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Scattering amplitudes

The modern scattering amplitudes program

Constructing amplitudes in purely on-shell ways

Studying the properties of on-shell amplitudes

Why?

Avoid redundancies of a local formulation, including EoM, field
redefinitions, gauge invariance etc.

Unveil properties of amplitudes obscured in a local formulation, e.g.
the color-kinematics duality

Zhewei Yin (Uppsala U.) Coupling-Kinematics Duality RADCOR 2023 1 / 16



The color-kinematics duality

Consider Yang-Mills

Only controlled by a single coupling parameter (tensor): fabc

At 4-pt, 3 factorization channels

One can write

A4 =
∑

I∈{s,t,u}

cI nI

dI
,

with

cs = fa1a2bf ba3a4 , ct = fa1a4bf ba2a3 , cu = fa1a3bf ba4a2 ,

and cs + ct + cu = 0.

∃ nI , s.t. ns + nt + nu = 0.
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A(1−2−3+) = fabc
⟨12⟩3

⟨13⟩⟨23⟩
,

Spinor-helicity variables:
Taking massless momentum pµ:

pαα̇ = pµσ
µ
αα̇
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⟨12⟩ = λ1αλ2βε

αβ , [12] = λ̃1α̇λ̃2β̇ε
α̇β̇

At 4-pt, 3 factorization channels
One can write

A4 =
∑

I∈{s,t,u}

cI nI

dI
,

with

cs = fa1a2bf ba3a4 , ct = fa1a4bf ba2a3 , cu = fa1a3bf ba4a2 ,

and cs + ct + cu = 0.
∃ nI , s.t. ns + nt + nu = 0.

Zhewei Yin (Uppsala U.) Coupling-Kinematics Duality RADCOR 2023 2 / 16



The color-kinematics duality

Consider Yang-Mills

Only controlled by a single coupling parameter (tensor): fabc

At 4-pt, 3 factorization channels

One can write

A4 =
∑

I∈{s,t,u}

cI nI

dI
,

with

cs = fa1a2bf ba3a4 , ct = fa1a4bf ba2a3 , cu = fa1a3bf ba4a2 ,

and cs + ct + cu = 0.

+ + = 0

1

2 3

4 1

3 4

2 1

4 2

3

∃ nI , s.t. ns + nt + nu = 0.

Zhewei Yin (Uppsala U.) Coupling-Kinematics Duality RADCOR 2023 2 / 16



The color-kinematics duality

Consider Yang-Mills

Only controlled by a single coupling parameter (tensor): fabc

At 4-pt, 3 factorization channels

One can write

A4 =
∑

I∈{s,t,u}

cI nI

dI
,

with

cs = fa1a2bf ba3a4 , ct = fa1a4bf ba2a3 , cu = fa1a3bf ba4a2 ,

and cs + ct + cu = 0.

∃ nI , s.t. ns + nt + nu = 0.

Zhewei Yin (Uppsala U.) Coupling-Kinematics Duality RADCOR 2023 2 / 16



The color-kinematics duality

For any multiplicity,

One can write

An =
∑
g

cg ng

dg
.

∃ ng that satisfies all corresponding relations of cg dictated by the
Jacobi identity.

Bern, Carrasco, Johansson, 0805.3993

This is nice because

Simplifying computation for high-multiplicity/high-loop level

Replacing cg with ng leads to gravity amplitudes:

Mn =
∑
g

ngng

dg
.

Double copy: gravity = (gauge theory)2.
Review: Bern, Carrasco, Chiodaroli, Johansson, Roiban, 1909.01358
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The color-kinematics duality

Questions:

1 Why does it work?

2 For what theories does it work?

Question: Where does the Jacobi identity in YM come from?
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Symmetry from unitarity

Massless spin-1: Tree unitarity → symmetry!

Benincasa, Cachazo, 0705.4305

For the n-pt tree amplitude An, when taking the high energy limit,

An ∼ O(E4−n)

For example,

A(1−2−3+) = fabc
⟨12⟩3

⟨13⟩⟨23⟩
→ O(E),

A(1−2−3−) = f ′
abc⟨12⟩⟨13⟩⟨23⟩ → O(E3).

