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Based on: Phys.Rev.Lett. 128 (2022), Phys.Rev.D 106 (2023), Phys.Rev.D 107 (2023)



Outline

Motivation

Definition and Previous Calculations

Technical Details

Results

Conclusions and Outlook



Motivation



Motivation

• Form factors are basic building blocks for many

physical observables:

• t t̄ production at hadron and e+ e− colliders

• µ e scattering

• Higgs production and decay

• ...

• Form factors exhibit an universal infrared behavior.
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Definition and Previous

Calculations



The Process

X (q) → Q(q1) + Q(q2)

q21 = q22 = m2, q2 = s = ŝ ·m2

vector : jvµ = ψγµψ Γvµ = F v
1 (s)γµ − i

2m
F v
2 (s)σµνq

ν

axial-vector : jaµ = ψγµγ5ψ Γaµ = F a
1 (s)γµγ5 −

1

2m
F a
2 (s)qµγ5

scalar : j s = mψψ Γs = mF s(s)

pseudo-scalar : jp = imψγ5ψ Γp = imF p(s)γ5

q

q1

q2
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Previous Calculations

NNLO

F
(2)
I fermionic corrections [Hoang, Teubner ’97]

F
(2)
I [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi ’04-’06]

+O(ϵ) [Gluza, Mitov, Moch, Riemann ’09]

+O(ϵ2) [Ahmed, Henn, Steinhauser ’17; Ablinger, Behring, Blümlein, Falcioni, Freitas, Marquard, Rana, Schneider ’17]

NNNLO – non-singlet

F
(3)
I large-Nc [Henn, Smirnov, Smirnov, Steinhauser ’16-’18; Ablinger, Marquard, Rana, Schneider ’18]

nl [Lee, Smirnov, Smirnov, Steinhauser ’18]

nh (partially) [Blümlein, Marquard, Rana, Schneider ’19] [see also the talk of Peter Marquard]

full (semi-analytic) [Fael, Lange, Schönwald, Steihauser ’22]

this talk: full (semi-analytic) results for singlet diagrams at NNNLO
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Previous Calculations

q2 = s = − (1− x)2

x

• The large-Nc and nl contributions at NNNLO can be written as iterated integrals over the

letters:

1

x
,

1

1 + x
,

1

1− x
,

1

1− x + x2
,

x

1− x + x2

• The nh terms already contain structures which go beyond iterated integrals.

⇒ We aim at the full solution through analytic series expansions and numerical matching.
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Technical Details



Technical Details

• Generate diagrams with QGRAF. [Nogueira ’93]

• Use FORM [Ruijl, Ueda, Vermaseren ’17] for Lorentz, Dirac and color algebra. [Ritbergen, Schellekens, Vermaseren ’98]

• Map the output to predefined integral families with q2e/exp. [Harlander, Seidensticker, Steinhauser ’97-’99]

• Reduce the scalar integrals to masters with Kira. [Klappert, Lange, Maierhöfer, Usovitsch, Uwer ’17,’20]

• We ensure a good basis where denominators factorize in ϵ and ŝ with ImproveMasters.m.
[Smirnov, Smirnov ’20]

• Establish differential equations in variable ŝ using LiteRed. [Lee ’12,’14]

non-singlet nh-singlet nl-singlet

diagrams 271 66 66

families 34 17 13

masters 422 316 158
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Algorithm to Solve Master Integrals

• Establish a system of differential equations for the master integrals in the variable ŝ.

• Compute an expansion around ŝ = ŝ0 by:

• Inserting an ansatz for the master integrals into the differential equation.

Mn(ϵ, ŝ = ŝ0) =
∞∑

i=−3

jmax∑
j=0

c
(n)
ij ϵi (ŝ0 − ŝ)j

• Compare coefficients in ϵ and x = ŝ0 − ŝ to establish a linear system of equations for the c
(n)
ij .

• Solve the linear system in terms of a small number of boundary constants using Kira with

FireFly.
[Klappert, Klein, Lange ’19,’20]

• Compute boundary values for ŝ = ŝ0 and obtain an analytic expansion.

• Build a general expansion around a new point, e.g. ŝ = ŝ1, by modifying the ansatz and

repeating the steps above.

• Match both expansions numerically at a point where both expansions converge, e.g.

(ŝ0 + ŝ1)/2.

• Repeat the procedure for the next point.
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(ŝ0 + ŝ1)/2.

• Repeat the procedure for the next point.

