

Singlet and anomaly contributions to massive QCD form factors

RADCOR, 2023

Kay Schönwald — in collaboration with Matteo Fael, Fabian Lange, Matthias Steinhauser Crieff, May 30, 2023

University of Zürich Based on: Phys.Rev.Lett. 128 (2022), Phys.Rev.D 106 (2023), Phys.Rev.D 107 (2023)

Motivation

Definition and Previous Calculations

Technical Details

Results

Conclusions and Outlook

Motivation

- Form factors are basic building blocks for many physical observables:
 - $t \, \overline{t}$ production at hadron and $e^+ \, e^-$ colliders
 - μe scattering
 - Higgs production and decay
 - ...
- Form factors exhibit an universal infrared behavior.

Definition and Previous Calculations

$$X(q) \rightarrow Q(q_1) + Q(q_2)$$

$$q_1^2 = q_2^2 = m^2, \quad q^2 = s = \hat{s} \cdot m^2$$
vector : $j_{\mu}^{\nu} = \overline{\psi} \gamma_{\mu} \psi \quad \Gamma_{\mu}^{\nu} = F_1^{\nu}(s) \gamma_{\mu} - \frac{i}{2m} F_2^{\nu}(s) \sigma_{\mu\nu} q^{\nu}$
axial-vector : $j_{\mu}^{a} = \overline{\psi} \gamma_{\mu} \gamma_5 \psi \quad \Gamma_{\mu}^{a} = F_1^{a}(s) \gamma_{\mu} \gamma_5 - \frac{1}{2m} F_2^{a}(s) q_{\mu} \gamma_5$
scalar : $j^{s} = m \overline{\psi} \psi \quad \Gamma^{s} = m F^{s}(s)$
pseudo-scalar : $j^{p} = im \overline{\psi} \gamma_5 \psi \quad \Gamma^{p} = im F^{p}(s) \gamma_5$

2

 q_1

 q_2

Previous Calculations

NNLO

 $F_{I}^{(2)}$ fermionic corrections [Hoang, Teubner '97] $F_{I}^{(2)}$ [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi '04-'06]

 $+\mathcal{O}(\epsilon)$ [Gluza, Mitov, Moch, Riemann '09]

 $+\mathcal{O}(\epsilon^2)$ [Ahmed, Henn, Steinhauser '17; Ablinger, Behring, Blümlein, Falcioni, Freitas, Marquard, Rana, Schneider '17]

NNNLO – non-singlet

 $F_l^{(3)}$ large- N_c [Henn, Smirnov, Smirnov, Steinhauser '16-'18; Ablinger, Marquard, Rana, Schneider '18]

*n*₁ [Lee, Smirnov, Smirnov, Steinhauser '18]

 n_h (partially) [Blümlein, Marquard, Rana, Schneider '19] [see also the talk of Peter Marquard] full (semi-analytic) [Fael, Lange, Schönwald, Steihauser '22]

this talk: full (semi-analytic) results for singlet diagrams at NNNLO

• The large-*N_c* and *n_l* contributions at NNNLO can be written as iterated integrals over the letters:

$$\frac{1}{x}, \frac{1}{1+x}, \frac{1}{1-x}, \frac{1}{1-x+x^2}, \frac{x}{1-x+x^2}$$

- The n_h terms already contain structures which go beyond iterated integrals.
- \Rightarrow We aim at the full solution through analytic series expansions and numerical matching.

Technical Details

Technical Details

- Generate diagrams with QGRAF. [Nogueira '93]
- Use FORM [Ruijl, Ueda, Vermaseren '17] for Lorentz, Dirac and color algebra. [Ritbergen, Schellekens, Vermaseren '98]
- Map the output to predefined integral families with q2e/exp. [Harlander, Seidensticker, Steinhauser '97-'99]
- Reduce the scalar integrals to masters with Kira. [Klappert, Lange, Maierhöfer, Usovitsch, Uwer '17,'20]
 - We ensure a good basis where denominators factorize in ϵ and \hat{s} with <code>ImproveMasters.m.</code> $_{\rm [Smirnov, Smirnov '20]}$
- Establish differential equations in variable \hat{s} using LiteRed. [Lee '12,'14]

	non-singlet	nh-singlet	nl-singlet
diagrams	271	66	66
families	34	17	13
masters	422	316	158

• Establish a system of differential equations for the master integrals in the variable \hat{s} .

