Singlet and anomaly contributions to massive QCD form

 factorsRADCOR, 2023

Kay Schönwald - in collaboration with Matteo Fael, Fabian Lange, Matthias Steinhauser Crieff, May 30, 2023

University of Zürich
Based on: Phys.Rev.Lett. 128 (2022), Phys.Rev.D 106 (2023), Phys.Rev.D 107 (2023)

Outline

Motivation
Definition and Previous Calculations

Technical Details

Results

Conclusions and Outlook

Motivation

Motivation

- Form factors are basic building blocks for many physical observables:
- $t \bar{t}$ production at hadron and $e^{+} e^{-}$colliders
- μ e scattering
- Higgs production and decay
- ...

- Form factors exhibit an universal infrared behavior.

Definition and Previous

Calculations

The Process

$$
\begin{gathered}
X(q) \rightarrow Q\left(q_{1}\right)+Q\left(q_{2}\right) \\
q_{1}^{2}=q_{2}^{2}=m^{2}, \quad q^{2}=s=\hat{s} \cdot m^{2}
\end{gathered}
$$

vector: $\quad j_{\mu}^{\vee}=\bar{\psi} \gamma_{\mu} \psi \quad \Gamma_{\mu}^{\vee}=F_{1}^{\nu}(s) \gamma_{\mu}-\frac{i}{2 m} F_{2}^{\nu}(s) \sigma_{\mu \nu} q^{\nu}$
axial-vector: $\quad j_{\mu}^{a}=\bar{\psi} \gamma_{\mu} \gamma_{5} \psi \quad \Gamma_{\mu}^{a}=F_{1}^{a}(s) \gamma_{\mu} \gamma_{5}-\frac{1}{2 m} F_{2}^{a}(s) q_{\mu} \gamma_{5}$

scalar: $\quad j^{s}=m \bar{\psi} \psi \quad \Gamma^{s}=m F^{s}(s)$
pseudo-scalar: $j^{p}=i m \bar{\psi} \gamma_{5} \psi \quad \Gamma^{p}=i m F^{p}(s) \gamma_{5}$

Previous Calculations

NNLO

$F_{l}^{(2)}$ fermionic corrections [Hoang, Teuber 97]

$$
\begin{aligned}
& F_{l}^{(2)}{ }_{\text {[Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi '04'00] }} \\
& \quad+\mathcal{O}(\epsilon) \text { [Gluza, Mitov, Moch, Riemann '09] } \\
& \quad+\mathcal{O}\left(\epsilon^{2}\right) \text { [Ahmed, Henn, Steinhauser '17; Ablinger, Behring, Blümlein, Falcioni, Freitas, Marquard, Rana, Schneider '17] }
\end{aligned}
$$

NNNLO - non-singlet
$F_{l}^{(3)}$ large- $\mathbb{N}_{C}[$ Henn, Smirnov, Smirnov, Steinhauser '16-'18; Ablinger, Marquard, Rana, Schneider '18]
$\boldsymbol{\eta}_{\boldsymbol{I}}$ [Lee, Smirnov, Smirnov, Steinhauser '18]

n_{h} (partially) [Blimelein, Marquard, Rana, Schneider '19] [see also the talk of Peter Marquard] full (semi-analytic) [Fael, Lange, Schönvald, Steihausere '22]
this talk: full (semi-analytic) results for singlet diagrams at NNNLO

Previous Calculations

- The large- N_{c} and n_{l} contributions at NNNLO can be written as iterated integrals over the letters:

$$
\frac{1}{x}, \frac{1}{1+x}, \frac{1}{1-x}, \quad \frac{1}{1-x+x^{2}}, \frac{x}{1-x+x^{2}}
$$

- The n_{h} terms already contain structures which go beyond iterated integrals.
\Rightarrow We aim at the full solution through analytic series expansions and numerical matching.

Technical Details

Technical Details

- Generate diagrams with QGRAF. [Noguerar 93]
- Use FORM [Ruijl Ueda, Vermaseren '17] for Lorentz, Dirac and color algebra. [Riterergen, Schelleens, Vermaseren '98]
- Map the output to predefined integral families with q2e/exp. [Harander, Seidensticker, Steinhauser '97-99]
- Reduce the scalar integrals to masters with Kira. [Klappert, Lange, Maiemberere, Usovitsch, Uwer 17, 20]
- We ensure a good basis where denominators factorize in ϵ and \hat{s} with ImproveMasters.m. [Smirnov, Smirnov '20]
- Establish differential equations in variable \hat{s} using LiteRed. [Lee '12,14]

	non-singlet	nh-singlet	nl-singlet
diagrams	271	66	66
families	34	17	13
masters	422	316	158

Algorithm to Solve Master Integrals

- Establish a system of differential equations for the master integrals in the variable \hat{s}.