6



Calculation of Boundary Conditions – Non-Singlet

s → 0

⇒

• For s = 0 the master integrals reduce to 3-loop on-shell propagators:

• These integrals are well studied in the literature. [Laporta, Remiddi ‘96; Melnikov, Ritbergen ‘00; Lee, Smirnov ‘10]

• The reduction introduces high inverse powers in ϵ, which require some integrals up to

weight 9.

• We calculate the needed terms with SummerTime.m [Lee, Mingulov ‘15] and PSLQ [Ferguson, Bailey ‘92] .
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Calculation of Boundary Conditions – nh-Singlets

• The singlet diagrams can have massless cuts, therefore the limit ŝ → 0 demands an

asymptotic expansion.

• We reveal regions with ASY.m [Smirnov, Pak ’10; Jantzen, Smirnov, Smirnov ’12] (y =
√
−ŝ):

✓ y−0ϵ: taylor expansion of the integrand, same as for the non-singlet

✓ y−2ϵ: integrals can be performed for general ε in terms of Γ functions

✓ y−4ϵ: one integral was calculated using HyperInt [Panzer ’14]

⇒ We obtain analytic boundary conditions in the limit ŝ → 0.
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Calculation of Boundary Conditions – nl-Singlets

• The singlet diagrams can have massless cuts, therefore the limit ŝ → 0 demands an

asymptotic expansion.

• We reveal regions with ASY.m [Smirnov, Pak ’10; Smirnov2, Jantzen ’12] (y =
√
−ŝ):

✓ y−0ϵ: taylor expansion of the integrand, same as for the non-singlet

✓ y−2ϵ: integrals can be performed for general ε in terms of Γ functions

✓ y−4ϵ: integrals can be performed with HyperInt and Mellin-Barnes methods

✗ y−6ϵ: direct integration for some integrals quite involved

⇒ For the nl -singlets we changed strategy and calculated the masters at ŝ = −1 with

AMFLow [Liu, Ma ’22] and matched from there.
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Series Expansions

• Special points:

s = 0 s = 4m2 s = 16m2 s = ±∞

x = 1 x = −1 x = 4
√
3− 7 x = 0

static limit 2-particle threshold 4-particle threshold high energy limit

• Every expansion point needs a different ansatz.

Mn(ϵ, ŝ = 0) =
∞∑

i=−3

jmax∑
j=−jmin

i+3∑
k=0

c
(n)
ij ϵi

√
−ŝ

j
lnk
(√

−ŝ
)

For non-singlet diagrams a simple taylor expansion in ŝ is sufficient.
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Series Expansions

• Special points:

s = 0 s = 4m2 s = 16m2 s = ±∞

x = 1 x = −1 x = 4
√
3− 7 x = 0

static limit 2-particle threshold 4-particle threshold high energy limit

• Every expansion point needs a different ansatz.

Mn(ϵ, ŝ = 4) =
∞∑

i=−3

jmax∑
j=−jmin

i+3∑
k=0

c
(n)
ijk ϵi

[√
4− ŝ

]j
lnk
(√

4− ŝ
)
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Series Expansions

• Special points:

s = 0 s = 4m2 s = 16m2 s = ±∞

x = 1 x = −1 x = 4
√
3− 7 x = 0

static limit 2-particle threshold 4-particle threshold high energy limit

• Every expansion point needs a different ansatz. (only needed for the nh singlets)

Mn(ϵ, ŝ = 16) =
∞∑

i=−3

jmax∑
j=−smin

i+3∑
k=0

c
(n)
ijk ϵi

[√
16− ŝ

]j
lnk
(√

16− ŝ
)
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Series Expansions

• Special points:

s = 0 s = 4m2 s = 16m2 s = ±∞

x = 1 x = −1 x = 4
√
3− 7 x = 0

static limit 2-particle threshold 4-particle threshold high energy limit

• Every expansion point needs a different ansatz.

Mn(ϵ, ŝ → ±∞) =
∞∑

i=−3

jmax∑
j=−smin

i + 6∑
k=0

c
(n)
ijk ϵi ŝ−j lnk (ŝ)
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Series Expansions

• Special points:

s = 0 s = 4m2 s = 16m2 s = ±∞

x = 1 x = −1 x = 4
√
3− 7 x = 0

static limit 2-particle threshold 4-particle threshold high energy limit

• Every expansion point needs a different ansatz.

