Coupling versus Kinematics in a General Spontaneously Broken Gauge Theory

Based on ongoing work with Henrik Johansson, and 2204.13119 with Da Liu

Zhewei Yin

Uppsala University
RADCOR, May 30, 2023

Scattering amplitudes

The modern scattering amplitudes program

- Constructing amplitudes in purely on-shell ways
- Studying the properties of on-shell amplitudes

Why?

- Avoid redundancies of a local formulation, including EoM, field redefinitions, gauge invariance etc.
- Unveil properties of amplitudes obscured in a local formulation, e.g. the color-kinematics duality

The color-kinematics duality

Consider Yang-Mills

The color-kinematics duality

Consider Yang-Mills

- Only controlled by a single coupling parameter (tensor): $f^{a b c}$

$$
\mathcal{A}\left(1^{-} 2^{-} 3^{+}\right)=f_{a b c} \frac{\langle 12\rangle^{3}}{\langle 13\rangle\langle 23\rangle},
$$

Spinor-helicity variables:

- Taking massless momentum p_{μ} :

$$
p_{\alpha \dot{\alpha}}=p_{\mu} \sigma_{\alpha \dot{\alpha}}^{\mu}
$$

- $\operatorname{det} p=0$, thus $p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}=\left(|\lambda\rangle[\tilde{\lambda} \mid)_{\alpha \dot{\alpha}}\right.$
- $\langle 12\rangle=\lambda_{1 \alpha} \lambda_{2 \beta} \varepsilon^{\alpha \beta},[12]=\tilde{\lambda}_{1 \dot{\alpha}} \tilde{\lambda}_{2 \dot{\beta}} \varepsilon^{\dot{\alpha} \dot{\beta}}$

The color-kinematics duality

Consider Yang-Mills

- Only controlled by a single coupling parameter (tensor): $f^{a b c}$
- At 4-pt, 3 factorization channels
- One can write

$$
\mathcal{A}_{4}=\sum_{I \in\{s, t, u\}} \frac{\mathrm{c}_{I} n_{I}}{d_{I}}
$$

with

$$
\mathrm{c}_{s}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}, \mathrm{c}_{t}=f^{a_{1} a_{4} b} f^{b a_{2} a_{3}}, \mathrm{c}_{u}=f^{a_{1} a_{3} b} f^{b a_{4} a_{2}}
$$

and $c_{s}+c_{t}+c_{u}=0$.

The color-kinematics duality

Consider Yang-Mills

- Only controlled by a single coupling parameter (tensor): $f^{a b c}$
- At 4-pt, 3 factorization channels
- One can write

$$
\mathcal{A}_{4}=\sum_{I \in\{s, t, u\}} \frac{\mathrm{c}_{I} n_{I}}{d_{I}}
$$

with

$$
\mathrm{c}_{s}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}, \mathrm{c}_{t}=f^{a_{1} a_{4} b} f^{b a_{2} a_{3}}, \mathrm{c}_{u}=f^{a_{1} a_{3} b} f^{b a_{4} a_{2}}
$$

and $c_{s}+c_{t}+c_{u}=0$.

- $\exists n_{I}$, s.t. $n_{s}+n_{t}+n_{u}=0$.

The color-kinematics duality

For any multiplicity,

- One can write

$$
\mathcal{A}_{n}=\sum_{g} \frac{\mathrm{c}_{g} n_{g}}{d_{g}} .
$$

The color-kinematics duality

For any multiplicity,

- One can write

$$
\mathcal{A}_{n}=\sum_{g} \frac{\mathrm{c}_{g} n_{g}}{d_{g}} .
$$

- $\exists n_{g}$ that satisfies all corresponding relations of c_{g} dictated by the Jacobi identity.

Bern, Carrasco, Johansson, 0805.3993

The color-kinematics duality

For any multiplicity,

- One can write

$$
\mathcal{A}_{n}=\sum_{g} \frac{\mathrm{c}_{g} n_{g}}{d_{g}} .
$$

- $\exists n_{g}$ that satisfies all corresponding relations of c_{g} dictated by the Jacobi identity.