Algorithm to Solve Master Integrals

- Establish a system of differential equations for the master integrals in the variable \hat{s}.
- Compute an expansion around $\hat{s}=\hat{s}_{0}$ by:

Algorithm to Solve Master Integrals

- Establish a system of differential equations for the master integrals in the variable \hat{s}.
- Compute an expansion around $\hat{s}=\hat{s}_{0}$ by:
- Inserting an ansatz for the master integrals into the differential equation.

$$
M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}_{0}-\hat{s}\right)^{j}
$$

Algorithm to Solve Master Integrals

- Establish a system of differential equations for the master integrals in the variable \hat{s}.
- Compute an expansion around $\hat{s}=\hat{s}_{0}$ by:
- Inserting an ansatz for the master integrals into the differential equation.

$$
M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}_{0}-\hat{s}\right)^{j}
$$

- Compare coefficients in ϵ and $x=\hat{s}_{0}-\hat{s}$ to establish a linear system of equations for the $c_{i j}^{(n)}$.

Algorithm to Solve Master Integrals

- Establish a system of differential equations for the master integrals in the variable \hat{s}.
- Compute an expansion around $\hat{s}=\hat{s}_{0}$ by:
- Inserting an ansatz for the master integrals into the differential equation.

$$
M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\text {max }}} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}_{0}-\hat{s}\right)^{j}
$$

- Compare coefficients in ϵ and $x=\hat{s}_{0}-\hat{s}$ to establish a linear system of equations for the $c_{i j}^{(n)}$.
- Solve the linear system in terms of a small number of boundary constants using Kira with FireFly.

Algorithm to Solve Master Integrals

- Establish a system of differential equations for the master integrals in the variable \hat{s}.
- Compute an expansion around $\hat{s}=\hat{s}_{0}$ by:
- Inserting an ansatz for the master integrals into the differential equation.

$$
M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\text {max }}} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}_{0}-\hat{s}\right)^{j}
$$

- Compare coefficients in ϵ and $x=\hat{s}_{0}-\hat{s}$ to establish a linear system of equations for the $c_{i j}^{(n)}$.
- Solve the linear system in terms of a small number of boundary constants using Kira with FireFly.
- Compute boundary values for $\hat{s}=\hat{s}_{0}$ and obtain an analytic expansion.

Algorithm to Solve Master Integrals

- Establish a system of differential equations for the master integrals in the variable \hat{s}.
- Compute an expansion around $\hat{s}=\hat{s}_{0}$ by:
- Inserting an ansatz for the master integrals into the differential equation.

$$
M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\text {max }}} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}_{0}-\hat{s}\right)^{j}
$$

- Compare coefficients in ϵ and $x=\hat{s}_{0}-\hat{s}$ to establish a linear system of equations for the $c_{i j}^{(n)}$.
- Solve the linear system in terms of a small number of boundary constants using Kira with FireFly.
- Compute boundary values for $\hat{s}=\hat{s}_{0}$ and obtain an analytic expansion.
- Build a general expansion around a new point, e.g. $\hat{s}=\hat{s}_{1}$, by modifying the ansatz and repeating the steps above.

Algorithm to Solve Master Integrals

- Establish a system of differential equations for the master integrals in the variable \hat{s}.
- Compute an expansion around $\hat{s}=\hat{s}_{0}$ by:
- Inserting an ansatz for the master integrals into the differential equation.

$$
M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}_{0}-\hat{s}\right)^{j}
$$

- Compare coefficients in ϵ and $x=\hat{s}_{0}-\hat{s}$ to establish a linear system of equations for the $c_{i j}^{(n)}$.
- Solve the linear system in terms of a small number of boundary constants using Kira with FireFly.
[Klappert, Klein, Lange '19,'20]
- Compute boundary values for $\hat{s}=\hat{s}_{0}$ and obtain an analytic expansion.
- Build a general expansion around a new point, e.g. $\hat{s}=\hat{s}_{1}$, by modifying the ansatz and repeating the steps above.
- Match both expansions numerically at a point where both expansions converge, e.g. $\left(\hat{s}_{0}+\hat{s}_{1}\right) / 2$.

