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Motivation



Motivation

e Form factors are basic building blocks for many
physical observables:

e t 1 production at hadron and e e™ colliders
e /i e scattering

e Higgs production and decay

e Form factors exhibit an universal infrared behavior.
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Definition and Previous
Calculations



The Process

X(q) = Q(q1) + Q(q2)

q
q%:q%:m% q2:5:§ m?
q
. — i
J/‘: = d’%ﬂ/} r; = Y — % O'/qu
. — 1
axialvector:  Ji =Yy T = Fi(s)ms — 5 F3(5)qus @
scalar : J° = mp r* = mF*(s)

pseudo-scalar : jP = impysyp [P = imFP(s)vs



Previous Calculations

NNLO

2 .. .
F,( ) fermionic corrections [roasng, Teubner 7]
2

F, [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi '04-'06]
+0(€) [Gluza, Mitov, Moch, Riemann '09]

2
+0(€ ) [Ahmed, Henn, Steinhauser '17; Ablinger, Behring, Bliimlein, Falcioni, Freitas, Marquard, Rana, Schneider '17]

NNNLO - non-singlet

3
FI( ) Iarge- NC [Henn, Smirnov, Smirnov, Steinhauser '16-'18; Ablinger, Marquard, Rana, Schneider '18]
N} [Lee, Smirnov, Smirnov, Steinhauser '18]
np (partially) siimein, Marquard, Rona, schneider 19 [see also the talk of Peter Marquard]

full (semi—a nalytic) [Fael, Lange, Schénwald, Steihauser '22]

this talk: full (semi-analytic) results for singlet diagrams at NNNLO



Previous Calculations

e The large-N. and n; contributions at NNNLO can be written as iterated integrals over the
letters:

1 1 1 1 X

x 14x"1—-x" 1—x4+x2"1—x+x2

e The nj terms already contain structures which go beyond iterated integrals.

= We aim at the full solution through analytic series expansions and numerical matching.



Technical Details



Technical Details

N — N

e Generate diagrams with QGRAF. [nogueira 03]

Use FORM [ruil, eda, vermaseren 177 fOr Lorentz, Dirac and color algebra. [ritergen, schelickens, vermaseren ‘og]

Map the output to predefined integral families with qu/exp. [Harlander, Seidensticker, Steinhauser '97-'09]

Reduce the scalar integrals to masters with Kira. (Kiapper, Lange, Maierhifer, Usovitsch, Uwer '17,20]
e \We ensure a good basis where denominators factorize in € and § with ImproveMasters.m.

[Smirnov, Smirnov '20]

e Establish differential equations in variable § using LiteRed. [ 1214

non-singlet | nh-singlet | nl-singlet

diagrams 271 66 66
families 34 17 13
masters 422 316 158



Algorithm to Solve Master Integrals

e Establish a system of differential equations for the master integrals in the variable §.
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Algorithm to Solve Master Integrals

e Establish a system of differential equations for the master integrals in the variable §.

e Compute an expansion around § = § by:
e Inserting an ansatz for the master integrals into the differential equation.

e Compare coefficients in € and x = § — § to establish a linear system of equations for the c,-(j").

e Solve the linear system in terms of a small number of boundary constants using Kira with
FireFly.

[Klappert, Klein, Lange '19,'20]
e Compute boundary values for § = § and obtain an analytic expansion.

e Build a general expansion around a new point, e.g. § = §;, by modifying the ansatz and
repeating the steps above.

e Match both expansions numerically at a point where both expansions converge, e.g.
(§0 + §1)/2.

Repeat the procedure for the next point.



Calculation of Boundary Conditions — Non-Singlet

s—0

e For s = 0 the master integrals reduce to 3-loop on-shell propagators:
e These integrals are well studied in the literature. [Laporta, Remiddi ‘96; Melnikov, Ritbergen ‘00; Lee, Smirnov ‘10]
e The reduction introduces high inverse powers in ¢, which require some integrals up to
weight 9.

e We calculate the needed terms with SummerTime .m jice, minguiov 15) @aNd PSLQ (rersuson, Bailey 92] .