Bern, Carrasco, Johansson, 0805.3993
This is nice because

- Simplifying computation for high-multiplicity/high-loop level
- Replacing c_{g} with n_{g} leads to gravity amplitudes:

$$
\mathcal{M}_{n}=\sum_{g} \frac{n_{g} n_{g}}{d_{g}}
$$

Double copy: gravity $=(\text { gauge theory })^{2}$.
Review: Bern, Carrasco, Chiodaroli Johansson, Roiban, $19 \underline{\underline{\underline{1}}} \mathbf{\underline { \underline { 1 } }} \mathbf{0 1 3 5 8}$

The color-kinematics duality

Questions:

The color-kinematics duality

Questions:

(1) Why does it work?

The color-kinematics duality

Questions:
(1) Why does it work?
(2) For what theories does it work?

The color-kinematics duality

Questions:
(1) Why does it work?
(2) For what theories does it work?

Question: Where does the Jacobi identity in YM come from?

Symmetry from unitarity

Massless spin-1: Tree unitarity \rightarrow symmetry!

Symmetry from unitarity

Massless spin-1: Tree unitarity \rightarrow symmetry!

- For the n-pt tree amplitude \mathcal{A}_{n}, when taking the high energy limit,

$$
\mathcal{A}_{n} \sim \mathcal{O}\left(E^{4-n}\right)
$$

Symmetry from unitarity

Massless spin-1: Tree unitarity \rightarrow symmetry!

- For the n-pt tree amplitude \mathcal{A}_{n}, when taking the high energy limit,

$$
\mathcal{A}_{n} \sim \mathcal{O}\left(E^{4-n}\right)
$$

For example,

$$
\begin{aligned}
\mathcal{A}\left(1^{-} 2^{-} 3^{+}\right) & =f_{a b c} \frac{\langle 12\rangle^{3}}{\langle 13\rangle\langle 23\rangle} \rightarrow \mathcal{O}(E) \\
\mathcal{A}\left(1^{-} 2^{-} 3^{-}\right) & =f_{a b c}^{\prime}\langle 12\rangle\langle 13\rangle\langle 23\rangle \rightarrow \mathcal{O}\left(E^{3}\right)
\end{aligned}
$$

Symmetry from unitarity

Massless spin-1: Tree unitarity \rightarrow symmetry!

- For the n-pt tree amplitude \mathcal{A}_{n}, when taking the high energy limit,

$$
\mathcal{A}_{n} \sim \mathcal{O}\left(E^{4-n}\right)
$$

For example,

$$
\begin{aligned}
\mathcal{A}\left(1^{-} 2^{-} 3^{+}\right) & =f_{a b c} \frac{\langle 12\rangle^{3}}{\langle 13\rangle\langle 23\rangle} \rightarrow \mathcal{O}(E) \\
\mathcal{A}\left(1^{-} 2^{-} 3^{-}\right) & =f_{a b c}^{\prime}\langle 12\rangle\langle 13\rangle\langle 23\rangle \rightarrow \mathcal{O}\left(E^{3}\right)
\end{aligned}
$$

- Factorization

4-pt constraints lead to

$$
f_{a b e} f_{c d e}+f_{b c e} f_{a d e}+f_{c a e} f_{b d e}=0 .
$$

Gauge theory from unitarity

Question: what is the most general renormalizable QFT with a finite spectrum of spin- $0,1 / 2$ and 1 states?