• We construct expansions with jmax = 50 around:

ŝ = { −∞,−32,−28,−24,−16,−12,−8,−4,−3,−2,−1, 0, 1, 2, 3, 7/2, 4,

9/2, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 19, 22, 28, 40, 52}
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Example

-12 -10 -8 -6 -4 -2 0 2
0
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• Expansion around ŝ = 0.
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Example

-12 -10 -8 -6 -4 -2 0 2
0

10

20

30

40

50

60

• Expansion around ŝ = 0.

• Expansion around ŝ = −4,

matched at ŝ = −2.

• Expansion around ŝ = −8,

matched at ŝ = −6.
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Treatment of γ5

• For non-singlet diagrams always an even number of γ5 matrices appear on a fermion line.

⇒ Use anti-commuting γ5.

• In the singlet diagrams odd numbers of γ5 appear on a fermion line.

⇒ Use Larin’s prescription [Larin ’92] :

γµγ5 →
1

3!
ϵµνρσγ

νγργσ ,

where the contraction of two ϵ tensors is done in d = 4− 2ϵ dimensions.

✓ Finite (multiplicative) renormalization constants for all currents are known.

• Only the sum of singlet and non-singlet diagrams renormalizes multiplicative, so the

non-singlet has to be calculated in the Larin scheme as well (we use this as a cross-check).
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Chiral Ward Identity

• The non-renormalization of the Adler-Bell-Jackiw (ABJ) anomaly implies:

(
∂µjaµ

)
R
= 2 (jp)R +

αs

4π
TF

(
GG̃

)
R
,

with the pseudoscalar gluonic operator GG̃ = ϵµνρσG
a,µνG a,ρσ

• This relation can be used to check the correct treatment of γ5.

• For the form factors this leads to the identity:

F a,f
sing,1 +

s

4m2
F a,f
sing,2 = F p,f

sing +
αs

4π
TFF

f
GG̃

• We calculated the form factor associated to GG̃ up to O(α2
s ) for this check.
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Chiral Ward Identity

• The new topologies introduce 3 (1), 24 (15) master integrals (new wrt. the form factor

calculation).

• We calculate the masters by the algorithm outlined in [Ablinger, Blümlein, Marquard, Rana,

Schneider ’18] :

1. Uncouple coupled blocks of the differential equation into a higher order one with OreSys

[Gerhold ’02] and Sigma [Schneider ’07] .

2. Solve the higher order differential equations via the factorization of the differential operator

with HarmonicSums [Ablinger ’11-] .

3. The boundary conditions can be found by direct integration in the asymptotic limit ŝ → 0.

• We can express the result up to O(α2
s ) in terms of harmonic polylogarithms.

[Remiddi, Vermseren ’99]
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Results – Analytic ŝ = 0 Expansion

Analytic expansion of the nh-singlet

for ŝ = 0:

F
s,f ,(3)
sing (ŝ = 0) = TFnh

{
C 2
F

(
−32a4

3
+

55ζ3
72

+
445

108
+

517π2

324
− 11π4

270
− 4l42

9
+

4

9
π2l22 − 22

9
π2l2

)
+ CACF

(22a4
3

+
113ζ3
36

− π2ζ3
4

+
5ζ5
4

− 643

54
+

466π2

81
+

187π4

4320
+

11l42
36

− 11

36
π2l22 − 61

9
π2l2

)
+ CFTFnh

(
−8ζ3

3
+

16

9
+

26π2

135

)
+ CFTFnl

(20
9

− 10π2

27

)
+

√
−ŝ π2

[
C 2
F

16
+ CACF

(11
36

l√−ŝ +
π2

72
− 263

432

)
+ CFTFnl

( 4

27
− 1

9
l√−ŝ

)]}
+O(ŝ)

with l2 = ln(2), a4 = Li4(1/2) and CA = 3, CF = 4/3 for QCD.

• We have calculated the expansion up to O(s66).
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Results – Pole Cancellation

• We can use the pole cancellation to estimate the precision.

⇒ We find at least 10 significant digits, although some regions are much more precise.

• To estimate the number of significant digits

we use:

log10

(∣∣∣∣expansion− analytic

analytic

∣∣∣∣)
• The analytic expressions for the poles are

expressed by Harmonic Polylogarithms which

can be evaluated with ginac. [Vollinga, Weinzierl ’05] −100 −50 0 50 100

s/m2

−40

−35

−30

−25

−20

−15

−10

lo
g

1
0

( δ(
R

e( F
a
,f
,(

3
)

1
,s

in
g
,h

))
)

C2
FTF

ε−2

ε−1
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Results – Pole Cancellation

• We can use the pole cancellation to estimate the precision.