Calculation of Boundary Conditions — n,-Singlets

e The singlet diagrams can have massless cuts, therefore the limit § — 0 demands an
asymptotic expansion.
e We reveal regions with ASY .m (smimov, Pak '10. Jantzen, Smimov, smimov 12] (Y = v/ —8):

v y7%: taylor expansion of the integrand, same as for the non-singlet
vy integrals can be performed for general € in terms of I functions
v y~*: one integral was calculated using HyperInt [paneer 1]

= We obtain analytic boundary conditions in the limit § — 0.



Calculation of Boundary Conditions — n;-Singlets

e The singlet diagrams can have massless cuts, therefore the limit $ — 0 demands an
asymptotic expansion.
o We reveal regions with ASY.m (smimov. Pk '10: smime?, santzen 12 (y = v/—35):
v y7%: taylor expansion of the integrand, same as for the non-singlet
v y~%¢ integrals can be performed for general € in terms of ' functions
v y~*: integrals can be performed with HyperInt and Mellin-Barnes methods
X y~%: direct integration for some integrals quite involved

= For the nj-singlets we changed strategy and calculated the masters at § = —1 with
AMFLow [, wa22) and matched from there.



Series Expansions

e Special points:

s=0 s = 4m? s = 16m? s =400
x=1 x=-1 x =43 -7 &=10)

static limit | 2-particle threshold | 4-particle threshold | high energy limit

e Every expansion point needs a different ansatz.

0o Jmax  i+3 .
Ma(c,5=0)= JZ 3 el V=E In* (\/Ts)

i=—3 j=—jmin k=0

For non-singlet diagrams a simple taylor expansion in §$ is sufficient.

10



Series Expansions

e Special points:

s=0 s =4m? s = 16m? s =400
x=1 o= =il x=4V3 -7 x=0

static limit | 2-particle threshold | 4-particle threshold | high energy limit

e Every expansion point needs a different ansatz.

Jmax  i+3

Z Z ZC’JZ)GI[ - ]j Ink( 4—§)

i=—=3 j=—jmin k=0
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Series Expansions

e Special points:

s=0 s =4m? s = 16m? s =400
x =l x=-1 x=4y/3-7 =10

static limit | 2-particle threshold | 4-particle threshold | high energy limit

e Every expansion point needs a different ansatz. (only needed for the nj singlets)

Jmax  i+3

Mies=16) =3 3 S0 [VIE—g] I (VIE—3)

i=—3 j=—5min k=0

10



Series Expansions

e Special points:

s=0 s =4m? s = 16m? s =400

x =l x=-1 x=4y/3-7 b =10)

static limit | 2-particle threshold | 4-particle threshold | high energy limit

e Every expansion point needs a different ansatz.

i
00 Jmax + 6

M, (e, 8 — +00) Z Z Z ch € 577 In* (3)

i=—3 j=—Smin k=0
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Series Expansions

e Special points:

s=0 s =4m? s = 16m? s=+o00
x=1 x=-1 x =43 -7 =0

static limit | 2-particle threshold | 4-particle threshold | high energy limit

e Every expansion point needs a different ansatz.

e We construct expansions with jma., = 50 around:

§={—00,—-32,-28,-24,—16, 12,8, —4,-3,-2,—1,0,1,2,3,7/2,4,
9/2,5,6,7,8,10,12,14,15,16,17,19, 22, 28, 40, 52}

10



e Expansion around § = 0.

11



e Expansion around § = 0.

10+

-
-
-
-
-
——
-
-
-

5 ] e Expansion around § = —4,

matched at § = —2.
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50 F ]
40F ]
[ /
T 30 - ’
5 % .- --
20; — 7 e Expansion around § = 0.
L ’//
10F __,_——” . e Expansion around § = —4,
""" ,'f'___—‘ matched at § = —2.
_i’2 ‘ _io ‘ ‘—‘8‘ ‘ ‘—‘6‘ ‘ ‘_‘4‘ ‘ ‘_‘2‘ o 0 T 9 e Expansion around § = —38,
3 matched at § = —6.
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Treatment of s

e For non-singlet diagrams always an even number of 75 matrices appear on a fermion line.
= Use anti-commuting ~s.

e In the singlet diagrams odd numbers of 5 appear on a fermion line.
= Use Larin’s prescription [Larin '92] :

1
YuYs — ie/z,u/m’)/yf}/p'yg )

where the contraction of two € tensors is done in d = 4 — 2¢ dimensions.
v Finite (multiplicative) renormalization constants for all currents are known.

e Only the sum of singlet and non-singlet diagrams renormalizes multiplicative, so the
non-singlet has to be calculated in the Larin scheme as well (we use this as a cross-check).