Gauge theory from unitarity

Question: what is the most general renormalizable QFT with a finite spectrum of spin- $0,1 / 2$ and 1 states?
 Answer:

Derivation of gauge invariance from high-energy unitarity bounds on the S matrix*

John M. Cornwall, ${ }^{\dagger}$ David N. Levin, and George Tiktopoulos
Department of Physics, University of California at Los Angeles, Los Angeles, California 90024
(Received 21 March 1974)
A systematic search is made for all renormalizable theories of heavy vector bosons. It is argued that in any renormalizable Lagrangian theory high-energy unitarity bounds should not be violated in perturbation theory (apart from logarithmic factors in the energy). This leads to the specific requirement of "tree unitarity": the N-particle S-matrix elements in the tree approximation must grow no more rapidly than E^{4-N} in the limit of high energy (E) at fixed, nonzero angles (i.e., at angles such that all invariants $p_{i} \cdot p_{j}, i \neq j$, grow like E^{2}). We have imposed this tree-unitarity criterion on the most general scalar, spinor, and vector Lagrangian with terms of mass dimension less than or equal to four; a certain class of nonpolynomial Lagrangians is also considered. It is proved that any such theory is tree-unitary if and only if it is equivalent under a point transformation to a spontaneously broken gauge theory, possibly modified by the addition of mass terms for vectors associated with invariant Abelian subgroups. Our result suggests that gauge theories are the only renormalizable theories of massive vector particles and that the existence of Lie groups of internal symmetries in particle physics can be traced to the requirement of renormalizability.

Gauge theory from unitarity

Question: what is the most general renormalizable QFT with a finite spectrum of spin- $0,1 / 2$ and 1 states?
Short answer: a (spontaneously broken) gauge theory

Gauge theory from unitarity

Question: what is the most general renormalizable QFT with a finite spectrum of spin- $0,1 / 2$ and 1 states?
Long answer:

- All states furnish some representations of some Lie group G

Gauge theory from unitarity

Question: what is the most general renormalizable QFT with a finite spectrum of spin- $0,1 / 2$ and 1 states?
Long answer:

- All states furnish some representations of some Lie group G
- The vector states furnish the adjoint representation of G

Gauge theory from unitarity

Question: what is the most general renormalizable QFT with a finite spectrum of spin- $0,1 / 2$ and 1 states?
Long answer:

- All states furnish some representations of some Lie group G
- The vector states furnish the adjoint representation of G
- All couplings are invariant tensors of G

Gauge theory from unitarity

Question: what is the most general renormalizable QFT with a finite spectrum of spin- $0,1 / 2$ and 1 states?
Long answer:

- All states furnish some representations of some Lie group G
- The vector states furnish the adjoint representation of G
- All couplings are invariant tensors of G
- All states couple to the vectors through covariant derivatives; in other words, the couplings are given by generators of G

Gauge theory from unitarity

Question: what is the most general renormalizable QFT with a finite spectrum of spin- $0,1 / 2$ and 1 states?
Long answer:

- All states furnish some representations of some Lie group G
- The vector states furnish the adjoint representation of G
- All couplings are invariant tensors of G
- All states couple to the vectors through covariant derivatives; in other words, the couplings are given by generators of G
- The mass of vector bosons are given by Higgs mechanism (up to possible $\mathrm{U}(1)$ mass terms)

Gauge theory from unitarity

Question: what is the most general renormalizable QFT with a finite spectrum of spin-0, $1 / 2$ and 1 states?
Long answer:

- All states furnish some representations of some Lie group G
- The vector states furnish the adjoint representation of G
- All couplings are invariant tensors of G
- All states couple to the vectors through covariant derivatives; in other words, the couplings are given by generators of G
- The mass of vector bosons are given by Higgs mechanism (up to possible $\mathrm{U}(1)$ mass terms)
Key observation: the Jacobi identity is just a special case of invariant tensor relations.

The Unbroken Phase

The unbroken phase

- Consider the unbroken phase: massless spin-1 (with index a), and massless or massive spin- 0 (with index i) and spin- $1 / 2$ (with index A)

The unbroken phase

- Consider the unbroken phase: massless spin-1 (with index a), and massless or massive spin-0 (with index i) and spin- $1 / 2$ (with index A)
- Couplings allowed by tree unitarity: $f^{a b c}, T_{i j}^{a}, L_{A B}^{a}, R_{A B}^{a}, P_{i j k}, K_{i j k l}$, $\left(Y_{i}\right)_{A B}$.

