \mathcal{V}_{\mathsf{aux}} &= \left(\frac{\mu^{2}}{|\mathbf{k}_{\perp}|^{2}}\right)^{\varepsilon} \bigg[\frac{2}{\varepsilon}\,\mathsf{ln}\frac{\Lambda}{\chi_{\mathsf{in}}} - \mathsf{i}\pi + \bar{\mathcal{V}}_{\mathsf{aux}}\bigg] + \mathcal{O}(\varepsilon) + \mathcal{O}\big(\Lambda^{-1}\big) \end{split}$$

 Λ effectively works as a regulator for linear denominators

 $\frac{1}{P \cdot K} \ \stackrel{\Lambda \to \infty}{\longleftarrow} \ \frac{2\Lambda}{(\Lambda P + K)^2} \quad \Longrightarrow \quad \text{In}\Lambda \ \text{in loop integrals}$

One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

Performing explicit calculations for some simple processes we find for the virtual contribution (Blanco, Giachino, AvH, Kotko 2023)

 $d\mathsf{V}^{\star} = d\mathsf{V}^{\star\mathsf{fam}} + d\mathsf{V}^{\star\mathsf{unf}}$

 $dV^{\star fam}$ is independent of the type of auxiliary partons has the correct regular on-shell limit all $1/\epsilon^2$, $1/\epsilon$ poles look as if the space-like gluon were on-shell

$$\begin{split} d\mathsf{V}^{\star \mathsf{unf}} &= \mathfrak{a}_{\varepsilon}\mathsf{N}_{\mathsf{c}}\,\mathsf{Re}\big(\mathcal{V}_{\mathsf{aux}}\big)\,d\mathsf{B}^{\star} \quad \text{is proportional to Born result} \qquad \mathfrak{a}_{\varepsilon} = \frac{\alpha_{\mathsf{s}}}{2\pi}\frac{(4\pi)^{\varepsilon}}{\Gamma(1-\varepsilon)} \\ \mathcal{V}_{\mathsf{aux}} &= \left(\frac{\mu^{2}}{|\mathsf{k}_{\perp}|^{2}}\right)^{\varepsilon} \bigg[\frac{2}{\varepsilon}\,\mathsf{ln}\frac{\Lambda}{\mathsf{x}_{\mathsf{in}}} - \mathsf{i}\pi + \bar{\mathcal{V}}_{\mathsf{aux}}\bigg] + \mathcal{O}(\varepsilon) + \mathcal{O}\big(\Lambda^{-1}\big) \\ \bar{\mathcal{V}}_{\mathsf{aux-q}} &= \frac{1}{\varepsilon}\frac{13}{6} + \frac{\pi^{2}}{3} + \frac{80}{18} + \frac{1}{\mathsf{N}_{\mathsf{c}}^{2}}\bigg[\frac{1}{\varepsilon^{2}} + \frac{3}{2}\frac{1}{\varepsilon} + 4\bigg] - \frac{\mathsf{n}_{\mathsf{f}}}{\mathsf{N}_{\mathsf{c}}}\bigg[\frac{2}{3}\frac{1}{\varepsilon} + \frac{10}{9}\bigg] \\ \bar{\mathcal{V}}_{\mathsf{aux-g}} &= -\frac{1}{\varepsilon^{2}} + \frac{\pi^{2}}{3} \end{split}$$

More-or-less proven using known universal collinear limits of one-loop amplitudes (Bern, Chalmers 1995, Bern, Del Duca, Kilgore, Schmidt 1999).

Before the large- Λ , the small- $|\mathbf{k}_{\perp}|$ corresponds to a collinear limit of auxiliary partons. While the large- Λ and small- $|\mathbf{k}_{\perp}|$ limit commute at tree-level, they do not at one loop.