12



Chiral Ward Identity

The non-renormalization of the Adler-Bell-Jackiw (ABJ) anomaly implies:

(0"2) g

= 2(jp)R

+ZL;TF (GG‘)R,

with the pseudoscalar gluonic operator GG = Epppe @ (G

This relation can be used to check the correct treatment of 5.

For the form factors this leads to the identity:

smg 1 +

m2

smg 2

_ pf f
FL —&-—TFFG

sing

We calculated the form factor associated to GG up to O(a?) for this check.

13



Chiral Ward Identity

e The new topologies introduce 3 (1), 24 (15) master integrals (new wrt. the form factor
calculation).
e We calculate the masters by the algorithm outlined in [Ablinger, Bliimlein, Marquard, Rana,
Schneider '18] :
1. Uncouple coupled blocks of the differential equation into a higher order one with OreSys
[Gerhold '02] and Sigma [Schneider '07] .
2. Solve the higher order differential equations via the factorization of the differential operator
with HarmonicSums [Ablinger '11-] .
3. The boundary conditions can be found by direct integration in the asymptotic limit § — 0.
e We can express the result up to O(a?) in terms of harmonic polylogarithms.
[Remiddi, Vermseren '99]

14



Results




Results — Analytic § = 0 Expansion

Analytic expansion of the np-singlet

for § =0:
s R 32a, 55(; 445 517x%  1lx* 4l 4 ,, 22 ,
F2H0)(3 = 0) = Tenpd C2(- — et
sng (5=0)=Ten F( 3 " 72 T8 324 20 9 9" 97T>
4667%  187x% 11k 11 , 61 ,
o2 — 3T B - 5k

22a, 113G 7°G . 5(s 643
T 54 7 81 T 4320 36 36"

+CACF< 3 + 36 -2
20 107r2)

8(s 2672
+ )*CFTF”’<9 T

CeTrny(—22 + =
v FF"h( 3+9 135

2 263 1 R
+vV-5x |:7+CACF(36I\/7+E_@>+CFTF’”<E_§I\/?§):| +O(S)

= 4/3 for QCD.

with h = In(2), as = LI4(1/2) and C4 = 3, Cr
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Results — Analytic § = 0 Expansion

Analytic expansion of the np-singlet

for § =0:
s R 32a, 55(; 445 517x%  1lx* 4l 4 ,, 22 ,
F2H0)(3 = 0) = Tenpd C2(- — et
sng (5=0)=Ten F( 3 " 72 T8 324 20 9 9" 97T>
4667%  187x% 11k 11 , 61 ,
o2 — 3T B - 5k

22a, 113G 7°G . 5(s 643
T 54 7 81 T 4320 36 36"

+CACF< 3 + 36 -2
20 107r2)

8(s 2672
+ )*CFTF”’<9 T

CeTrny(—22 + =
v FF"h( 3+9 135

2 263 1 R
+vV-5x |:7+CACF(36I\/7+E_@>+CFTF’”<E_§I\/?§):| +O(S)

= 4/3 for QCD.

66).

with h = In(2), as = LI4(1/2) and C4 = 3, Cr
e We have calculated the expansion up to O(

15



Results — Pole Cancellation

e We can use the pole cancellation to estimate the precision.

= We find at least 10 significant digits, although some regions are much more precise.

C2Ty
—10
—2
a o o a_o s ~ M €
e To estimate the number of significant digits X —15 1 R
<
_ ==
we use: 22 201 :
S 5
expansion — analytic ~
logy, ( P e Y > E’/ —257 k:
analytic i
5 —30 s e
~— -4
e The analytic expressions for the poles are & 354 4
expressed by Harmonic Polylogarithms which = :
. . —40
can be evaluated with ginac. |Vollinga, Weinzierl '05] _{00 _I5() (I) 5I0 l(l)()
s/m?
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Results — Pole Cancellation

e We can use the pole cancellation to estimate the precision.

= We find at least 10 significant digits, although some regions are much more precise.

CACFTF
—10
. e .. —~ ° €2
e To estimate the number of significant digits — —15 1 R
we use: 2?: 90 - g
$ %
expansion — analytic & _95 4
logio - )
analytic F .
o —30 A n------‘::‘." ¢ SNess i
N~— .
e The analytic expressions for the poles are & _354
. . . =)
expressed by Harmonic Polylogarithms which -
. . —40
can be evaluated with ginac. [Vollinga, Weinzierl '05] _{00 _:50 (I) 5I0 160

s/m?