The unbroken phase

- Consider the unbroken phase: massless spin-1 (with index a), and massless or massive spin-0 (with index i) and spin- $1 / 2$ (with index A)
- Couplings allowed by tree unitarity: $f^{a b c}, T_{i j}^{a}, L_{A B}^{a}, R_{A B}^{a}, P_{i j k}, K_{i j k l}$, $\left(Y_{i}\right)_{A B}$.
- Relations dictated by the gauge group (emerging from the tree unitarity constraints):

$$
\begin{aligned}
& f^{a b e} f^{c d e}+f^{a c e} f^{d b e}+f^{a d e} f^{b c e}=0, \\
& {\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c},} \\
& {\left[L^{a}, L^{b}\right]=i f^{a b c} L^{c}, \quad\left[R^{a}, R^{b}\right]=i f^{a b c} R^{c},} \\
& L^{a} Y_{i}-Y_{i} R^{a}-Y_{j} T_{j i}^{a}=0, \\
& P_{i j l} T_{l k}^{a}+P_{j k l} T_{l i}^{a}+P_{k i l} T_{l j}^{a}=0, \quad K_{i_{1} i_{2} i_{3} j} T_{j i_{4}}^{a}+\mathrm{cycl}=0 .
\end{aligned}
$$

Example: $V S F^{2}$

The Yukawa coupling needs to be an invariant tensor:

$$
L_{A C}^{a}\left(Y_{i}\right)_{C B}-\left(Y_{i}\right)_{A C} R_{C B}^{a}-\left(Y_{j}\right)_{A B} T_{j i}^{a}=0
$$

Example: $V S F^{2}$

The Yukawa coupling needs to be an invariant tensor:

$$
\begin{gathered}
L_{A C}^{a}\left(Y_{i}\right)_{C B}-\left(Y_{i}\right)_{A C} R_{C B}^{a}-\left(Y_{j}\right)_{A B} T_{j i}^{a}=0 \\
\mathcal{A}_{4}=\sum_{g} \frac{\mathrm{c}_{g} n_{g}}{d_{g}}
\end{gathered}
$$

- C_{g} satisfies the identity

Example: $V S F^{2}$

The Yukawa coupling needs to be an invariant tensor:

$$
\begin{gathered}
L_{A C}^{a}\left(Y_{i}\right)_{C B}-\left(Y_{i}\right)_{A C} R_{C B}^{a}-\left(Y_{j}\right)_{A B} T_{j i}^{a}=0 \\
\mathcal{A}_{4}=\sum_{g} \frac{\mathrm{c}_{g} n_{g}}{d_{g}}
\end{gathered}
$$

- c_{g} satisfies the identity
- $\exists n_{g}$ satisfying the identity:

$$
n_{s}=-2 i p_{3} \cdot \varepsilon_{4} \bar{v}_{2 L} u_{1 R}, n_{t}=i \bar{v}_{2 L} \not p_{3} \not_{4} u_{1 R}, n_{u}=i \bar{v}_{2 L} \not{ }_{4} \not \phi_{3} u_{1 R} .
$$

The coupling-kinematics duality

Our claim: whenever there is an "invariant tensor" relation for the couplings, there are corresponding kinematic numerators that satisfy such a relation

$$
\begin{aligned}
& f^{a b e} f^{c d e}+f^{a c e} f^{d b e}+f^{a d e} f^{b c e}=0, \\
& {\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c},} \\
& {\left[L^{a}, L^{b}\right]=i f^{a b c} L^{c}, \quad\left[R^{a}, R^{b}\right]=i f^{a b c} R^{c},} \\
& L^{a} Y_{i}-Y_{i} R^{a}-Y_{j} T_{j i}^{a}=0, \\
& P_{i j l} T_{l k}^{a}+P_{j k l} T_{l i}^{a}+P_{k i l} T_{l j}^{a}=0, \quad K_{i_{1} i_{2} i_{3} j} T_{j i_{4}}^{a}+\mathrm{cycl}=0 .
\end{aligned}
$$