 $dV^{\star} = dV^{\star fam} + dV^{\star unf}$

 $dV^{\star fam}$ is independent of the type of auxiliary partons has the correct regular on-shell limit all $1/\epsilon^2$, $1/\epsilon$ poles look as if the space-like gluon were on-shell

 $dV^{\star unf} = a_{\epsilon}N_{c}\operatorname{Re}(\mathcal{V}_{aux}) dB^{\star}$ is proportional to Born result $a_{\epsilon} = \frac{\alpha_{s}}{2\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)}$ $\mathcal{V}_{\mathsf{aux}} = \left(\frac{\mu^2}{|\mathbf{k}_{\perp}|^2}\right)^{\epsilon} \left|\frac{2}{\epsilon} \ln \frac{\Lambda}{\mathbf{x}_{\perp}} - i\pi + \bar{\mathcal{V}}_{\mathsf{aux}}\right| + \mathcal{O}(\epsilon) + \mathcal{O}(\Lambda^{-1})$ $\bar{\mathcal{V}}_{\mathsf{aux-q}} = \frac{1}{\epsilon} \frac{13}{6} + \frac{\pi^2}{3} + \frac{80}{18} + \frac{1}{N^2} \left[\frac{1}{\epsilon^2} + \frac{3}{2} \frac{1}{\epsilon} + 4 \right] - \frac{n_f}{N_e} \left[\frac{2}{3} \frac{1}{\epsilon} + \frac{10}{9} \right]$ $\bar{\mathcal{V}}_{aux-g} = -\frac{1}{\alpha^2} + \frac{\pi^2}{2}$

The differential phase space and the matrix element factorize for the *unfamiliar* case, where the radiative gluon participates in the consumption of Λ .

The differential phase space and the matrix element factorize for the *unfamiliar* case, where the radiative gluon participates in the consumption of Λ .

$$\begin{split} \frac{1}{C_{\mathsf{aux}}} \left| \overline{\mathcal{M}}^{\mathsf{aux}} \right|^2 & \left((\mathbf{A} + x_{\mathsf{in}}) P, k_{\overline{\mathsf{in}}}; x_r \mathbf{A} P + r_\perp + \bar{x}_r \bar{P}, x_q \mathbf{A} P + q_\perp + \bar{x}_q \bar{P}, \{p_i\}_{i=1}^n \right) \\ & \stackrel{\Lambda \to \infty}{\longrightarrow} \ \mathcal{Q}_{\mathsf{aux}}(x_q, q_\perp, x_r, r_\perp) \frac{\Lambda^2 \left| \overline{\mathcal{M}}^* \right|^2 \left(x_{\mathsf{in}} P - q_\perp - r_\perp, k_{\overline{\mathsf{in}}}; \{p_i\}_{i=1}^n \right)}{x_{\mathsf{in}}^2 |q_\perp + r_\perp|^2} \\ & \mathcal{Q}_{\mathsf{aux}}(x_q, q_\perp, x_r, r_\perp) = x_q x_r \ \mathcal{P}_{\mathsf{aux}}(x_q, x_r) \left| q_\perp + r_\perp \right|^2 \\ & \times \left[\frac{c_{\bar{q}}}{|q_\perp|^2 |r_\perp|^2} + \frac{1}{x_r |q_\perp|^2 + x_q |r_\perp|^2 - x_q x_r |q_\perp + r_\perp|^2} \left(\frac{c_r x_r^2}{|r_\perp|^2} + \frac{c_q x_q^2}{|q_\perp|^2} \right) \right] \end{split}$$

Can be integrated analytically and is proportional to the Born result. Like the unfamiliar virtual, it is proportional to $(\mu^2/|k_\perp|^2)^{e}$, produces In Λ , and depends on the auxiliary parton types.

The differential phase space and the matrix element factorize for the *unfamiliar* case, where the radiative gluon participates in the consumption of Λ .

Precise separation of *familiar* and *unfamiliar* phase space via the demand that in the latter case, the radiation must not become collinear to P in the terms with $1/x_r$

$$\frac{|r_{\perp}|}{\nu\sqrt{\Lambda}} < x_r < \frac{|r_{\perp}|}{|r_{\perp} + k_{\perp}|} \quad \text{for terms with } 1/x_r$$

Ciafaloni, Colferai 1999

Can be integrated analytically and is proportional to the Born result. Like the unfamiliar virtual, it is proportional to $(\mu^2/|k_\perp|^2)^{\varepsilon}$, produces In Λ , and depends on the auxiliary parton types.