16



Results — Pole Cancellation

e We can use the pole cancellation to estimate the precision.

= The chiral Ward identity is fulfilled to at least the same accuracy.

C2Ty

e To estimate the number of significant digits * Re

we use: . Im

| 5:” "=
0810 TE 95

expansion — analytic

analytic k
g =
. . E 30w e
e The analytic expressions for the poles and A e
counter terms are expressed by Harmonic =351
Polylogarithms which can be evaluated with —40 1+ ! ! ! !
ginac. [Voliinga, Weinzierl ‘05] —100 —50 0 50 100
s/m?
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Result — Finite Form Factors

v, f,(3)
1,sing, h

F

2.0

1.0
0.5
0.0
-0.5
-1.0
-15
-2.0

W (d) N

20 40 60 80
s/m?

100

10.0
7.5
5.0
_< 25
o
SE 00
% _as
-5.0
-75
-10.0

- T
/ W CeCaTr
CeTny |
CeTEny
20 40 60 80 100
2
s/m

1,sing, /

Faf.(3)

-10.0

-
—
4 -
W CeCaTr
CT2ny
CeT?n;
L L L L
20 40 60 80 100

s/m?



Results — High Energy Limit

e For s — oo there is the prediction: [Liu, Penin, Zerf '18]

2 2 2
. CaCr T, T _
Fag® = Fog® = -7 ( AgiaFo -+ C2F40F) ML (m )

e We obtain:

18



Results — High Energy Limit

e For s — oo there is the prediction: [Liu, Penin, Zerf '18]

2 2 2
CaCr T, CET, m
F5606) _ ppfi(3) _ 7116 ACFITF FIF ith I =
sing sing g 5 960 + 240 ol ,  with | In 7—5
e We obtain:
2 1 2 272 o
Ff (&) GTr|-—lf -+ (436 + = - T
sing,h oo ( T > FIF 48 s alx ( 12) s + ( 3(3) + 3 45

3 2
_ (%) Cr TF"’? {CF< 0.0041667/° | — 0.0062500/° + 0.062124/* + 1.0817/ + 4.8496/2
+ 32500/ + 58.066) + CA( 0.0010417/° | — 0.022917/° — 0.14492/¢ + 0.46401/

+3.6270/ + 9.0468/; + 16.307) + Teny (0.0083333155 +0.023148/% — 0.078904/3
—0.31219/% — 2.1741/s — 1.2446) + Teny <0.0083333/§ +0.023148/% — 0.078904/2

—0.31219/% — 3.8614/; — 6.4797) + .. ]

18



Results — High Energy Limit

e For s — oo there is the prediction: [Liu, Penin, Zerf '18]

2 2 2

CAC[: TF @ TF . m

Fob@) — ppt® T o (ZASF R | ZF oy with k=1 (2

sing sing s s 960 + 240 + y Wi n .

e We obtain:

2 m? 1 2
F2f = (%> Tl || =2 =g =2= 2
2,sing, s——o00 ™ CF F =8 2 s © 3

s\ 3 m? 4 3 2
+ (?) Cr T {CF (0.104167/5 + 1.1 +6.68117/2 + 22.4839, + 34.67)
+ Ca (0.0208333/;1 — 0.611111/53 — 7.80858/52 — 30.0535/s — 49.2293)
S G (0.222222/3 + 2.05556/2 + 6.33333/, + 8.54753)

+ Teny (0.222222/53 + 2.05556/2 + 6.33333/, + 10.147)}

18



Public Implementation

e There are two public implementations for the numerical evaluation:
1. formfactors31: Mathematica implementation of bare and finite form factors
2. ££31: Fortran for ultraviolet renormalized (but infrared unsubtracted) form factors

program examplel
use f£f31

implicit none

double complex :: flv
double precision :: s = 10

integer :: eporder

call ff31_nhsinglet_off
do eporder = -3,0

fiv = £f£31_veF1(s,eporder)

print *,"Fi( s = ",s,", ep = ",eporder," ) = ", flv
enddo

end program examplel

19


https://gitlab.com/formfactors3l/formfactors3l
https://gitlab.com/formfactors3l/ff3l
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Conclusions and Outlook