The coupling-kinematics duality

Our claim: whenever there is an "invariant tensor" relation for the couplings, there are corresponding kinematic numerators that satisfy such a relation

$$
\begin{aligned}
& f^{a b e} f^{c d e}+f^{a c e} f^{d b e}+f^{a d e} f^{b c e}=0, \\
& {\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c},} \\
& {\left[L^{a}, L^{b}\right]=i f^{a b c} L^{c}, \quad\left[R^{a}, R^{b}\right]=i f^{a b c} R^{c},} \\
& L^{a} Y_{i}-Y_{i} R^{a}-Y_{j} T_{j i}^{a}=0, \\
& P_{i j l} T_{l k}^{a}+P_{j k l} T_{l i}^{a}+P_{k i l} T_{l j}^{a}=0, \quad K_{i_{1} i_{2} i_{3} j} T_{j i_{4}}^{a}+\mathrm{cycl}=0 .
\end{aligned}
$$

- The coupling relations have a kinematic origin

The coupling-kinematics duality

Our claim: whenever there is an "invariant tensor" relation for the couplings, there are corresponding kinematic numerators that satisfy such a relation

$$
\begin{aligned}
& f^{a b e} f^{c d e}+f^{a c e} f^{d b e}+f^{a d e} f^{b c e}=0, \\
& {\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c},} \\
& {\left[L^{a}, L^{b}\right]=i f^{a b c} L^{c}, \quad\left[R^{a}, R^{b}\right]=i f^{a b c} R^{c},} \\
& L^{a} Y_{i}-Y_{i} R^{a}-Y_{j} T_{j i}^{a}=0, \\
& P_{i j l} T_{l k}^{a}+P_{j k l} T_{l i}^{a}+P_{k i l} T_{l j}^{a}=0, \quad K_{i_{1} i_{2} i_{3} j} T_{j i_{4}}^{a}+\mathrm{cycl}=0 .
\end{aligned}
$$

- The coupling relations have a kinematic origin
- The existence of kinematic numerators is related to UV constraints

The Broken Phase

The broken phase

- The relations among couplings are more complicated because of the broken symmetry

Cornwall, Levin, Tiktopoulos, 1973; Llewellyn Smith, 1973

The broken phase

- The relations among couplings are more complicated because of the broken symmetry

Cornwall, Levin, Tiktopoulos, 1973; Llewellyn Smith, 1973

- An on-shell bootstrap can be done to study these relations, similar to the unbroken phase

Liu, ZY, 2204.13119

Tree unitary 3-pt amplitudes: V^{3}

$V^{3}: 7 \rightarrow 1$

$$
\frac{i \sqrt{2} C_{a_{1} a_{2} a_{3}}}{m_{a_{1}} m_{a_{2}} m_{a_{3}}}\left(m_{a_{2}}\langle\mathbf{1 2}\rangle\langle\mathbf{2 3}\rangle[\mathbf{3 1}]+\mathrm{cycl}\right)
$$

where $C_{a b c}$ has to be totally antisymmetric.
Little-group covariant massive spinor formalism, e.g. $\mathbf{1}=1^{I}$.
Arkani-Hamed, Huang, Huang, 1709.04891

Tree unitary 3-pt amplitudes: examples

$$
S F^{2}
$$

$$
2 F_{a_{1} a_{2} i_{3}} \frac{[\mathbf{1 2}]\langle\mathbf{2 1}\rangle}{m_{a_{1}} m_{a_{2}}},
$$

$$
\frac{\sqrt{2}}{m_{a_{1}}}\left(R_{A_{3} A_{2}}^{a_{1}}[\mathbf{1 2}]\langle\mathbf{1 3}\rangle\right.
$$