- Establish a system of differential equations for the master integrals in the variable \hat{s} .
- Compute an expansion around $\hat{s} = \hat{s}_0$ by:

- Establish a system of differential equations for the master integrals in the variable \hat{s} .
- Compute an expansion around $\hat{s} = \hat{s}_0$ by:
 - Inserting an ansatz for the master integrals into the differential equation.

$$M_n(\epsilon, \hat{s} = \hat{s}_0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{ ext{max}}} c_{ij}^{(n)} \, \epsilon^i \, (\hat{s}_0 - \hat{s})^j$$

- Establish a system of differential equations for the master integrals in the variable \hat{s} .
- Compute an expansion around $\hat{s} = \hat{s}_0$ by:
 - Inserting an ansatz for the master integrals into the differential equation.

$$M_n(\epsilon, \hat{s} = \hat{s}_0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{ ext{max}}} c_{ij}^{(n)} \, \epsilon^i \, (\hat{s}_0 - \hat{s})^j$$

• Compare coefficients in ϵ and $x = \hat{s}_0 - \hat{s}$ to establish a linear system of equations for the $c_{ii}^{(n)}$.

- Establish a system of differential equations for the master integrals in the variable \hat{s} .
- Compute an expansion around $\hat{s} = \hat{s}_0$ by:
 - Inserting an ansatz for the master integrals into the differential equation.

$$M_n(\epsilon, \hat{s} = \hat{s}_0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max}} c_{ij}^{(n)} \, \epsilon^i \, \left(\hat{s}_0 - \hat{s}
ight)^j$$

- Compare coefficients in ϵ and $x = \hat{s}_0 \hat{s}$ to establish a linear system of equations for the $c_{ii}^{(n)}$.
- Solve the linear system in terms of a small number of boundary constants using Kira with FireFly.

[Klappert, Klein, Lange '19,'20]

- Establish a system of differential equations for the master integrals in the variable \hat{s} .
- Compute an expansion around $\hat{s} = \hat{s}_0$ by:
 - Inserting an ansatz for the master integrals into the differential equation.

$$M_n(\epsilon, \hat{s} = \hat{s}_0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max}} c_{ij}^{(n)} \, \epsilon^i \, \left(\hat{s}_0 - \hat{s}
ight)^j$$

- Compare coefficients in ϵ and $x = \hat{s}_0 \hat{s}$ to establish a linear system of equations for the $c_{ii}^{(n)}$.
- Solve the linear system in terms of a small number of boundary constants using Kira with FireFly.
- Compute boundary values for $\hat{s} = \hat{s}_0$ and obtain an analytic expansion.

- Establish a system of differential equations for the master integrals in the variable \hat{s} .
- Compute an expansion around $\hat{s} = \hat{s}_0$ by:
 - Inserting an ansatz for the master integrals into the differential equation.

$$M_n(\epsilon, \hat{s} = \hat{s}_0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max}} c_{ij}^{(n)} \, \epsilon^i \, \left(\hat{s}_0 - \hat{s}
ight)^j$$

- Compare coefficients in ϵ and $x = \hat{s}_0 \hat{s}$ to establish a linear system of equations for the $c_{ij}^{(n)}$.
- Solve the linear system in terms of a small number of boundary constants using Kira with FireFly.
- Compute boundary values for $\hat{s} = \hat{s}_0$ and obtain an analytic expansion.
- Build a general expansion around a new point, e.g. $\hat{s} = \hat{s}_1$, by modifying the ansatz and repeating the steps above.

- Establish a system of differential equations for the master integrals in the variable \hat{s} .
- Compute an expansion around $\hat{s} = \hat{s}_0$ by:
 - Inserting an ansatz for the master integrals into the differential equation.

$$M_n(\epsilon, \hat{s} = \hat{s}_0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{ ext{max}}} c_{ij}^{(n)} \, \epsilon^i \, \left(\hat{s}_0 - \hat{s}
ight)^j$$

- Compare coefficients in ϵ and $x = \hat{s}_0 \hat{s}$ to establish a linear system of equations for the $c_{ij}^{(n)}$.
- Solve the linear system in terms of a small number of boundary constants using Kira with FireFly.
- Compute boundary values for $\hat{s} = \hat{s}_0$ and obtain an analytic expansion.
- Build a general expansion around a new point, e.g. $\hat{s} = \hat{s}_1$, by modifying the ansatz and repeating the steps above.
- Match both expansions numerically at a point where both expansions converge, e.g. $(\hat{s}_0 + \hat{s}_1)/2$.