Algorithm to Solve Master Integrals

- Establish a system of differential equations for the master integrals in the variable \hat{s}.
- Compute an expansion around $\hat{s}=\hat{s}_{0}$ by:
- Inserting an ansatz for the master integrals into the differential equation.

$$
M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}_{0}-\hat{s}\right)^{j}
$$

- Compare coefficients in ϵ and $x=\hat{s}_{0}-\hat{s}$ to establish a linear system of equations for the $c_{i j}^{(n)}$.
- Solve the linear system in terms of a small number of boundary constants using Kira with FireFly.
[Klappert, Klein, Lange '19,'20]
- Compute boundary values for $\hat{s}=\hat{s}_{0}$ and obtain an analytic expansion.
- Build a general expansion around a new point, e.g. $\hat{s}=\hat{s}_{1}$, by modifying the ansatz and repeating the steps above.
- Match both expansions numerically at a point where both expansions converge, e.g. $\left(\hat{s}_{0}+\hat{s}_{1}\right) / 2$.
- Repeat the procedure for the next point.

Calculation of Boundary Conditions - Non-Singlet

$$
s \rightarrow 0
$$

- For $s=0$ the master integrals reduce to 3-loop on-shell propagators:
- These integrals are well studied in the literature. [Laporata, Remiddi '96; Menikov, Ritbergen 'oo: Lee, Smirnov ${ }^{10]}$
- The reduction introduces high inverse powers in ϵ, which require some integrals up to weight 9.
- We calculate the needed terms with SummerTime.m [Lee, Mingulor ${ }^{15]}$ and PSLQ [Ferguson, Baiey '92].

Calculation of Boundary Conditions $-n_{h}$-Singlets

- The singlet diagrams can have massless cuts, therefore the limit $\hat{s} \rightarrow 0$ demands an asymptotic expansion.
- We reveal regions with ASY.m $[$ Smimov, Pak' $10 ;$ Jantren, Smimov, Smirnov ' 12$] \quad(y=\sqrt{-\hat{s}})$:
$\checkmark y^{-0 \epsilon}$: taylor expansion of the integrand, same as for the non-singlet
$\checkmark y^{-2 \epsilon}$: integrals can be performed for general ε in terms of Γ functions
$\checkmark y^{-4 \epsilon}$: one integral was calculated using HyperInt [Panzer ' 14$]$
\Rightarrow We obtain analytic boundary conditions in the limit $\hat{s} \rightarrow 0$.

Calculation of Boundary Conditions $-n_{l}$-Singlets

- The singlet diagrams can have massless cuts, therefore the limit $\hat{s} \rightarrow 0$ demands an asymptotic expansion.
- We reveal regions with ASY.m [Smirnov, Pak' 10: Smintove. Jantizen '12] $(y=\sqrt{-\hat{s}})$:
$\checkmark y^{-0 \epsilon}$: taylor expansion of the integrand, same as for the non-singlet
$\checkmark y^{-2 \epsilon}$: integrals can be performed for general ε in terms of Γ functions
$\checkmark y^{-4 \epsilon}$: integrals can be performed with HyperInt and Mellin-Barnes methods
$x y^{-6 \epsilon}$: direct integration for some integrals quite involved
\Rightarrow For the n_{l}-singlets we changed strategy and calculated the masters at $\hat{s}=-1$ with AMFLow [Liu, Ma ${ }^{22]}$ and matched from there.

Series Expansions

- Special points:

$s=0$	$s=4 m^{2}$	$s=16 m^{2}$	$s= \pm \infty$
$x=1$	$x=-1$	$x=4 \sqrt{3}-7$	$x=0$
static limit	2-particle threshold	4-particle threshold	high energy limit

- Every expansion point needs a different ansatz.

$$
M_{n}(\epsilon, \hat{s}=0)=\sum_{i=-3}^{\infty} \sum_{j=-j_{\min }}^{j_{\max }} \sum_{k=0}^{i+3} c_{i j}^{(n)} \epsilon^{i} \sqrt{-\hat{s}^{j}} \ln ^{k}(\sqrt{-\hat{s}})
$$

For non-singlet diagrams a simple taylor expansion in \hat{s} is sufficient.

Series Expansions

- Special points:

$s=0$	$s=4 m^{2}$	$s=16 m^{2}$	$s= \pm \infty$
$x=1$	$x=-1$	$x=4 \sqrt{3}-7$	$x=0$
static limit	2-particle threshold	4-particle threshold	high energy limit

- Every expansion point needs a different ansatz.

$$
M_{n}(\epsilon, \hat{s}=4)=\sum_{i=-3}^{\infty} \sum_{j=-j_{\text {min }}}^{j_{\text {max }}} \sum_{k=0}^{i+3} c_{i j k}^{(n)} \epsilon^{i}[\sqrt{4-\hat{s}}]^{j} \ln ^{k}(\sqrt{4-\hat{s}})
$$

Series Expansions

- Special points:

$s=0$	$s=4 m^{2}$	$s=16 m^{2}$	$s= \pm \infty$
$x=1$	$x=-1$	$x=4 \sqrt{3}-7$	$x=0$
static limit	2-particle threshold	4-particle threshold	high energy limit