⇒ The chiral Ward identity is fulfilled to at least the same accuracy.

• To estimate the number of significant digits

we use:

log10

(∣∣∣∣expansion− analytic

analytic

∣∣∣∣)
• The analytic expressions for the poles and

counter terms are expressed by Harmonic

Polylogarithms which can be evaluated with

ginac. [Vollinga, Weinzierl ’05]
−100 −50 0 50 100

s/m2

−40

−35

−30

−25

−20

−15

−10

δ W

( F
f
,(

3
)

si
n
g
,h

)

C2
FTF

Re

Im
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Result – Finite Form Factors

20 40 60 80 100
s/m2

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Fv,
f,

(3
)

1,
sin

g,
h

(dabc)2/NC

20 40 60 80 100
s/m2

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Fa,
f,

(3
)

1,
sin

g,
h

C2
F TF

CFCATF

CFT2
F nh

CFT2
F nl

20 40 60 80 100
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10.0
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0.0

2.5

5.0

7.5

10.0
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(3
)
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sin

g,
l

C2
F TF
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F nl
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Results – High Energy Limit

• For s → ∞ there is the prediction: [Liu, Penin, Zerf ’18]

F
s,f ,(3)
sing = F

p,f ,(3)
sing = −m2

s
l6s

(
CACFTF

960
+

C 2
FTF

240

)
+ . . . , with ls = ln

(
m2

−s

)
• We obtain:
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F
s,f ,(3)
sing = F

p,f ,(3)
sing = −m2

s
l6s

(
CACFTF

960
+

C 2
FTF

240

)
+ . . . , with ls = ln

(
m2

−s

)
• We obtain:

F s,f
sing,h

∣∣∣
s→−∞

=
(αs

π

)2
CFTF

[
− 1

48
l4s +

(
1− π2

12

)
l2s +

(
4− 3ζ3

)
ls +

2π2

3
− π4

45

]
−
(αs

π

)3
CFTF

m2

s

[
CF

(
0.0041667l6s − 0.0062500l5s + 0.062124l4s + 1.0817l3s + 4.8496l2s

+ 32.500ls + 58.066

)
+ CA

(
0.0010417l6s − 0.022917l5s − 0.14492l4s + 0.46401l3s

+ 3.6270l2s + 9.0468ls + 16.307

)
+ TFnh

(
0.0083333l5s + 0.023148l4s − 0.078904l3s

− 0.31219l2s − 2.1741ls − 1.2446

)
+ TFnl

(
0.0083333l5s + 0.023148l4s − 0.078904l3s

− 0.31219l2s − 3.8614ls − 6.4797

)
+ . . .

]
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F
s,f ,(3)
sing = F

p,f ,(3)
sing = −m2

s
l6s

(
CACFTF

960
+

C 2
FTF

240

)
+ . . . , with ls = ln

(
m2

−s

)
• We obtain:

F a,f
2,sing,l

∣∣∣
s→−∞

=
(αs

π

)2
CFTF

m2

−s

[
−1

2
l2s − 3ls − 2− π2

3

]
+
(αs

π

)3
CFTF

m2

−s

[
CF

(
0.104167l4s + 1.l3s + 6.68117l2s + 22.4839ls + 34.67

)
+ CA

(
0.0208333l4s − 0.611111l3s − 7.80858l2s − 30.0535ls − 49.2293

)
+ TFnh

(
0.222222l3s + 2.05556l2s + 6.33333ls + 8.54753

)
+ TFnl

(
0.222222l3s + 2.05556l2s + 6.33333ls + 10.147

)]
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Public Implementation

• There are two public implementations for the numerical evaluation:

1. formfactors3l: Mathematica implementation of bare and finite form factors

2. ff3l: Fortran for ultraviolet renormalized (but infrared unsubtracted) form factors

program example1

use ff3l

implicit none

double complex :: f1v

double precision :: s = 10

integer :: eporder

call ff3l_nhsinglet_off

do eporder = -3,0

f1v = ff3l_veF1(s,eporder)

print *,"F1( s = ",s,", ep = ",eporder," ) = ", f1v

enddo

end program example1
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https://gitlab.com/formfactors3l/formfactors3l
https://gitlab.com/formfactors3l/ff3l
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Conclusions and Outlook

Conclusions

• We have calculated the singlet contributions to the massive quark form factors at NNNLO.