- Establish a system of differential equations for the master integrals in the variable \hat{s} .
- Compute an expansion around $\hat{s} = \hat{s}_0$ by:
 - Inserting an ansatz for the master integrals into the differential equation.

$$M_n(\epsilon, \hat{s} = \hat{s}_0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max}} c_{ij}^{(n)} \, \epsilon^i \, \left(\hat{s}_0 - \hat{s}
ight)^j$$

- Compare coefficients in ϵ and $x = \hat{s}_0 \hat{s}$ to establish a linear system of equations for the $c_{ij}^{(n)}$.
- Solve the linear system in terms of a small number of boundary constants using Kira with FireFly.
- Compute boundary values for $\hat{s} = \hat{s}_0$ and obtain an analytic expansion.
- Build a general expansion around a new point, e.g. $\hat{s} = \hat{s}_1$, by modifying the ansatz and repeating the steps above.
- Match both expansions numerically at a point where both expansions converge, e.g. $(\hat{s}_0 + \hat{s}_1)/2$.
- Repeat the procedure for the next point.

Calculation of Boundary Conditions – Non-Singlet

- For s = 0 the master integrals reduce to 3-loop on-shell propagators:
 - These integrals are well studied in the literature. [Laporta, Remiddi '96; Melnikov, Ritbergen '00; Lee, Smirnov '10]
- The reduction introduces high inverse powers in *ε*, which require some integrals up to weight 9.
- We calculate the needed terms with SummerTime.m [Lee, Mingulov '15] and PSLQ [Ferguson, Bailey '92].

Calculation of Boundary Conditions $-n_b$ -Singlets

- The singlet diagrams can have massless cuts, therefore the limit $\hat{s} \rightarrow 0$ demands an asymptotic expansion.
- We reveal regions with ASY.m [Smirnov, Pak '10; Jantzen, Smirnov, Smirnov '12] $(y = \sqrt{-\hat{s}})$:
 - $\checkmark y^{-0\epsilon}$: taylor expansion of the integrand, same as for the non-singlet $\checkmark y^{-2\epsilon}$: integrals can be performed for general ε in terms of Γ functions $\sqrt{y^{-4\epsilon}}$: one integral was calculated using HyperInt [Panzer '14]
- \Rightarrow We obtain analytic boundary conditions in the limit $\hat{s} \rightarrow 0$.

- The singlet diagrams can have massless cuts, therefore the limit $\hat{s} \to 0$ demands an asymptotic expansion.
- We reveal regions with ASY.m [Smirnov, Pak '10; Smirnov², Jantzen '12] $(y = \sqrt{-\hat{s}})$:
 - ✓ $y^{-0\epsilon}$: taylor expansion of the integrand, same as for the non-singlet
 - ✓ $y^{-2\epsilon}$: integrals can be performed for general ε in terms of Γ functions
 - \checkmark y^{-4\epsilon}: integrals can be performed with HyperInt and Mellin-Barnes methods
 - × $y^{-6\epsilon}$: direct integration for some integrals quite involved
- \Rightarrow For the n_l -singlets we changed strategy and calculated the masters at $\hat{s} = -1$ with AMFLow [Liu, Ma '22] and matched from there.

<i>s</i> = 0	$s = 4m^2$	$s = 16m^2$	$s = \pm \infty$
x = 1	x = -1	$x = 4\sqrt{3} - 7$	<i>x</i> = 0
static limit	2-particle threshold	4-particle threshold	high energy limit

• Every expansion point needs a different ansatz.

$$M_n(\epsilon, \hat{s} = 0) = \sum_{i=-3}^{\infty} \sum_{j=-j_{\min}}^{j_{\max}} \sum_{k=0}^{i+3} c_{ij}^{(n)} \epsilon^i \sqrt{-\hat{s}}^j \ln^k \left(\sqrt{-\hat{s}}
ight)$$

For non-singlet diagrams a simple taylor expansion in \hat{s} is sufficient.