- Every expansion point needs a different ansatz. (only needed for the n_{h} singlets)

$$
M_{n}(\epsilon, \hat{s}=16)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+3} c_{i j k}^{(n)} \epsilon^{i}[\sqrt{16-\hat{s}}]^{j} \ln ^{k}(\sqrt{16-\hat{s}})
$$

Series Expansions

- Special points:

$s=0$	$s=4 m^{2}$	$s=16 m^{2}$	$s= \pm \infty$
$x=1$	$x=-1$	$x=4 \sqrt{3}-7$	$x=0$
static limit	2-particle threshold	4-particle threshold	high energy limit

- Every expansion point needs a different ansatz.

$$
M_{n}(\epsilon, \hat{s} \rightarrow \pm \infty)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+6} c_{i j k}^{(n)} \epsilon^{i} \hat{s}^{-j} \ln ^{k}(\hat{s})
$$

Series Expansions

- Special points:

$s=0$	$s=4 m^{2}$	$s=16 m^{2}$	$s= \pm \infty$
$x=1$	$x=-1$	$x=4 \sqrt{3}-7$	$x=0$
static limit	2-particle threshold	4-particle threshold	high energy limit

- Every expansion point needs a different ansatz.
- We construct expansions with $j_{\max }=50$ around:

$$
\begin{aligned}
\hat{s}=\{ & -\infty,-32,-28,-24,-16,-12,-8,-4,-3,-2,-1,0,1,2,3,7 / 2,4 \\
& 9 / 2,5,6,7,8,10,12,14,15,16,17,19,22,28,40,52\}
\end{aligned}
$$

Example

- Expansion around $\hat{s}=0$.

Example

- Expansion around $\hat{s}=0$.
- Expansion around $\hat{s}=-4$, matched at $\hat{s}=-2$.

Example

- Expansion around $\hat{s}=0$.
- Expansion around $\hat{s}=-4$, matched at $\hat{s}=-2$.
- Expansion around $\hat{s}=-8$, matched at $\hat{s}=-6$.

Treatment of γ_{5}

- For non-singlet diagrams always an even number of γ_{5} matrices appear on a fermion line.
\Rightarrow Use anti-commuting γ_{5}.
- In the singlet diagrams odd numbers of γ_{5} appear on a fermion line.
\Rightarrow Use Larin's prescription [Larin '92] :

$$
\gamma_{\mu} \gamma_{5} \rightarrow \frac{1}{3!} \epsilon_{\mu \nu \rho \sigma} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma},
$$

where the contraction of two ϵ tensors is done in $d=4-2 \epsilon$ dimensions.
\checkmark Finite (multiplicative) renormalization constants for all currents are known.

- Only the sum of singlet and non-singlet diagrams renormalizes multiplicative, so the non-singlet has to be calculated in the Larin scheme as well (we use this as a cross-check).

Chiral Ward Identity

- The non-renormalization of the Adler-Bell-Jackiw (ABJ) anomaly implies:

$$
\left(\partial^{\mu} j_{\mu}^{a}\right)_{\mathrm{R}}=2\left(j^{p}\right)_{\mathrm{R}}+\frac{\alpha_{s}}{4 \pi} T_{F}(G \tilde{G})_{\mathrm{R}}
$$

with the pseudoscalar gluonic operator $G \tilde{G}=\epsilon_{\mu \nu \rho \sigma} G^{a, \mu \nu} G^{a, \rho \sigma}$

- This relation can be used to check the correct treatment of γ_{5}.
- For the form factors this leads to the identity:

$$
F_{\text {sing }, 1}^{a, f}+\frac{s}{4 m^{2}} F_{\text {sing }, 2}^{a, f}=F_{\text {sing }}^{p, f}+\frac{\alpha_{s}}{4 \pi} T_{F} F_{G \tilde{G}}^{f}
$$

- We calculated the form factor associated to $G \tilde{G}$ up to $\mathcal{O}\left(\alpha_{s}^{2}\right)$ for this check.

Chiral Ward Identity

- The new topologies introduce 3 (1), 24 (15) master integrals (new wrt. the form factor calculation).
- We calculate the masters by the algorithm outlined in [Ablinger, Blümlein, Marquard, Rana, Schneider '18] :

1. Uncouple coupled blocks of the differential equation into a higher order one with OreSys [Gerhold '02] and Sigma [Schneider '07].
2. Solve the higher order differential equations via the factorization of the differential operator with HarmonicSums [Ablinger '11-] .
3. The boundary conditions can be found by direct integration in the asymptotic limit $\hat{s} \rightarrow 0$.