Factorization
4-pt constraints lead to

fabefcde + fbcefade + fcaefbde = 0.
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Gauge theory from unitarity

Question: what is the most general renormalizable QFT with a finite
spectrum of spin-0, 1/2 and 1 states?
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Gauge theory from unitarity

Question: what is the most general renormalizable QFT with a finite
spectrum of spin-0, 1/2 and 1 states?
Answer:

Zhewei Yin (Uppsala U.) Coupling-Kinematics Duality RADCOR 2023 6 / 16



Gauge theory from unitarity

Question: what is the most general renormalizable QFT with a finite
spectrum of spin-0, 1/2 and 1 states?
Short answer: a (spontaneously broken) gauge theory
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Gauge theory from unitarity

Question: what is the most general renormalizable QFT with a finite
spectrum of spin-0, 1/2 and 1 states?
Long answer:

All states furnish some representations of some Lie group G

The vector states furnish the adjoint representation of G

All couplings are invariant tensors of G

All states couple to the vectors through covariant derivatives; in other
words, the couplings are given by generators of G

The mass of vector bosons are given by Higgs mechanism (up to
possible U(1) mass terms)

Key observation: the Jacobi identity is just a special case of invariant
tensor relations.
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The Unbroken Phase
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The unbroken phase

Consider the unbroken phase: massless spin-1 (with index a), and
massless or massive spin-0 (with index i) and spin-1/2 (with index A)

Couplings allowed by tree unitarity: fabc, T a
ij , L

a
AB, R

a
AB, Pijk, Kijkl,

(Yi)AB.

Relations dictated by the gauge group (emerging from the tree
unitarity constraints):

fabef cde + facefdbe + fadef bce = 0,

[T a, T b] = ifabcT c,

[La, Lb] = ifabcLc, [Ra, Rb] = ifabcRc,

LaYi − YiR
a − YjT

a
ji = 0,

PijlT
a
lk + PjklT

a
li + PkilT

a
lj = 0, Ki1i2i3jT

a
ji4 + cycl = 0.
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Example: V SF 2

The Yukawa coupling needs to be an invariant tensor:

La
AC(Yi)CB − (Yi)ACR

a
CB − (Yj)ABT

a
ji = 0.

A4 =
∑
g

cg ng

dg

cg satisfies the identity

∃ ng satisfying the identity:

ns = −2ip3 · ε4v̄2Lu1R, nt = iv̄2L/p3/ε4u1R, nu = iv̄2L/ε4/p3u1R.
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The coupling-kinematics duality

Our claim: whenever there is an “invariant tensor” relation for the
couplings, there are corresponding kinematic numerators that satisfy such
a relation

fabef cde + facefdbe + fadef bce = 0,

[T a, T b] = ifabcT c,

[La, Lb] = ifabcLc, [Ra, Rb] = ifabcRc,

LaYi − YiR
a − YjT

a
ji = 0,

PijlT
a
lk + PjklT

a
li + PkilT

a
lj = 0, Ki1i2i3jT

a
ji4 + cycl = 0.

The coupling relations have a kinematic origin

The existence of kinematic numerators is related to UV constraints
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The Broken Phase
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The broken phase

The relations among couplings are more complicated because of the
broken symmetry

Cornwall, Levin, Tiktopoulos, 1973; Llewellyn Smith, 1973

An on-shell bootstrap can be done to study these relations, similar to
the unbroken phase

Liu, ZY, 2204.13119
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Tree unitary 3-pt amplitudes: V 3

V 3: 7 → 1

i
√
2Ca1a2a3

ma1ma2ma3

(ma2⟨12⟩⟨23⟩[31] + cycl) ,

where Cabc has to be totally antisymmetric.

Little-group covariant massive spinor formalism, e.g. 1 = 1I .

Arkani-Hamed, Huang, Huang, 1709.04891
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Tree unitary 3-pt amplitudes: examples

V 2S: 3 → 1

a1

a2

i3

2Fa1a2i3

[12]⟨21⟩
ma1ma2

,

where Fabi = Fbai.