Combining the unfamiliar contributions and organizing them suggestively, we can write

$$d\mathsf{R}^{\star\,\mathsf{unf}} + d\mathsf{V}^{\star\,\mathsf{unf}} = \Delta_{\mathsf{unf}}\,d\mathsf{B}^{\star}\;,$$

where

$$\Delta_{\text{unf}} = \frac{\alpha_{\varepsilon} N_{\text{c}}}{\varepsilon} \left(\frac{\mu^2}{|k_{\perp}|^2} \right)^{\varepsilon} \! \left[\mathbb{J}_{\text{aux}} + \mathbb{J}_{\text{univ}} + \mathbb{J}_{\text{univ}} - 2 \, \text{ln} \frac{2 P \! \cdot \! \bar{P} x_{\text{in}}}{|k_{\perp}|^2} \right] \,, \label{eq:dual_univ_linear}$$

with

$$\mathbb{J}_{\text{univ}} = \frac{11}{6} - \frac{n_f}{3N_c} - \frac{\mathcal{K}}{N_c}(-\varepsilon) \quad \text{writing} \quad \mathcal{K} = N_c \left(\frac{67}{18} - \frac{\pi^2}{6}\right) - \frac{5n_f}{9} \ ,$$

and

$$\label{eq:Jaux-q} \mathbb{J}_{\text{aux-q}} = \frac{3}{2} - \frac{1}{2}(-\varepsilon) \quad, \quad \mathbb{J}_{\text{aux-g}} = \frac{11}{6} + \frac{n_{\text{f}}}{3N_{\text{c}}^3} + \frac{n_{\text{f}}}{6N_{\text{c}}^3}(-\varepsilon) \ .$$

Combining the unfamiliar contributions and organizing them suggestively, we can write

$$d\mathsf{R}^{\star\,\mathsf{unf}} + d\mathsf{V}^{\star\,\mathsf{unf}} = \Delta_{\mathsf{unf}}\,d\mathsf{B}^{\star}\ ,$$

where

$$\Delta_{\text{unf}} = \frac{a_{\varepsilon}N_{\text{c}}}{\varepsilon} \left(\frac{\mu^2}{|k_{\perp}|^2}\right)^{\varepsilon} \! \left[\boldsymbol{\mathfrak{I}}_{\text{aux}} + \boldsymbol{\mathfrak{I}}_{\text{univ}} + \boldsymbol{\mathfrak{I}}_{\text{univ}} - 2\ln\!\frac{2P\!\cdot\!\bar{P}\boldsymbol{\chi}_{\text{in}}}{|k_{\perp}|^2} \right] \,, \label{eq:dual_univ_linear}$$

with

$$\mathcal{I}_{univ} = \frac{11}{6} - \frac{n_f}{3N_c} - \frac{\mathcal{K}}{N_c}(-\varepsilon) \quad \text{writing} \quad \mathcal{K} = N_c \left(\frac{67}{18} - \frac{\pi^2}{6}\right) - \frac{5n_f}{9} ,$$

and

$$\mathbb{J}_{\mathsf{aux-q}} = \frac{3}{2} - \frac{1}{2}(-\varepsilon) \quad , \quad \mathbb{J}_{\mathsf{aux-g}} = \frac{11}{6} + \frac{n_{\mathsf{f}}}{3N_{\mathsf{c}}^3} + \frac{n_{\mathsf{f}}}{6N_{\mathsf{c}}^3}(-\varepsilon) \ .$$

• No In Λ present. $O(\alpha_s)$ contribution to the space-like gluon Regge trajectory.

