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Collinear factorization in QCD at NLO

dxi, X general: K¥* = xgP* + x¢P* + K"
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Can | establish the same within hybrid ky-factorization,
for which the LO cross section formula is
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Auxiliary parton method (tree-level) SRy

We desire to obtain the matrix element with one space-like gluon for the process
9" (kin) wm(ks) — wi(p1) wa(pa) - walpn) es g*(kin) glkm) — g(p1) g(p2) g(p3)
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The matrix element with the space-like gluon is obtained by taking A — oo
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The factor x% [k, |> ensures the correct on-shell limit, 1/A? selects the leading power,
1/g? corrects the power of the coupling.

One can use auxiliary quarks, as well as gluons, by including the color-correction factor
N2 1
Cau><—q = — ) Caux—g - ZNC
Ne
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For example, apply A limit on A|°°p(1Q,6Q,2q,3q,4e+,5r) (Bern, Dixon, Kosower 1998)
to get A'°°P(1*,24,3,4¢+, 5. ). The pole-part is proportional to the tree-level amplitude
with factor

1 2\ € 2\ €
{ e {< ; ) N ( ; ) } - S}Atree(1*’2q’3q>4e+»5e) y
€ —Sp3 —Sp2 2¢e

with s, and sp3 involving only the longitudinal part of kj =p + k.
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A\ effectively works as a regulator for linear denominators
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One-loop amplitudes turn out to depend non-trivially on the type of auxiliary parton.

=—> In/A in loop integrals

Performing explicit calculations for some simple processes we find for the virtual contribu-
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dV* _ dv*fam + dV*unf

dV*fm is independent of the type of auxiliary partons
has the correct regular on-shell limit
all 1/€2,1/€ poles look as if the space-like gluon were on-shell
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Auxiliary partons at one loop

More-or-less proven using known universal collinear limits of one-loop amplitudes
(Bern, Chalmers 1995, Bern, Del Duca, Kilgore, Schmidt 1999).

Before the large-/A, the small-|k | corresponds to a collinear limit of auxiliary partons.
While the large-A and small-[k, | limit commute at tree-level, they do not at one loop.
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the radiative gluon participates in the consumption of A.




Real radiation with auxiliary partons

Born (A-0P-br  Familior (a-9)p-t,  Unfamiligy ; )
A-EIP -
AP AP AP r}( dis.
.
k’ kl ‘(‘
ks ks; ky
Pt \\ —
P ky xP & P ey

The differential phase space and the matrix element factorize for the unfamiliar case, where
the radiative gluon participates in the consumption of A.
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Can be integrated analytically and is proportional to the Born result.
Like the unfamiliar virtual, it is proportional to (uz/IkJZ)e, produces InA,
and depends on the auxiliary parton types.




Real radiation with auxiliary partons

Born (A-8P-b;  Familiar (a-6)p-2,  Unfamiligy

The differential phase space and the matrix element factorize for the unfamiliar case, where
the radiative gluon participates in the consumption of A.

Precise separation of familiar and unfamiliar phase space via the demand that in the latter
case, the radiation must not become collinear to P in the terms with 1/x,

T T _
I | <X < L for terms with 1/x,

vwA Ttk
Ciafaloni, Colferai 1999

Can be integrated analytically and is proportional to the Born result.
Like the unfamiliar virtual, it is proportional to (uz/IkJZ)e, produces InA,
and depends on the auxiliary parton types.




Complete unfamiliar contribution

Combining the unfamiliar contributions and organizing them suggestively, we can write
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e No InA present. O(ws) contribution to the space-like gluon Regge trajectory.
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Combining the unfamiliar contributions and organizing them suggestively, we can write

dR*unf + dv*unf _ Aunf dB* ,

where N e 2.
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Juniv R Nc( €) writing X c(18 c ) g >
and 301 1
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Jaux—q - 2 - 2(_6) ) Jaux—g - Z + TN% + 6Ng (—6) .

e No InA present. O() contribution to the space-like gluon Regge trajectory.
e Target impact factor corrections as in Ciafaloni, Colferai 1999.

e Related to renormalization of the coupling constant (virtual was not UV-subtracted).




Familiar divergencies

Familiar (UV-subtracted) virtual divergencies involving the space-like gluon look as if it
were on-shell, with only the longitudinal momentum component x;,P in the soft log:

C — % 2 H.z — % HNC—Zn — %
- M \2+€Z'”(m>(M I L

i

Familiar real soft behavior with the space-like gluon acting as “spectator” looks as if it
were on-shell, with only the longitudinal momentum component x;,P in the eikonal terms:

(XinPPi)  mxy2




Familiar real collinear singularity

Tree-level matrix elements with a space-like gluon still have a singularity when a radiative
gluon becomes collinear to P.
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Collinear splitting function with only the 1/z/(1 — z) part.
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Essentially identical to formula from Nefedov 2020 for multi-Regge evolution.
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Real contribution to the non-cancelling collinear remnant.




in dx n V] X * X
dO_NLO — J C:(. de )Zi {F(Xin) kl) f(Xm) [dV*(Xin) kL) Xﬁ) +dR (Xin) k—L) Xﬁ)i|

[FNLO(XM) K1) + F(Xiny Ko ) Aunf (Xiny K0 ) + AL (Xin, kL)} f(xm) dB* (Xiny K1y Xim)

cancelling
+ [fNLO(Xm) + Aco” (Xm ):| F(Xin) k,J_) dB*(Xin) kJ_) im) }

dz [P (2) + (1 — 2)]f (X)

z

] 2N, 2N, Xin
A% (Xiny K1) eJ dz{H_thL . +yg6(1z)]F(Z,kL>

Ne (12 \[. - 2P P
Aunt (Xin, K1) = ae (|kpi|2) {lmpactFactCorr—i-couplngenorm—2|n |kL|§ }

fNLO(Xm) + Acoll(xm) = finite

FNLO(Xim kl) + F(Xin) kL)Aunf(Xim k ) + Acoll(x'in) ki) ; finite