<i>s</i> = 0	$s = 4m^2$	$s = 16m^2$	$s = \pm \infty$
x = 1	x = -1	$x = 4\sqrt{3} - 7$	<i>x</i> = 0
static limit	2-particle threshold	4-particle threshold	high energy limit

• Every expansion point needs a different ansatz.

$$M_n(\epsilon, \hat{s} = 4) = \sum_{i=-3}^{\infty} \sum_{j=-j_{\min}}^{j_{\max}} \sum_{k=0}^{i+3} c_{ijk}^{(n)} \epsilon^i \left[\sqrt{4-\hat{s}}\right]^j \ln^k \left(\sqrt{4-\hat{s}}\right)$$

<i>s</i> = 0	$s = 4m^2$	$s = 16m^2$	$s = \pm \infty$
x = 1	x = -1	$x = 4\sqrt{3} - 7$	<i>x</i> = 0
static limit	2-particle threshold	4-particle threshold	high energy limit

• Every expansion point needs a different ansatz.

(only needed for the n_h singlets)

$$M_n(\epsilon, \hat{s} = 16) = \sum_{i=-3}^{\infty} \sum_{j=-s_{\min}}^{j_{\max}} \sum_{k=0}^{i+3} c_{ijk}^{(n)} \epsilon^i \left[\sqrt{16-\hat{s}}\right]^j \ln^k \left(\sqrt{16-\hat{s}}\right)$$

<i>s</i> = 0	$s = 4m^2$	$s = 16m^2$	$s = \pm \infty$
x = 1	x = -1	$x = 4\sqrt{3} - 7$	<i>x</i> = 0
static limit	2-particle threshold	4-particle threshold	high energy limit

• Every expansion point needs a different ansatz.

$$M_n(\epsilon, \hat{s} \to \pm \infty) = \sum_{i=-3}^{\infty} \sum_{j=-s_{\min}}^{j_{\max}} \sum_{k=0}^{i+6} c_{ijk}^{(n)} \epsilon^i \hat{s}^{-j} \ln^k(\hat{s})$$

<i>s</i> = 0	$s = 4m^2$	$s = 16m^2$	$s = \pm \infty$
x = 1	x = -1	$x = 4\sqrt{3} - 7$	<i>x</i> = 0
static limit	2-particle threshold	4-particle threshold	high energy limit

- Every expansion point needs a different ansatz.
- We construct expansions with $j_{max} = 50$ around:

 $\hat{s} = \{-\infty, -32, -28, -24, -16, -12, -8, -4, -3, -2, -1, 0, 1, 2, 3, 7/2, 4, \\9/2, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 19, 22, 28, 40, 52\}$

Example

Example

Example

- For non-singlet diagrams always an even number of γ₅ matrices appear on a fermion line.
 ⇒ Use anti-commuting γ₅.
- In the singlet diagrams odd numbers of γ_5 appear on a fermion line.
 - \Rightarrow Use Larin's prescription [Larin '92] :

$$\gamma_{\mu}\gamma_{5}
ightarrow rac{1}{3!} \epsilon_{\mu
u
ho\sigma}\gamma^{
u}\gamma^{
ho}\gamma^{\sigma} \,,$$

where the contraction of two ϵ tensors is done in $d = 4 - 2\epsilon$ dimensions.

- ✓ Finite (multiplicative) renormalization constants for all currents are known.
- Only the sum of singlet and non-singlet diagrams renormalizes multiplicative, so the non-singlet has to be calculated in the Larin scheme as well (we use this as a cross-check).

Chiral Ward Identity

• The non-renormalization of the Adler-Bell-Jackiw (ABJ) anomaly implies:

$$\left(\partial^{\mu}j_{\mu}^{a}\right)_{\mathsf{R}}=2\left(j^{p}\right)_{\mathsf{R}}+\frac{\alpha_{s}}{4\pi}\,\mathcal{T}_{\mathsf{F}}\left(G\,\tilde{G}\right)_{\mathsf{R}}$$

with the pseudoscalar gluonic operator $G \tilde{G} = \epsilon_{\mu\nu\rho\sigma} G^{a,\mu\nu} G^{a,\rho\sigma}$

- This relation can be used to check the correct treatment of γ_5 .
- For the form factors this leads to the identity:

$$F_{\text{sing},1}^{a,f} + \frac{s}{4m^2}F_{\text{sing},2}^{a,f} = F_{\text{sing}}^{p,f} + \frac{\alpha_s}{4\pi}T_F F_{G\tilde{G}}^f$$

• We calculated the form factor associated to $G\tilde{G}$ up to $\mathcal{O}(\alpha_s^2)$ for this check.