Combining the unfamiliar contributions and organizing them suggestively, we can write

$$d\mathsf{R}^{\star\,\mathsf{unf}} + d\mathsf{V}^{\star\,\mathsf{unf}} = \Delta_{\mathsf{unf}}\,d\mathsf{B}^{\star}\ ,$$

where

$$\Delta_{\text{unf}} = \frac{\alpha_{\varepsilon} N_{\text{c}}}{\varepsilon} \left(\frac{\mu^2}{|k_{\perp}|^2} \right)^{\varepsilon} \left[\mathbb{J}_{\text{aux}} + \mathbb{J}_{\text{univ}} + \mathbb{J}_{\text{univ}} - 2 \ln \frac{2P \cdot \bar{P} \chi_{\text{in}}}{|k_{\perp}|^2} \right] \,,$$

with

$$\mathcal{I}_{univ} = \frac{11}{6} - \frac{n_f}{3N_c} - \frac{\mathcal{K}}{N_c}(-\varepsilon) \quad \text{writing} \quad \mathcal{K} = N_c \left(\frac{67}{18} - \frac{\pi^2}{6}\right) - \frac{5n_f}{9} ,$$

and

$$\mathbb{J}_{\mathsf{aux-q}} = \frac{3}{2} - \frac{1}{2}(-\varepsilon) \quad , \quad \mathbb{J}_{\mathsf{aux-g}} = \frac{11}{6} + \frac{n_{\mathsf{f}}}{3N_{\mathsf{c}}^3} + \frac{n_{\mathsf{f}}}{6N_{\mathsf{c}}^3}(-\varepsilon) \ .$$

• No In Λ present. $O(\alpha_s)$ contribution to the space-like gluon Regge trajectory.

• Target impact factor corrections as in Ciafaloni, Colferai 1999.

Combining the unfamiliar contributions and organizing them suggestively, we can write

$$d\mathsf{R}^{\star\,\mathsf{unf}} + d\mathsf{V}^{\star\,\mathsf{unf}} = \Delta_{\mathsf{unf}}\,d\mathsf{B}^{\star}\ ,$$

where

$$\Delta_{\text{unf}} = \frac{\alpha_{\varepsilon}N_{\text{c}}}{\varepsilon} \left(\frac{\mu^2}{|k_{\perp}|^2}\right)^{\varepsilon} \left[\mathfrak{I}_{\text{aux}} + \mathfrak{I}_{\text{univ}} + \mathfrak{I}_{\text{univ}} - 2\ln\frac{2P\cdot\bar{P}\chi_{\text{in}}}{|k_{\perp}|^2} \right] \,,$$

with

$$\mathbb{J}_{\text{univ}} = \frac{11}{6} - \frac{n_{\text{f}}}{3N_{\text{c}}} - \frac{\mathcal{K}}{N_{\text{c}}}(-\varepsilon) \quad \text{writing} \quad \mathcal{K} = N_{\text{c}} \left(\frac{67}{18} - \frac{\pi^2}{6}\right) - \frac{5n_{\text{f}}}{9} \ ,$$

and

$$\mathbb{J}_{\text{aux-q}} = \frac{3}{2} - \frac{1}{2}(-\varepsilon) \quad , \quad \mathbb{J}_{\text{aux-g}} = \frac{11}{6} + \frac{n_f}{3N_c^3} + \frac{n_f}{6N_c^3}(-\varepsilon) \ .$$

- No In Λ present. $O(\alpha_s)$ contribution to the space-like gluon Regge trajectory.
- Target impact factor corrections as in Ciafaloni, Colferai 1999.
- Related to renormalization of the coupling constant (virtual was not UV-subtracted).

Familiar (UV-subtracted) virtual divergencies involving the space-like gluon look as if it were on-shell, with only the longitudinal momentum component $x_{in}P$ in the soft log:

$$-\frac{C_{A}}{\epsilon^{2}}\left|\overline{\mathcal{M}}^{\star}\right|^{2}+\frac{2}{\epsilon}\sum_{i\neq\star}\ln\left(\frac{\mu^{2}}{2x_{in}P\cdot p_{i}}\right)\left(\overline{\mathcal{M}}^{\star}\right)_{i\star}^{2}-\frac{11N_{c}-2n_{f}}{6\epsilon}\left|\overline{\mathcal{M}}^{\star}\right|^{2}$$

Familiar real soft behavior with the space-like gluon acting as "spectator" looks as if it were on-shell, with only the longitudinal momentum component $x_{in}P$ in the eikonal terms:

 $\frac{(x_{in}P\!\cdot\!p_i)}{(x_{in}P\!\cdot\!r)(r\!\cdot\!p_i)}\left(\overline{\mathcal{M}}^{\star}\right)_{i\star}^2$

Tree-level matrix elements with a space-like gluon still have a singularity when a radiative gluon becomes collinear to P.