$\left(Y_{i_{1}}\right)_{A_{3} A_{2}}[23]$ $+\left(Y_{i_{1}}^{\dagger}\right)_{A_{3} A_{2}}\langle\mathbf{2 3}\rangle$.
where $F_{a b i}=F_{b a i}$.

$$
\left.+L_{A_{3} A_{2}}^{a_{1}}\langle\mathbf{1 2}\rangle[\mathbf{1 3}]\right) .
$$

4-pt example: $V^{2} F^{2}$

$V^{2} F^{2}$:
$\mathcal{M}_{4}=\mathcal{M}_{4, \mathrm{f}}+\mathcal{M}_{4, \mathrm{c}}, \mathcal{M}_{4, \mathrm{f}}=\mathcal{O}\left(E^{2}\right)$, eliminating all contact terms.

4-pt example: $V^{2} F^{2}$

$V^{2} F^{2}$:
$\mathcal{M}_{4}=\mathcal{M}_{4, \mathrm{f}}+\mathcal{M}_{4, \mathrm{c}}, \mathcal{M}_{4, \mathrm{f}}=\mathcal{O}\left(E^{2}\right)$, eliminating all contact terms.

- $\mathcal{O}\left(E^{2}\right)$ for ($0-0+$) and ($0+0-$), giving the relations:

$$
i C_{a_{1} a_{3} b} L^{b}=\left[L^{a_{1}}, L^{a_{3}}\right], i C_{a_{1} a_{3} b} R^{b}=\left[R^{a_{1}}, R^{a_{3}}\right] .
$$

4-pt example: $V^{2} F^{2}$

$V^{2} F^{2}$:
$\mathcal{M}_{4}=\mathcal{M}_{4, \mathrm{f}}+\mathcal{M}_{4, \mathrm{c}}, \mathcal{M}_{4, \mathrm{f}}=\mathcal{O}\left(E^{2}\right)$, eliminating all contact terms.

- $\mathcal{O}\left(E^{2}\right)$ for $(0-0+)$ and $(0+0-)$, giving the relations:

$$
i C_{a_{1} a_{3} b} L^{b}=\left[L^{a_{1}}, L^{a_{3}}\right], i C_{a_{1} a_{3} b} R^{b}=\left[R^{a_{1}}, R^{a_{3}}\right] .
$$

- $\mathcal{O}(E)$ for $(0+0+)^{*}$, giving a relation:

$$
\begin{aligned}
& 2 F_{a_{1} a_{3} i}\left(Y_{i}\right)_{A_{4} A_{2}}-m_{A_{2}}\left\{L^{a_{1}}, L^{a_{3}}\right\}_{A_{4} A_{2}}-m_{A_{4}}\left\{R^{a_{1}}, R^{a_{3}}\right\}_{A_{4} A_{2}} \\
& +\sum_{B} 2 m_{B}\left(L_{A_{4} B}^{a_{1}} R_{B A_{2}}^{a_{3}}+L_{A_{4} B}^{a_{3}} R_{B A_{2}}^{a_{1}}\right) \\
= & \sum_{b} i C^{a_{1} a_{3} b} \frac{\left(m_{a_{1}}^{2}-m_{a_{3}}^{2}\right)}{m_{b}^{2}}\left(m_{A_{2}} L_{A_{4} A_{2}}^{b}-m_{A_{4}} R_{A_{4} A_{2}}^{b}\right) .
\end{aligned}
$$

* $(0-0-)$ gives the conjugate of the above.

4-pt example: $V^{2} F^{2}$

$V^{2} F^{2}:$
$\mathcal{M}_{4}=\mathcal{M}_{4, \mathrm{f}}+\mathcal{M}_{4, \mathrm{c}}, \mathcal{M}_{4, \mathrm{f}}=\mathcal{O}\left(E^{2}\right)$, eliminating all contact terms.