- We can express the result up to $\mathcal{O}\left(\alpha_{s}^{2}\right)$ in terms of harmonic polylogarithms. [Remiddi, Vermseren '99]

Results

Results - Analytic $\hat{s}=0$ Expansion

Analytic expansion of the n_{h}-singlet for $\hat{s}=0$:

$$
\begin{aligned}
F_{\text {sing }}^{s, f,(3)}(\hat{s} & =0)=T_{F} n_{h}\left\{C_{F}^{2}\left(-\frac{32 a_{4}}{3}+\frac{55 \zeta_{3}}{72}+\frac{445}{108}+\frac{517 \pi^{2}}{324}-\frac{11 \pi^{4}}{270}-\frac{4 I_{2}^{4}}{9}+\frac{4}{9} \pi^{2} I_{2}^{2}-\frac{22}{9} \pi^{2} I_{2}\right)\right. \\
& +C_{A} C_{F}\left(\frac{22 a_{4}}{3}+\frac{113 \zeta_{3}}{36}-\frac{\pi^{2} \zeta_{3}}{4}+\frac{5 \zeta_{5}}{4}-\frac{643}{54}+\frac{466 \pi^{2}}{81}+\frac{187 \pi^{4}}{4320}+\frac{11 I_{2}^{4}}{36}-\frac{11}{36} \pi^{2} I_{2}^{2}-\frac{61}{9} \pi^{2} I_{2}\right) \\
& +C_{F} T_{F} n_{h}\left(-\frac{8 \zeta_{3}}{3}+\frac{16}{9}+\frac{26 \pi^{2}}{135}\right)+C_{F} T_{F} n_{l}\left(\frac{20}{9}-\frac{10 \pi^{2}}{27}\right) \\
& \left.+\sqrt{-\hat{s}} \pi^{2}\left[\frac{C_{F}^{2}}{16}+C_{A} C_{F}\left(\frac{11}{36} I_{\sqrt{-\hat{s}}}+\frac{\pi^{2}}{72}-\frac{263}{432}\right)+C_{F} T_{F} n_{l}\left(\frac{4}{27}-\frac{1}{9} I_{\sqrt{-\hat{s}}}\right)\right]\right\}+\mathcal{O}(\hat{s})
\end{aligned}
$$

with $I_{2}=\ln (2), a_{4}=\operatorname{Li}_{4}(1 / 2)$ and $C_{A}=3, C_{F}=4 / 3$ for QCD.

Results - Analytic $\hat{s}=0$ Expansion

Analytic expansion of the n_{h}-singlet for $\hat{s}=0$:

$$
\begin{aligned}
F_{\text {sing }}^{s, f,(3)}(\hat{s} & =0)=T_{F} n_{h}\left\{C_{F}^{2}\left(-\frac{32 a_{4}}{3}+\frac{55 \zeta_{3}}{72}+\frac{445}{108}+\frac{517 \pi^{2}}{324}-\frac{11 \pi^{4}}{270}-\frac{4 I_{2}^{4}}{9}+\frac{4}{9} \pi^{2} I_{2}^{2}-\frac{22}{9} \pi^{2} I_{2}\right)\right. \\
& +C_{A} C_{F}\left(\frac{22 a_{4}}{3}+\frac{113 \zeta_{3}}{36}-\frac{\pi^{2} \zeta_{3}}{4}+\frac{5 \zeta_{5}}{4}-\frac{643}{54}+\frac{466 \pi^{2}}{81}+\frac{187 \pi^{4}}{4320}+\frac{11 I_{2}^{4}}{36}-\frac{11}{36} \pi^{2} I_{2}^{2}-\frac{61}{9} \pi^{2} I_{2}\right) \\
& +C_{F} T_{F} n_{h}\left(-\frac{8 \zeta_{3}}{3}+\frac{16}{9}+\frac{26 \pi^{2}}{135}\right)+C_{F} T_{F} n_{l}\left(\frac{20}{9}-\frac{10 \pi^{2}}{27}\right) \\
& \left.+\sqrt{-\hat{s}} \pi^{2}\left[\frac{C_{F}^{2}}{16}+C_{A} C_{F}\left(\frac{11}{36} I_{\sqrt{-\hat{s}}}+\frac{\pi^{2}}{72}-\frac{263}{432}\right)+C_{F} T_{F} n_{l}\left(\frac{4}{27}-\frac{1}{9} I_{\sqrt{-\hat{s}}}\right)\right]\right\}+\mathcal{O}(\hat{s})
\end{aligned}
$$

with $I_{2}=\ln (2), a_{4}=\operatorname{Li}(1 / 2)$ and $C_{A}=3, C_{F}=4 / 3$ for QCD.