Tree-level matrix elements with a space-like gluon still have a singularity when a radiative gluon becomes collinear to P.

$$\begin{split} \big| \overline{\mathcal{M}}^{\star} \big|^2 \big(x_{in} P + k_{\perp}, k_{\overline{in}}; r, \{ p_i \}_{i=1}^n \big) \\ \xrightarrow{r \to x_r P} \xrightarrow{2N_c} \frac{2N_c}{P \cdot r} \frac{x_{in}^2}{x_r (x_{in} - x_r)^2} \, \big| \overline{\mathcal{M}}^{\star} \big|^2 \big((x_{in} - x_r) P + k_{\perp}, k_{\overline{in}}; \{ p_i \}_{i=1}^n \big) \end{split}$$

Collinear splitting function with only the 1/z/(1-z) part.

Tree-level matrix elements with a space-like gluon still have a singularity when a radiative gluon becomes collinear to P.

$$\begin{split} \left| \overline{\mathcal{M}}^{\star} \right|^2 & \left(x_{in} P + k_{\perp}, k_{\overline{in}}; r, \{ p_i \}_{i=1}^n \right) \\ \xrightarrow{r \to x_r P} \xrightarrow{2N_c} \frac{2N_c}{P \cdot r} \frac{x_{in}^2}{x_r (x_{in} - x_r)^2} \left| \overline{\mathcal{M}}^{\star} \right|^2 & \left((x_{in} - x_r) P + k_{\perp}, k_{\overline{in}}; \{ p_i \}_{i=1}^n \right) \end{split}$$

Collinear splitting function with only the 1/z/(1-z) part.

Integrate over relevant phase space with restriction

$$\frac{\bar{x}_r}{\bar{x}_{\overline{in}}} < \alpha \frac{x_r}{x_{in}} \quad \text{with} \quad \alpha = \frac{|k_\perp + r_\perp|^2}{S x_{in} \bar{x}_{\overline{in}}} \quad \text{and} \quad |r_\perp|^2 = S x_r \bar{x}_r \quad \Rightarrow \quad |r_\perp| < |k_\perp + r_\perp| \frac{x_r}{x_{in}}$$

which is the complement of the restriction on the unfamiliar phase space.

$$\int_0^1 \frac{dx_{\text{in}}}{x_{\text{in}}} \int d^2 k_{\perp} \, F(x_{\text{in}}, k_{\perp}) \, d\mathsf{R}_{\text{coll}}^{\star \, \text{fam}} \big(x_{\text{in}} \mathsf{P}_A + k_{\perp}, k_{\overline{\text{in}}}; \{p_i\}_{i=1}^n \big)$$

Tree-level matrix elements with a space-like gluon still have a singularity when a radiative gluon becomes collinear to P.

$$\begin{split} \left| \overline{\mathcal{M}}^{\star} \right|^2 & \left(x_{in} P + k_{\perp}, k_{\overline{in}}; r, \{ p_i \}_{i=1}^n \right) \\ \xrightarrow{r \to x_r P} \xrightarrow{P} \frac{2N_c}{P \cdot r} \frac{x_{in}^2}{x_r (x_{in} - x_r)^2} \left| \overline{\mathcal{M}}^{\star} \right|^2 & \left((x_{in} - x_r) P + k_{\perp}, k_{\overline{in}}; \{ p_i \}_{i=1}^n \right) \end{split}$$