Chiral Ward Identity

- The new topologies introduce 3 (1), 24 (15) master integrals (new wrt. the form factor calculation).
- We calculate the masters by the algorithm outlined in [Ablinger, Blümlein, Marquard, Rana, Schneider '18] :
 - Uncouple coupled blocks of the differential equation into a higher order one with OreSys [Gerhold '02] and Sigma [Schneider '07].
 - 2. Solve the higher order differential equations via the factorization of the differential operator with HarmonicSums [Ablinger '11-].
 - 3. The boundary conditions can be found by direct integration in the asymptotic limit $\hat{s} \rightarrow 0$.
- We can express the result up to $\mathcal{O}(\alpha_s^2)$ in terms of harmonic polylogarithms. [Remiddi, Vermseren '99]

Results

Analytic expansion of the n_h -singlet for $\hat{s} = 0$:

$$\begin{split} F_{\text{sing}}^{s,f,(3)}(\hat{s}=0) &= T_F n_h \Biggl\{ C_F^2 \Bigl(-\frac{32a_4}{3} + \frac{55\zeta_3}{72} + \frac{445}{108} + \frac{517\pi^2}{324} - \frac{11\pi^4}{270} - \frac{4l_2^4}{9} + \frac{4}{9}\pi^2 l_2^2 - \frac{22}{9}\pi^2 l_2 \Bigr) \\ &+ C_A C_F \Bigl(\frac{22a_4}{3} + \frac{113\zeta_3}{36} - \frac{\pi^2\zeta_3}{4} + \frac{5\zeta_5}{4} - \frac{643}{54} + \frac{466\pi^2}{81} + \frac{187\pi^4}{4320} + \frac{11l_2^4}{36} - \frac{11}{36}\pi^2 l_2^2 - \frac{61}{9}\pi^2 l_2 \Bigr) \\ &+ C_F T_F n_h \Bigl(-\frac{8\zeta_3}{3} + \frac{16}{9} + \frac{26\pi^2}{135} \Bigr) + C_F T_F n_l \Bigl(\frac{20}{9} - \frac{10\pi^2}{27} \Bigr) \\ &+ \sqrt{-\hat{s}} \pi^2 \Biggl[\frac{C_F^2}{16} + C_A C_F \Bigl(\frac{11}{36} l_{\sqrt{-\hat{s}}} + \frac{\pi^2}{72} - \frac{263}{432} \Bigr) + C_F T_F n_l \Bigl(\frac{4}{27} - \frac{1}{9} l_{\sqrt{-\hat{s}}} \Bigr) \Biggr] \Biggr\} + \mathcal{O}(\hat{s}) \end{split}$$

with $l_2 = \ln(2)$, $a_4 = \text{Li}_4(1/2)$ and $C_A = 3$, $C_F = 4/3$ for QCD.

Analytic expansion of the n_h -singlet for $\hat{s} = 0$:

$$\begin{split} F_{\text{sing}}^{s,f,(3)}(\hat{s}=0) &= T_F n_h \Biggl\{ C_F^2 \Bigl(-\frac{32a_4}{3} + \frac{55\zeta_3}{72} + \frac{445}{108} + \frac{517\pi^2}{324} - \frac{11\pi^4}{270} - \frac{4l_2^4}{9} + \frac{4}{9}\pi^2 l_2^2 - \frac{22}{9}\pi^2 l_2 \Bigr) \\ &+ C_A C_F \Bigl(\frac{22a_4}{3} + \frac{113\zeta_3}{36} - \frac{\pi^2\zeta_3}{4} + \frac{5\zeta_5}{4} - \frac{643}{54} + \frac{466\pi^2}{81} + \frac{187\pi^4}{4320} + \frac{11l_2^4}{36} - \frac{11}{36}\pi^2 l_2^2 - \frac{61}{9}\pi^2 l_2 \Bigr) \\ &+ C_F T_F n_h \Bigl(-\frac{8\zeta_3}{3} + \frac{16}{9} + \frac{26\pi^2}{135} \Bigr) + C_F T_F n_l \Bigl(\frac{20}{9} - \frac{10\pi^2}{27} \Bigr) \\ &+ \sqrt{-\hat{s}} \ \pi^2 \Biggl[\frac{C_F^2}{16} + C_A C_F \Bigl(\frac{11}{36} l_{\sqrt{-\hat{s}}} + \frac{\pi^2}{72} - \frac{263}{432} \Bigr) + C_F T_F n_l \Bigl(\frac{4}{27} - \frac{1}{9} l_{\sqrt{-\hat{s}}} \Bigr) \Biggr] \Biggr\} + \mathcal{O}(\hat{s}) \end{split}$$