- $\mathcal{O}\left(E^{2}\right)$ for $(0-0+)$ and ($0+0-$), giving the relations:

$$
i C_{a_{1} a_{3} b} L^{b}=\left[L^{a_{1}}, L^{a_{3}}\right], i C_{a_{1} a_{3} b} R^{b}=\left[R^{a_{1}}, R^{a_{3}}\right] .
$$

- $\mathcal{O}(E)$ for $(0+0+)^{*}$, giving a relation:

$$
L^{a} Y_{b}-Y_{b} R^{a}-Y_{\tilde{i}} T_{\tilde{i} b}^{a}=0,
$$

if we recognise

$$
\begin{aligned}
T_{i b}^{a} & =-T_{b i}^{a}=\frac{i}{m_{b}} F_{a b i}, T_{b c}^{a}=i C_{a b c} \frac{m_{a}^{2}-m_{b}^{2}-m_{c}^{2}}{2 m_{b} m_{c}}, \\
\left(Y_{a}\right)_{A B} & =\frac{i}{m_{a}}\left(m_{B} L^{a}-m_{A} R^{a}\right)_{A B} .
\end{aligned}
$$

* ($0-0-$) gives the conjugate of the above.

Goldstone boson equivalence

$$
\left(Y_{a}\right)_{A B}=\frac{i}{m_{a}}\left(m_{B} L^{a}-m_{A} R^{a}\right)_{A B}
$$

Why such redefinitions? Consider the $(0++)$ components of the following amplitudes in the HE limit:

Goldstone boson equivalence

$$
\left(Y_{a}\right)_{A B}=\frac{i}{m_{a}}\left(m_{B} L^{a}-m_{A} R^{a}\right)_{A B}
$$

Why such redefinitions? Consider the $(0++)$ components of the following amplitudes in the HE limit:

Goldstone boson equivalence

$$
\left(Y_{a}\right)_{A B}=\frac{i}{m_{a}}\left(m_{B} L^{a}-m_{A} R^{a}\right)_{A B}
$$

Why such redefinitions? Consider the $(0++)$ components of the following amplitudes in the HE limit:

$$
\left(Y_{i_{1}}\right)_{A_{2} A_{3}}[23]
$$

Goldstone boson equivalence

$$
\left(Y_{a}\right)_{A B}=\frac{i}{m_{a}}\left(m_{B} L^{a}-m_{A} R^{a}\right)_{A B}
$$

Why such redefinitions? Consider the $(0++)$ components of the following amplitudes in the HE limit:

$$
\left(Y_{i_{1}}\right)_{A_{2} A_{3}}[23]
$$

Goldstone boson equivalence

$$
\left(Y_{a}\right)_{A B}=\frac{i}{m_{a}}\left(m_{B} L^{a}-m_{A} R^{a}\right)_{A B}
$$

Why such redefinitions? Consider the $(0++)$ components of the following amplitudes in the HE limit:

Goldstone boson equivalence

$$
\left(Y_{a}\right)_{A B}=\frac{i}{m_{a}}\left(m_{B} L^{a}-m_{A} R^{a}\right)_{A B}
$$

Why such redefinitions? Consider the $(0++)$ components of the following amplitudes in the HE limit:

\Downarrow

\Downarrow

$$
\left(Y_{i_{1}}\right)_{A_{2} A_{3}}[23]
$$

$$
\left(Y_{a_{1}}\right)_{A_{2} A_{3}}[23]
$$

In the HE limit, the longitudinal component of the vectors are equivalent to (Goldstone) scalars, which together with (Higgs) scalars furnish some representation of G

Coupling-kinematics at the broken phase

WFWF:

- $\mathcal{O}\left(E^{2}\right)$ for $(0-0+)$ and ($0+0-$), giving the relations:
$i C_{a_{1} a_{3} b} L_{A_{4} A_{2}}^{b}=\left[L^{a_{1}}, L^{a_{3}}\right]_{A_{4} A_{2}}, i C_{a_{1} a_{3} b} R_{A_{4} A_{2}}^{b}=\left[R^{a_{1}}, R^{a_{3}}\right]_{A_{4} A_{2}}$.