• We applied a semianalytic method by constructing series expansions and numerical

matching.

• We can reproduce known results in the literature.

• We estimate the precision to 10 significant digits over the whole real axis.

• We provide public Implementations for the evaluation of the massive quark form factors.

• Together with our previous non-singlet calculation the massive quark form factors are fully

available at NNNLO.

Outlook

• Calculate the contributions including a second heavy quark.

⇒ Interesting for muon electron scattering.
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Algorithm to Solve Master Integrals

There are other approaches based on expansions:

• SolveCoupledSystems.m [Blümlein, Schneider ’17]

• DESS.m [Lee, Smirnov, Smirnov ’18]

• DiffExp.m [Hidding ’20]

• SeaSyde.m [Armadillo, Bonciani, Devoto, Rana, Vicini ’22]

• ...

Our approach ...

• ... does not require a special form of differential equation.

• ... provides approximation in whole kinematic range.

• ... is applied to physical quantity. [Fael, Lange, KS, Steinhauser ’21]



Renormalization and Infrared Structure

UV renormalization

• On-shell renormalization of mass ZOS
m , wave function ZOS

2 , and (if needed) the currents.

[Chetyrkin, Steinhauser ’99; Melnikov, Ritbergen ’00]

IR subtraction

• Structure of the infrared poles is given by the cusp anomalous dimension Γcusp.

[Grozin, Henn, Korchemski, Marquard ’14]

• Define finite form factors F = ZIRF
finite with the UV renormalized form factor F and

ZIR = 1− αs

π

1

2ϵ
Γ(1)cusp −

(αs

π

)2
(
...

ϵ2
+

1

4ϵ
Γ(2)cusp

)
−
(αs

π

)3
(
...

ϵ3
+
...

ϵ2
+

1

6ϵ
Γ(3)cusp

)

• Γcusp = Γcusp(x) depends on kinematics.

• Γcusp is universal for all currents.



Moebius Transformations

• The radius of convergence is at most the distance to the closest singularity.

• We can extend the radius of convergence by changing to a new expansion variable.

• If we want to expand around the point xk with the closest singularities at xk−1 and xk+1,

we can use:

yk =
(x − xk)(xk+1 − xk−1)

(x − xk+1)(xk−1 − xk) + (x − xk−1)(xk+1 − xk)

• The variable change maps {xk−1, xk , xk+1} → {−1, 0, 1}.



Calculation of Boundary Conditions

E.g. extension of G66 (given up to and including O(ϵ3) in [Lee, Smirnov ‘10] ):

= · · · + ϵ
4

(
−4704s6 − 9120s7a − 9120s7b − 547s8a + 9120s6 ln(2) + 28 ln4(2) +

112 ln5(2)

3
− 808

45
ln6(2)

− 347

9
ln8(2) + 672Li4

( 1
2

)
− 5552

3
ln4(2)Li4

( 1
2

)
− 22208Li4

( 1
2

)2 − 4480Li5
( 1
2

)
− 12928Li6

( 1
2

)
+ . . .

)

+ ϵ
5

(
14400s6 −

377568s7a

7
− 93984s7b

7
− 2735s8a + 7572912s9a − 3804464s9b − 5092568s9c

3
− 136256s9d

+ 681280s9e + 272512s9f +
377568

7
s6 ln(2) −

32465121

20
s8a ln(2) − 10185136s8b ln(2) + 136256s7b ln

2(2) + . . .

)
+ O(ϵ6)



Results – Threshold Expansion

• Close to threshold it is interesting to consider:

σ(e+e− → QQ̄) = σ0β

(
|F v

1 + F v
2 |2 +

∣∣(1− β2)F v
1 + F v

2

∣∣2
2(1− β2)

)
︸ ︷︷ ︸

=3/2 ∆

with β =
√
1− 4m2/s.

• Real radiation is supressed by β3.

• We find (with l2β = ln(2β)):

∆(3) = C 3
F

[
−32.470

β2
+

1

β

(
14.998− 32.470l2β

)]
+ C 2

ACF
1

β

[
16.586l22β − 22.572l2β + 42.936

]
+ CAC

2
F

[ 1

β2

(
−29.764l2β − 7.770339

)
+

1

β

(
−12.516l2β − 11.435

)]
+O(β0) + fermionic contributions
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