Collinear splitting function with only the 1/z/(1-z) part. Integrate over relevant phase space with restriction

$$\frac{\bar{x}_r}{\bar{x}_{\overline{in}}} < \alpha \frac{x_r}{x_{in}} \quad \text{with} \quad \alpha = \frac{|k_\perp + r_\perp|^2}{S x_{in} \bar{x}_{\overline{in}}} \quad \text{and} \quad |r_\perp|^2 = S x_r \bar{x}_r \quad \Rightarrow \quad |r_\perp| < |k_\perp + r_\perp| \frac{x_r}{x_{in}}$$

which is the complement of the restriction on the unfamiliar phase space.

$$\begin{split} \int_{0}^{1} \frac{dx_{in}}{x_{in}} \int d^{2}k_{\perp} F(x_{in}, k_{\perp}) \, dR_{coll}^{\star fam} \big(x_{in} P_{A} + k_{\perp}, k_{\overline{in}}; \{p_{i}\}_{i=1}^{n} \big) \\ &= \int_{0}^{1} \frac{dx_{in}}{x_{in}} \int d^{2}k_{\perp} \tilde{F}(x_{in}, k_{\perp}) \, dB^{\star} \big(x_{in}, k_{\perp}, \bar{x}_{\overline{in}}; \{p_{i}\}_{i=1}^{n} \big) \\ \tilde{F}(x_{in}, k_{\perp}) &= \frac{2a_{\varepsilon}N_{c}}{\pi_{\varepsilon}\mu^{-2\varepsilon}} \int_{x_{in}}^{1} \frac{dz}{z(1-z)} \int \frac{d^{2-2\varepsilon}r_{\perp}}{|r_{\perp}|^{2}} \frac{|k_{\perp}|^{2}}{|k_{\perp} + r_{\perp}|^{2}} F\left(\frac{x_{in}}{z}, k_{\perp} + r_{\perp}\right) \theta_{|r_{\perp}| < |k_{\perp}|(1-z)} \end{split}$$

Essentially identical to formula from Nefedov 2020 for multi-Regge evolution.

Tree-level matrix elements with a space-like gluon still have a singularity when a radiative gluon becomes collinear to P.

$$\begin{split} \left| \overline{\mathcal{M}}^{\star} \right|^2 & \left(x_{in} P + k_{\perp}, k_{\overline{in}}; r, \{ p_i \}_{i=1}^n \right) \\ \xrightarrow{r \to x_r P} \xrightarrow{P R_c} \frac{2N_c}{P \cdot r} \frac{x_{in}^2}{x_r (x_{in} - x_r)^2} \left| \overline{\mathcal{M}}^{\star} \right|^2 & \left((x_{in} - x_r) P + k_{\perp}, k_{\overline{in}}; \{ p_i \}_{i=1}^n \right) \end{split}$$

Collinear splitting function with only the 1/z/(1-z) part. Integrate over relevant phase space with restriction

$$\frac{\bar{x}_r}{\bar{x}_{\overline{in}}} < \alpha \frac{x_r}{x_{in}} \quad \text{with} \quad \alpha = \frac{|k_\perp + r_\perp|^2}{S x_{in} \bar{x}_{\overline{in}}} \quad \text{and} \quad |r_\perp|^2 = S x_r \bar{x}_r \quad \Rightarrow \quad |r_\perp| < |k_\perp + r_\perp| \frac{x_r}{x_{in}}$$

which is the complement of the restriction on the unfamiliar phase space.

$$\begin{split} \int_{0}^{1} \frac{dx_{in}}{x_{in}} \int d^{2}k_{\perp} F(x_{in}, k_{\perp}) \, dR_{coll}^{\star fam}(x_{in}P_{A} + k_{\perp}, k_{\overline{in}}; \{p_{i}\}_{i=1}^{n}) \\ &= \int_{0}^{1} \frac{dx_{in}}{x_{in}} \int d^{2}k_{\perp} \tilde{F}(x_{in}, k_{\perp}) \, dB^{\star}(x_{in}, k_{\perp}, \bar{x}_{\overline{in}}; \{p_{i}\}_{i=1}^{n}) \\ \tilde{F}(x_{in}, k_{\perp}) &= a_{\varepsilon} N_{c} \left(\frac{\mu^{2}}{|k_{\perp}|^{2}}\right)^{\varepsilon} \left\{ \frac{F(x_{in}, k_{\perp})}{\varepsilon^{2}} - \frac{2}{\varepsilon} \int_{x_{in}}^{1} dz \left[\frac{1}{[1-z]_{+}} + \frac{1}{z}\right] F\left(\frac{x_{in}}{z}, k_{\perp}\right) \right\} + \mathcal{O}(\varepsilon^{0}) \end{split}$$

Real contribution to the non-cancelling collinear remnant.