Coupling-kinematics at the broken phase

WFWF:

- $\mathcal{O}\left(E^{2}\right)$ for $(0-0+)$ and ($0+0-$), giving the relations:

$$
i C_{a_{1} a_{3} b} L_{A_{4} A_{2}}^{b}=\left[L^{a_{1}}, L^{a_{3}}\right]_{A_{4} A_{2}}, i C_{a_{1} a_{3} b} R_{A_{4} A_{2}}^{b}=\left[R^{a_{1}}, R^{a_{3}}\right]_{A_{4} A_{2}} .
$$

- $\mathcal{O}(E)$ for $(0+0+)$ gives the following, $(0-0-)$ giving the conjugate:

$$
L_{A_{4} B}^{a_{1}}\left(Y_{a_{3}}\right)_{B A_{2}}-\left(Y_{a_{3}}\right)_{A_{4} B} R_{B A_{2}}^{a_{1}}-\left(Y_{\tilde{i}}\right)_{A_{4} A_{2}} T_{\tilde{i} a_{3}}^{a_{1}}=0 .
$$

$=0$

Coupling-kinematics at the broken phase

WFWF:

- $\mathcal{O}\left(E^{2}\right)$ for $(0-0+)$ and ($0+0-$), giving the relations:

$$
i C_{a_{1} a_{3} b} L_{A_{4} A_{2}}^{b}=\left[L^{a_{1}}, L^{a_{3}}\right]_{A_{4} A_{2}}, i C_{a_{1} a_{3} b} R_{A_{4} A_{2}}^{b}=\left[R^{a_{1}}, R^{a_{3}}\right]_{A_{4} A_{2}} .
$$

- $\mathcal{O}(E)$ for $(0+0+)$ gives the following, $(0-0-)$ giving the conjugate:

$$
L_{A_{4} B}^{a_{1}}\left(Y_{a_{3}}\right)_{B A_{2}}-\left(Y_{a_{3}}\right)_{A_{4} B} R_{B A_{2}}^{a_{1}}-\left(Y_{\tilde{i}}\right)_{A_{4} A_{2}} T_{\tilde{i} a_{3}}^{a_{1}}=0
$$

4 sectors: e.g. in the s channel,

$$
\sum_{B} \frac{c_{L, s}^{B} n_{L, s}+c_{R, s}^{B} n_{R, s}+\mathrm{f}_{L, s}^{B} n_{L, s}^{\mathrm{f}}+\mathrm{f}_{R, s}^{B} n_{R, s}^{\mathrm{f}}}{s-m_{B}^{2}}
$$

with

$$
\begin{array}{cl}
c_{L, s}^{B}=L_{A_{4} B}^{a_{3}} L_{B A_{2}}^{a_{1}}, & c_{R, s}^{B}=R_{A_{4} B}^{a_{3}} R_{B A_{2}}^{a_{1}}, \\
\mathfrak{f}_{L, s}^{B}=\left(Y_{a_{3}}\right)_{A_{4} B} L_{B A_{2}}^{a_{1}}, & \mathrm{f}_{R, s}^{B}=\left(Y_{a_{3}}^{\dagger}\right)_{A_{4} B} R_{B A_{2}}^{a_{1}}
\end{array}
$$

Summary and outlook

- The coupling-kinematics duality: invariant tensor relations in renormalizable gauge theories correspond to kinematics numerators
- In spontaneously broken gauge theories, an amplitude of a massive gauge boson may involve multiple sets of numerators
- To explore: applications to SM, generalization to EFTs, double copy theories, higher spin