- We have calculated the expansion up to $\mathcal{O}\left(s^{66}\right)$.

Results - Pole Cancellation

- We can use the pole cancellation to estimate the precision.
\Rightarrow We find at least 10 significant digits, although some regions are much more precise.
- To estimate the number of significant digits we use:

$$
\log _{10}\left(\left|\frac{\text { expansion }- \text { analytic }}{\text { analytic }}\right|\right)
$$

- The analytic expressions for the poles are expressed by Harmonic Polylogarithms which can be evaluated with ginac. [Vollinga, Weinzierl '05]

Results - Pole Cancellation

- We can use the pole cancellation to estimate the precision.
\Rightarrow We find at least 10 significant digits, although some regions are much more precise.
- To estimate the number of significant digits we use:

$$
\log _{10}\left(\left|\frac{\text { expansion }- \text { analytic }}{\text { analytic }}\right|\right)
$$

- The analytic expressions for the poles are expressed by Harmonic Polylogarithms which can be evaluated with ginac. [Volinga, Weinzer 105]

Results - Pole Cancellation

- We can use the pole cancellation to estimate the precision.
\Rightarrow The chiral Ward identity is fulfilled to at least the same accuracy.
- To estimate the number of significant digits we use:

$$
\log _{10}\left(\left|\frac{\text { expansion }- \text { analytic }}{\text { analytic }}\right|\right)
$$

- The analytic expressions for the poles and counter terms are expressed by Harmonic Polylogarithms which can be evaluated with ginac. [Volinga, Weinier ' 05]

Result - Finite Form Factors

Results - High Energy Limit

- For $s \rightarrow \infty$ there is the prediction: [Liu, Penin, Zerf '18]

$$
F_{\text {sing }}^{s, f,(3)}=F_{\text {sing }}^{p, f,(3)}=-\frac{m^{2}}{s} I_{s}^{6}\left(\frac{C_{A} C_{F} T_{F}}{960}+\frac{C_{F}^{2} T_{F}}{240}\right)+\ldots, \quad \text { with } I_{s}=\ln \left(\frac{m^{2}}{-s}\right)
$$

- We obtain:

Results - High Energy Limit

- For $s \rightarrow \infty$ there is the prediction: [Liu, Penin, Zerf '18]

$$
F_{\text {sing }}^{s, f,(3)}=F_{\mathrm{sing}}^{p, f,(3)}=-\frac{m^{2}}{s} l_{s}^{6}\left(\frac{C_{A} C_{F} T_{F}}{960}+\frac{C_{F}^{2} T_{F}}{240}\right)+\ldots, \quad \text { with } I_{s}=\ln \left(\frac{m^{2}}{-s}\right)
$$

- We obtain:

$$
\begin{aligned}
\left.F_{\text {sing }, h}^{s, f}\right|_{s \rightarrow-\infty} & =\left(\frac{\alpha_{s}}{\pi}\right)^{2} C_{F} T_{F}\left[-\frac{1}{48} I_{s}^{4}+\left(1-\frac{\pi^{2}}{12}\right) l_{s}^{2}+\left(4-3 \zeta_{3}\right) I_{s}+\frac{2 \pi^{2}}{3}-\frac{\pi^{4}}{45}\right] \\
& -\left(\frac{\alpha_{s}}{\pi}\right)^{3} C_{F} T_{F} \frac{m^{2}}{s}\left[C _ { F } \left(\sqrt{0.0041667 l_{s}^{6}}-0.0062500 l_{s}^{5}+0.062124 l_{s}^{4}+1.0817 l_{s}^{3}+4.8496 l_{s}^{2}\right.\right. \\
& \left.+32.500 I_{s}+58.066\right)+C_{A}\left(\sqrt{0.0010417 I_{s}^{6}}-0.022917 I_{s}^{5}-0.14492 I_{s}^{4}+0.46401 l_{s}^{3}\right. \\
& \left.+3.6270 I_{s}^{2}+9.0468 I_{s}+16.307\right)+T_{F} n_{h}\left(0.0083333 I_{s}^{5}+0.023148 I_{s}^{4}-0.078904 l_{s}^{3}\right. \\
& \left.-0.31219 I_{s}^{2}-2.1741 I_{s}-1.2446\right)+T_{F} n_{l}\left(0.0083333 I_{s}^{5}+0.023148 l_{s}^{4}-0.078904 l_{s}^{3}\right. \\
& \left.\left.-0.31219 I_{s}^{2}-3.8614 I_{s}-6.4797\right)+\ldots\right]
\end{aligned}
$$