Summary

$$\begin{split} d\sigma^{\mathsf{NLO}} &= \int \frac{dx_{\mathsf{in}}}{x_{\mathsf{in}}} \, d^2 k_{\scriptscriptstyle \perp} \frac{d\bar{x}_{\overline{\mathsf{in}}}}{\bar{x}_{\overline{\mathsf{in}}}} \bigg\{ \mathsf{F}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp}) \, \mathsf{f}(\bar{x}_{\overline{\mathsf{in}}}) \Big[d\mathsf{V}^{\star}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp},\bar{x}_{\overline{\mathsf{in}}}) + d\mathsf{R}^{\star}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp},\bar{x}_{\overline{\mathsf{in}}}) \Big]_{\mathsf{cancelling}} \\ &+ \Big[\mathsf{F}^{\mathsf{NLO}}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp}) + \mathsf{F}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp}) \Delta_{\mathsf{unf}}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp}) + \Delta^{\star}_{\mathsf{coll}}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp}) \Big] \mathsf{f}(\bar{x}_{\overline{\mathsf{in}}}) \, d\mathsf{B}^{\star}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp},\bar{x}_{\overline{\mathsf{in}}}) \\ &+ \Big[\mathsf{f}^{\mathsf{NLO}}(\bar{x}_{\overline{\mathsf{in}}}) + \Delta_{\overline{\mathsf{coll}}}(\bar{x}_{\overline{\mathsf{in}}}) \Big] \mathsf{F}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp}) d\mathsf{B}^{\star}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp},\bar{x}_{\overline{\mathsf{in}}}) \bigg\} \end{split}$$

$$\begin{split} \Delta_{\overline{\text{coll}}}(\bar{x}_{\overline{\text{in}}}) &= -\frac{a_{\varepsilon}}{\varepsilon} \int_{\bar{x}_{\overline{\text{in}}}}^{1} dz \left[\mathcal{P}_{\overline{\text{in}}}^{\text{reg}}(z) + \gamma_{\overline{\text{in}}} \delta(1-z) \right] f\left(\frac{\bar{x}_{\overline{\text{in}}}}{z}\right) \\ \Delta_{\text{coll}}^{\star}(x_{\text{in}}, k_{\perp}) &= -\frac{a_{\varepsilon}}{\varepsilon} \int_{x_{\text{in}}}^{1} dz \bigg[\frac{2N_{c}}{[1-z]_{+}} + \frac{2N_{c}}{z} + \gamma_{g} \delta(1-z) \bigg] F\left(\frac{x_{\text{in}}}{z}, k_{\perp}\right) \\ \Delta_{\text{unf}}(x_{\text{in}}, k_{\perp}) &= \frac{a_{\varepsilon}N_{c}}{\varepsilon} \left(\frac{\mu^{2}}{|k_{\perp}|^{2}}\right)^{\varepsilon} \bigg[\text{impactFactCorr} + \text{couplingRenorm} - 2\ln\frac{2P \cdot \bar{P} x_{\text{in}}}{|k_{\perp}|^{2}} \bigg] \end{split}$$

$$f^{NLO}(\bar{x}_{\overline{in}}) + \Delta_{\overline{coll}}(\bar{x}_{\overline{in}}) = finite$$

 $\mathsf{F}^{\mathsf{NLO}}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp}) + \mathsf{F}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp}) \Delta_{\mathsf{unf}}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp}) + \Delta^{\star}_{\mathsf{coll}}(x_{\mathsf{in}},k_{\scriptscriptstyle \perp}) \stackrel{?}{=} \mathsf{finite}$