with $l_2 = \ln(2)$, $a_4 = \text{Li}_4(1/2)$ and $C_A = 3$, $C_F = 4/3$ for QCD.

• We have calculated the expansion up to $\mathcal{O}(s^{66})$.

- We can use the pole cancellation to estimate the precision.
- \Rightarrow We find at least 10 significant digits, although some regions are much more precise.

• To estimate the number of significant digits we use:

$$\log_{10}\left(\left|\frac{\text{expansion} - \text{analytic}}{\text{analytic}}\right|\right)$$

• The analytic expressions for the poles are expressed by Harmonic Polylogarithms which can be evaluated with ginac. [Vollinga, Weinzierl '05]

- We can use the pole cancellation to estimate the precision.
- \Rightarrow We find at least 10 significant digits, although some regions are much more precise.

• To estimate the number of significant digits we use:

$$\log_{10}\left(\left|\frac{\text{expansion} - \text{analytic}}{\text{analytic}}\right|\right)$$

• The analytic expressions for the poles are expressed by Harmonic Polylogarithms which can be evaluated with ginac. [Vollinga, Weinzierl '05]

Results – Pole Cancellation

- We can use the pole cancellation to estimate the precision.
- \Rightarrow The chiral Ward identity is fulfilled to at least the same accuracy.

• To estimate the number of significant digits we use:

$$\log_{10}\left(\left|\frac{expansion - analytic}{analytic}\right|\right)$$

• The analytic expressions for the poles and counter terms are expressed by Harmonic Polylogarithms which can be evaluated with ginac. [Vollinga, Weinzier! '05]

Result – Finite Form Factors

• For $s \to \infty$ there is the prediction: [Liu, Penin, Zerf '18]

$$F_{\rm sing}^{s,f,(3)} = F_{\rm sing}^{p,f,(3)} = -\frac{m^2}{s} I_s^6 \left(\frac{C_A C_F T_F}{960} + \frac{C_F^2 T_F}{240} \right) + \dots, \quad \text{with } I_s = \ln\left(\frac{m^2}{-s}\right)$$

• We obtain:

Results – High Energy Limit

• For $s \to \infty$ there is the prediction: [Liu, Penin, Zerf '18]

$$F_{\text{sing}}^{s,f,(3)} = F_{\text{sing}}^{p,f,(3)} = -\frac{m^2}{s} l_s^6 \left(\frac{C_A C_F T_F}{960} + \frac{C_F^2 T_F}{240} \right) + \dots, \quad \text{with } l_s = \ln\left(\frac{m^2}{-s}\right)$$

• We obtain:

$$\begin{split} F_{\text{sing},h}^{s,f} \Big|_{s \to -\infty} &= \left(\frac{\alpha_s}{\pi}\right)^2 C_F T_F \left[-\frac{1}{48} l_s^4 + \left(1 - \frac{\pi^2}{12}\right) l_s^2 + \left(4 - 3\zeta_3\right) l_s + \frac{2\pi^2}{3} - \frac{\pi^4}{45} \right] \\ &- \left(\frac{\alpha_s}{\pi}\right)^3 C_F T_F \frac{m^2}{s} \left[C_F \left(\boxed{0.0041667 l_s^6} - 0.0062500 l_s^5 + 0.062124 l_s^4 + 1.0817 l_s^3 + 4.8496 l_s^2 \right. \\ &+ 32.500 l_s + 58.066 \right) + C_A \left(\boxed{0.0010417 l_s^6} - 0.022917 l_s^5 - 0.14492 l_s^4 + 0.46401 l_s^3 \right. \\ &+ 3.6270 l_s^2 + 9.0468 l_s + 16.307 \right) + T_F n_h \left(0.0083333 l_s^5 + 0.023148 l_s^4 - 0.078904 l_s^3 \right. \\ &- 0.31219 l_s^2 - 2.1741 l_s - 1.2446 \right) + T_F n_l \left(0.0083333 l_s^5 + 0.023148 l_s^4 - 0.078904 l_s^3 \right. \\ &- 0.31219 l_s^2 - 3.8614 l_s - 6.4797 \right) + \dots \bigg] \end{split}$$