Results - High Energy Limit

- For $s \rightarrow \infty$ there is the prediction: [Liu, Penin, Zerf '18]

$$
F_{\text {sing }}^{s, f,(3)}=F_{\text {sing }}^{p, f,(3)}=-\frac{m^{2}}{s} I_{s}^{6}\left(\frac{C_{A} C_{F} T_{F}}{960}+\frac{C_{F}^{2} T_{F}}{240}\right)+\ldots, \quad \text { with } I_{s}=\ln \left(\frac{m^{2}}{-s}\right)
$$

- We obtain:

$$
\begin{aligned}
\left.F_{2, \text { sing }, l}^{a, f}\right|_{s \rightarrow-\infty} & =\left(\frac{\alpha_{s}}{\pi}\right)^{2} C_{F} T_{F} \frac{m^{2}}{-s}\left[-\frac{1}{2} I_{s}^{2}-3 I_{s}-2-\frac{\pi^{2}}{3}\right] \\
& +\left(\frac{\alpha_{s}}{\pi}\right)^{3} C_{F} T_{F} \frac{m^{2}}{-s}\left[C_{F}\left(0.104167 I_{s}^{4}+1 . l_{s}^{3}+6.68117 I_{s}^{2}+22.4839 I_{s}+34.67\right)\right. \\
& +C_{A}\left(0.0208333 I_{s}^{4}-0.611111 l_{s}^{3}-7.80858 I_{s}^{2}-30.0535 I_{s}-49.2293\right) \\
& +T_{F} n_{h}\left(0.222222 I_{s}^{3}+2.05556 I_{s}^{2}+6.33333 I_{s}+8.54753\right) \\
& \left.+T_{F} n_{l}\left(0.222222 I_{s}^{3}+2.05556 I_{s}^{2}+6.33333 I_{s}+10.147\right)\right]
\end{aligned}
$$

Public Implementation

- There are two public implementations for the numerical evaluation:

1. formfactors31: Mathematica implementation of bare and finite form factors
2. ff3l: Fortran for ultraviolet renormalized (but infrared unsubtracted) form factors
```
program example1
    use ff3l
    implicit none
    double complex :: f1v
    double precision :: s = 10
    integer :: eporder
    call ff3l_nhsinglet_off
    do eporder = -3,0
f1v = ff3l_veF1(s,eporder)
print *,"F1( s = ",s,", ep = ",eporder," ) = ", f1v
    enddo
end program example1
```

Conclusions and Outlook

Conclusions and Outlook

Conclusions

- We have calculated the singlet contributions to the massive quark form factors at NNNLO.
- We applied a semianalytic method by constructing series expansions and numerical matching.
- We can reproduce known results in the literature.
- We estimate the precision to 10 significant digits over the whole real axis.
- We provide public Implementations for the evaluation of the massive quark form factors.
- Together with our previous non-singlet calculation the massive quark form factors are fully available at NNNLO.

Conclusions and Outlook

Conclusions

- We have calculated the singlet contributions to the massive quark form factors at NNNLO.
- We applied a semianalytic method by constructing series expansions and numerical matching.
- We can reproduce known results in the literature.
- We estimate the precision to 10 significant digits over the whole real axis.
- We provide public Implementations for the evaluation of the massive quark form factors.
- Together with our previous non-singlet calculation the massive quark form factors are fully available at NNNLO.

Outlook

- Calculate the contributions including a second heavy quark.
\Rightarrow Interesting for muon electron scattering.

Backup

Algorithm to Solve Master Integrals

There are other approaches based on expansions:

- SolveCoupledSystems.m [Blümlein, Schneider '17]
- DESS.m [Lee, Smirnov, Smirnov '18]
- DiffExp.m [Hidding '20]
- SeaSyde.m [Armadillo, Bonciani, Devoto, Rana, Vicini '22]

Our approach ...

- ... does not require a special form of differential equation.
- ... provides approximation in whole kinematic range.
- ... is applied to physical quantity. [Fael, Lange, KS, Steinhauser '21]

Renormalization and Infrared Structure

UV renormalization

- On-shell renormalization of mass Z_{m}^{OS}, wave function Z_{2}^{OS}, and (if needed) the currents. [Chetyrkin, Steinhauser '99; Melnikov, Ritbergen '00]

IR subtraction

- Structure of the infrared poles is given by the cusp anomalous dimension $\Gamma_{\text {cusp }}$. [Grozin, Henn, Korchemski, Marquard '14]
- Define finite form factors $F=Z_{\mathrm{IR}} F^{\text {finite }}$ with the UV renormalized form factor F and

$$
Z_{\mathbb{R}}=1-\frac{\alpha_{s}}{\pi} \frac{1}{2 \epsilon} \Gamma_{\text {cusp }}^{(1)}-\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left(\frac{\cdots}{\epsilon^{2}}+\frac{1}{4 \epsilon} \Gamma_{\text {cusp }}^{(2)}\right)-\left(\frac{\alpha_{s}}{\pi}\right)^{3}\left(\frac{\cdots}{\epsilon^{3}}+\frac{\cdots}{\epsilon^{2}}+\frac{1}{6 \epsilon} \Gamma_{\text {cusp }}^{(3)}\right)
$$

- $\Gamma_{\text {cusp }}=\Gamma_{\text {cusp }}(x)$ depends on kinematics.
- $\Gamma_{\text {cusp }}$ is universal for all currents.