V F 2: 4 → 2

a1

A2

A3

√
2

ma1

(
Ra1

A3A2
[12]⟨13⟩

+La1
A3A2

⟨12⟩[13]
)
.

SF 2:

i1

A2

A3

(Yi1)A3A2 [23]

+(Y †
i1
)A3A2⟨23⟩.
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4-pt example: V 2F 2

V 2F 2:
1

2

3

4

M4 = M4,f +M4,c, M4,f = O(E2), eliminating all contact terms.

O(E2) for (0−0+) and (0+0−), giving the relations:

iCa1a3bL
b = [La1 , La3 ], iCa1a3bR

b = [Ra1 , Ra3 ].

O(E) for (0+0+)∗, giving a relation: * (0−0−) gives the conjugate of
the above.
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b = [La1 , La3 ], iCa1a3bR

b = [Ra1 , Ra3 ].

O(E) for (0+0+)∗, giving a relation:

2Fa1a3i(Yi)A4A2
−mA2

{La1 , La3}A4A2
−mA4

{Ra1 , Ra3}A4A2

+
∑
B

2mB

(
La1

A4B
Ra3

BA2
+ La3

A4B
Ra1

BA2

)
=

∑
b

iCa1a3b

(
m2

a1
−m2

a3

)
m2

b

(
mA2L

b
A4A2

−mA4R
b
A4A2

)
.

* (0−0−) gives the conjugate of the above.
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b = [La1 , La3 ], iCa1a3bR

b = [Ra1 , Ra3 ].

O(E) for (0+0+)∗, giving a relation:

LaYb − YbR
a − YĩT

a
ĩb
= 0,

if we recognise

T a
ib = −T a

bi =
i

mb
Fabi, T a

bc = iCabc
m2

a −m2
b −m2

c

2mbmc
,

(Ya)AB =
i

ma
(mBL

a −mAR
a)AB .

* (0−0−) gives the conjugate of the above.

Zhewei Yin (Uppsala U.) Coupling-Kinematics Duality RADCOR 2023 13 / 16



Goldstone boson equivalence

(Ya)AB =
i

ma
(mBL

a −mAR
a)AB .

Why such redefinitions? Consider the (0++) components of the following
amplitudes in the HE limit:

i1

A2

A3

⇓

(Yi1)A2A3 [23]

a1

A2

A3

⇓

[23]
In the HE limit, the longitudinal component of the vectors are equivalent
to (Goldstone) scalars, which together with (Higgs) scalars furnish some
representation of G
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Coupling-kinematics at the broken phase

WFWF :

O(E2) for (0−0+) and (0+0−), giving the relations:

iCa1a3bL
b
A4A2

= [La1 , La3 ]A4A2 , iCa1a3bR
b
A4A2

= [Ra1 , Ra3 ]A4A2 .

+ + = 0

1

2 3

4 1

3 4

2 1

4 2

3

O(E) for (0+0+) gives the following, (0−0−) giving the conjugate:

La1
A4B

(Ya3)BA2
− (Ya3)A4B

Ra1
BA2

−
(
Yĩ
)
A4A2

T a1
ĩa3

= 0.

4 sectors: e.g. in the s channel,∑
B

cBL,snL,s + cBR,snR,s + fBL,sn
f
L,s + fBR,sn

f
R,s

s−m2
B

,

with

cBL,s = La3
A4B

La1
BA2

, cBR,s = Ra3
A4B

Ra1
BA2

,

fBL,s = (Ya3)A4B
La1
BA2

, fBR,s =
(
Y †
a3

)
A4B

Ra1
BA2

.
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Summary and outlook

The coupling-kinematics duality: invariant tensor relations in
renormalizable gauge theories correspond to kinematics numerators

In spontaneously broken gauge theories, an amplitude of a massive
gauge boson may involve multiple sets of numerators

To explore: applications to SM, generalization to EFTs, double copy
theories, higher spin
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