Results – High Energy Limit

• For $s \to \infty$ there is the prediction: [Liu, Penin, Zerf '18]

$$F_{\rm sing}^{s,f,(3)} = F_{\rm sing}^{p,f,(3)} = -\frac{m^2}{s} l_s^6 \left(\frac{C_A C_F T_F}{960} + \frac{C_F^2 T_F}{240} \right) + \dots, \quad \text{with } l_s = \ln\left(\frac{m^2}{-s}\right)$$

• We obtain:

$$\begin{split} F_{2,\mathrm{sing},l}^{a,f} \Big|_{s \to -\infty} &= \left(\frac{\alpha_s}{\pi}\right)^2 C_F T_F \frac{m^2}{-s} \left[-\frac{1}{2} l_s^2 - 3l_s - 2 - \frac{\pi^2}{3} \right] \\ &+ \left(\frac{\alpha_s}{\pi}\right)^3 C_F T_F \frac{m^2}{-s} \left[C_F \left(0.104167 l_s^4 + 1.l_s^3 + 6.68117 l_s^2 + 22.4839 l_s + 34.67 \right) \right. \\ &+ C_A \left(0.0208333 l_s^4 - 0.611111 l_s^3 - 7.80858 l_s^2 - 30.0535 l_s - 49.2293 \right) \\ &+ T_F n_h \left(0.222222 l_s^3 + 2.05556 l_s^2 + 6.33333 l_s + 8.54753 \right) \\ &+ T_F n_l \left(0.222222 l_s^3 + 2.05556 l_s^2 + 6.33333 l_s + 10.147 \right) \right] \end{split}$$

Public Implementation

- There are two public implementations for the numerical evaluation:
 - 1. formfactors31: Mathematica implementation of bare and finite form factors
 - 2. ff31: Fortran for ultraviolet renormalized (but infrared unsubtracted) form factors

```
program example1
  use ff31
  implicit none
  double complex :: f1v
  double precision :: s = 10
  integer :: eporder
  call ff31_nhsinglet_off
  do eporder = -3,0
f1v = ff3l_veF1(s,eporder)
print *, "F1( s = ",s,", ep = ",eporder," ) = ", f1v
  enddo
end program example1
```

Conclusions and Outlook

Conclusions and Outlook

Conclusions

- We have calculated the singlet contributions to the massive quark form factors at NNNLO.
- We applied a semianalytic method by constructing series expansions and numerical matching.
- We can reproduce known results in the literature.
- We estimate the precision to 10 significant digits over the whole real axis.
- We provide public Implementations for the evaluation of the massive quark form factors.
- Together with our previous non-singlet calculation the massive quark form factors are fully available at NNNLO.

Conclusions and Outlook

Conclusions

- We have calculated the singlet contributions to the massive quark form factors at NNNLO.
- We applied a semianalytic method by constructing series expansions and numerical matching.
- We can reproduce known results in the literature.
- We estimate the precision to 10 significant digits over the whole real axis.
- We provide public Implementations for the evaluation of the massive quark form factors.
- Together with our previous non-singlet calculation the massive quark form factors are fully available at NNNLO.

Outlook

- Calculate the contributions including a second heavy quark.
- \Rightarrow Interesting for muon electron scattering.

Backup

There are other approaches based on expansions:

- SolveCoupledSystems.m [Blümlein, Schneider '17]
- DESS.m [Lee, Smirnov, Smirnov '18]
- DiffExp.m [Hidding '20]
- SeaSyde.m [Armadillo, Bonciani, Devoto, Rana, Vicini '22]

• ...

Our approach ...