Moebius Transformations

- The radius of convergence is at most the distance to the closest singularity.
- We can extend the radius of convergence by changing to a new expansion variable.
- If we want to expand around the point x_{k} with the closest singularities at x_{k-1} and x_{k+1}, we can use:

$$
y_{k}=\frac{\left(x-x_{k}\right)\left(x_{k+1}-x_{k-1}\right)}{\left(x-x_{k+1}\right)\left(x_{k-1}-x_{k}\right)+\left(x-x_{k-1}\right)\left(x_{k+1}-x_{k}\right)}
$$

- The variable change maps $\left\{x_{k-1}, x_{k}, x_{k+1}\right\} \rightarrow\{-1,0,1\}$.

Calculation of Boundary Conditions

E.g. extension of G_{66} (given up to and including $\mathcal{O}\left(\epsilon^{3}\right)$ in [Lee, Smirnov '10]):

$$
\begin{aligned}
& =\cdots+\epsilon^{4}\left(-4704 s_{6}-9120 s_{7 a}-9120 s_{7 b}-547 s_{8 a}+9120 s_{6} \ln (2)+28 \ln ^{4}(2)+\frac{112 \ln ^{5}(2)}{3}-\frac{808}{45} \ln ^{6}(2)\right. \\
& \left.-\frac{347}{9} \ln ^{8}(2)+672 \operatorname{Li}_{4}\left(\frac{1}{2}\right)-\frac{5552}{3} \ln ^{4}(2) \operatorname{Li}_{4}\left(\frac{1}{2}\right)-22208 \operatorname{Li}_{4}\left(\frac{1}{2}\right)^{2}-4480 \mathrm{Li}_{5}\left(\frac{1}{2}\right)-12928 \operatorname{Li}_{6}\left(\frac{1}{2}\right)+\ldots\right) \\
& +\epsilon^{5}\left(14400 s_{6}-\frac{377568 s_{7 a}}{7}-\frac{93984 s_{7 b}}{7}-2735 s_{8 a}+7572912 s_{9 a}-3804464 s_{9 b}-\frac{5092568 s_{9 c}}{3}-136256 s_{9 d}\right. \\
& \left.+681280 s_{9}+272512 s_{9 f}+\frac{377568}{7} s_{6} \ln (2)-\frac{32465121}{20} s_{8 a} \ln (2)-10185136 s_{8 b} \ln (2)+136256 s_{7 b} \ln ^{2}(2)+\ldots\right) \\
& +\mathcal{O}\left(\epsilon^{6}\right)
\end{aligned}
$$

Results - Threshold Expansion

- Close to threshold it is interesting to consider:

$$
\sigma\left(e^{+} e^{-} \rightarrow Q \bar{Q}\right)=\sigma_{0} \beta \underbrace{\left(\left|F_{1}^{\vee}+F_{2}^{\vee}\right|^{2}+\frac{\left|\left(1-\beta^{2}\right) F_{1}^{\vee}+F_{2}^{\vee}\right|^{2}}{2\left(1-\beta^{2}\right)}\right)}_{=3 / 2 \Delta}
$$

with $\beta=\sqrt{1-4 m^{2} / s}$.

- Real radiation is supressed by β^{3}.
- We find (with $I_{2 \beta}=\ln (2 \beta)$):

$$
\begin{aligned}
\Delta^{(3)} & =C_{F}^{3}\left[-\frac{32.470}{\beta^{2}}+\frac{1}{\beta}\left(14.998-32.470 l_{2 \beta}\right)\right]+C_{A}^{2} C_{F} \frac{1}{\beta}\left[16.586 l_{2 \beta}^{2}-22.572 l_{2 \beta}+42.936\right] \\
& +C_{A} C_{F}^{2}\left[\frac{1}{\beta^{2}}\left(-29.764 l_{2 \beta}-7.770339\right)+\frac{1}{\beta}\left(-12.516 l_{2 \beta}-11.435\right)\right] \\
& +\mathcal{O}\left(\beta^{0}\right)+\text { fermionic contributions }
\end{aligned}
$$