Conclusions

e We have calculated the singlet contributions to the massive quark form factors at NNNLO.

e We applied a semianalytic method by constructing series expansions and numerical
matching.

e We can reproduce known results in the literature.
e We estimate the precision to 10 significant digits over the whole real axis.
e We provide public Implementations for the evaluation of the massive quark form factors.

e Together with our previous non-singlet calculation the massive quark form factors are fully
available at NNNLO.
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Conclusions and Outlook

Conclusions

e We have calculated the singlet contributions to the massive quark form factors at NNNLO.

e We applied a semianalytic method by constructing series expansions and numerical
matching.

e We can reproduce known results in the literature.
e We estimate the precision to 10 significant digits over the whole real axis.
e We provide public Implementations for the evaluation of the massive quark form factors.

e Together with our previous non-singlet calculation the massive quark form factors are fully
available at NNNLO.

Outlook

e Calculate the contributions including a second heavy quark.

= Interesting for muon electron scattering.
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Backup




Algorithm to Solve Master Integrals

There are other approaches based on expansions:

e SolveCoupledSystems.m [Bliimlein, Schneider '17]

e DESS.m [Lee, Smirnov, Smirnov '18]

DiffExp.m [Hidding '20]

SeaSyde.m [Armadillo, Bonciani, Devoto, Rana, Vicini '22]

Our approach ...

e ... does not require a special form of differential equation.
e ... provides approximation in whole kinematic range.

e ... is applied to physical quantity. [Fael, Lange, KS, Steinhauser '21]



Renormalization and Inf d Structure

UV renormalization

e On-shell renormalization of mass Z9S, wave function Z5’5, and (if needed) the currents.
[Chetyrkin, Steinhauser '99; Melnikov, Ritbergen '00]

IR subtraction

e Structure of the infrared poles is given by the cusp anomalous dimension [c;sp.
[Grozin, Henn, Korchemski, Marquard '14]

e Define finite form factors F = ZgFfinite with the UV renormalized form factor F and

as 1 as\2 [ ... 1 . as\3 (... .. 1 5
Zr=1— 7r(>_< ) I o€ _( ) SRR )
IR m 2¢ P T €2 i 4e P T €3 o €2 u 6e P
o [cusp = cusp(x) depends on kinematics.

o [usp is universal for all currents.



Moebius Transformations

The radius of convergence is at most the distance to the closest singularity.
e We can extend the radius of convergence by changing to a new expansion variable.
e If we want to expand around the point xix with the closest singularities at xx_1 and xx41,

we Can use:

(% = x1) (X1 — Xk—1)
(x = xk1) (k-1 — X)) + (X = Xk—1) (Xk1 — xk)

Yie =

The variable change maps {xx_1, xk, xk+1} — {—1,0, 1}.



Calculation of Boundary Conditions

E.g. extension of Ggs (given up to and including O(€3) in [Lee, Smirnov ‘10] ):

1121n%(2 808
= ooodbd (—470455 — 0120s7, — 912057, — 5475, + 912055 In(2) + 281n*(2) + +“ - In®(2)

.1, 5552 1 1 1 2 ol
- In®(2) + 672Lia (5) — —— In4(2)L|4(E) = 22208L|4(§)2 — 4480Lis () — 12028Lis () + - >

5 37756857, 9398457, 509256859,
+ € | 14400s¢ — —— — == 2735s, + 757291259, — 380446459, — —3 136256594

377568 32465121
+ 681280s9e + 272512597 + = s In(2) — 20

ss2 In(2) — 10185136555 In(2) + 13625657, In*(2) + . . . )

+ O(%)



Results — Threshold Expansion

e Close to threshold it is interesting to consider:

_ Q2 v v|2
glete” = QQ) = 003 (|F1V+ Fy|” + (L= B)FY + F| >

2(1-p%)
=3/2 A
with 8 = /1 —4m?/s.
e Real radiation is supressed by 3°.
e We find (with hg = In(25)):
A® 2 [_ 32;70 i %(14,998 —~ 32.470/2@)} + CXCF% [16.586/35 — 22.572hs + 42.936]

+ CaC? [%(729.764123 — 7.770339) +

™|+

(~12.516h5 — 11.435)]
+ O(B°) + fermionic contributions
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