- ... does not require a special form of differential equation.
- ... provides approximation in whole kinematic range.
- ... is applied to physical quantity. [Fael, Lange, KS, Steinhauser '21]

UV renormalization

• On-shell renormalization of mass Z_m^{OS} , wave function Z_2^{OS} , and (if needed) the currents. [Chetyrkin, Steinhauser '99; Melnikov, Ritbergen '00]

IR subtraction

- Structure of the infrared poles is given by the cusp anomalous dimension Γ_{cusp} . [Grozin, Henn, Korchemski, Marquard '14]
- Define finite form factors $F = Z_{IR}F^{finite}$ with the UV renormalized form factor F and

$$Z_{\rm IR} = 1 - \frac{\alpha_s}{\pi} \frac{1}{2\epsilon} \Gamma_{\rm cusp}^{(1)} - \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{\ldots}{\epsilon^2} + \frac{1}{4\epsilon} \Gamma_{\rm cusp}^{(2)}\right) - \left(\frac{\alpha_s}{\pi}\right)^3 \left(\frac{\ldots}{\epsilon^3} + \frac{\ldots}{\epsilon^2} + \frac{1}{6\epsilon} \Gamma_{\rm cusp}^{(3)}\right)$$

- $\Gamma_{cusp} = \Gamma_{cusp}(x)$ depends on kinematics.
- Γ_{cusp} is universal for all currents.

- The radius of convergence is at most the distance to the closest singularity.
- We can extend the radius of convergence by changing to a new expansion variable.
- If we want to expand around the point x_k with the closest singularities at x_{k-1} and x_{k+1} , we can use:

$$y_{k} = \frac{(x - x_{k})(x_{k+1} - x_{k-1})}{(x - x_{k+1})(x_{k-1} - x_{k}) + (x - x_{k-1})(x_{k+1} - x_{k})}$$

• The variable change maps $\{x_{k-1}, x_k, x_{k+1}\} \rightarrow \{-1, 0, 1\}$.

E.g. extension of G_{66} (given up to and including $\mathcal{O}(\epsilon^3)$ in [Lee, Smirnov '10]):

$$= \dots + \epsilon^{4} \left(-4704s_{6} - 9120s_{7a} - 9120s_{7b} - 547s_{8a} + 9120s_{6}\ln(2) + 28\ln^{4}(2) + \frac{112\ln^{5}(2)}{3} - \frac{808}{45}\ln^{6}(2) - \frac{347}{9}\ln^{8}(2) + 672\text{Li}_{4}(\frac{1}{2}) - \frac{5552}{3}\ln^{4}(2)\text{Li}_{4}(\frac{1}{2}) - 22208\text{Li}_{4}(\frac{1}{2})^{2} - 4480\text{Li}_{5}(\frac{1}{2}) - 12928\text{Li}_{6}(\frac{1}{2}) + \dots \right) + \epsilon^{5} \left(14400s_{6} - \frac{377568s_{7a}}{7} - \frac{93984s_{7b}}{7} - 2735s_{8a} + 7572912s_{9a} - 3804464s_{9b} - \frac{5092568s_{9c}}{3} - 136256s_{9d} + 681280s_{9e} + 272512s_{9f} + \frac{377568}{7}s_{6}\ln(2) - \frac{32465121}{20}s_{8a}\ln(2) - 10185136s_{8b}\ln(2) + 136256s_{7b}\ln^{2}(2) + \dots \right) + \mathcal{O}(\epsilon^{6})$$

Results – Threshold Expansion

• Close to threshold it is interesting to consider:

$$\sigma(e^+e^- \to Q\bar{Q}) = \sigma_0\beta \underbrace{\left(|F_1^{\nu} + F_2^{\nu}|^2 + \frac{\left|(1-\beta^2)F_1^{\nu} + F_2^{\nu}\right|^2}{2(1-\beta^2)}\right)}_{=3/2}$$

with $\beta = \sqrt{1 - 4m^2/s}$.

- Real radiation is supressed by β^3 .
- We find (with $I_{2\beta} = \ln(2\beta)$):

4

$$\Delta^{(3)} = C_F^3 \left[-\frac{32.470}{\beta^2} + \frac{1}{\beta} \left(14.998 - 32.470 l_{2\beta} \right) \right] + C_A^2 C_F \frac{1}{\beta} \left[16.586 l_{2\beta}^2 - 22.572 l_{2\beta} + 42.936 \right] \\ + C_A C_F^2 \left[\frac{1}{\beta^2} \left(-29.764 l_{2\beta} - 7.770339 \right) + \frac{1}{\beta} \left(-12.516 l_{2\beta} - 11.435 \right) \right] \\ + \mathcal{O}(\beta^0) + \text{fermionic contributions}$$