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The method of regions (MoR)

entire space = R{U R U+ .- U R,

1 = I(’Hl) - I(Rz) o I(Rn)‘

* The original integral I can be approximated, or even restored, by
the sum over contributions from each region.

 The integration measure is the entire space for each term.

 The regions are chosen using heuristic methods based on
examples and experience.



The method of regions (MoR)

Example: one-loop Sudakov form factor

Kinematic limit (on-shell limit)
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This integral can be evaluated directly.

Or, we can apply the method of regions.



The method of regions (MoR)

Four regions in total:

Hard region : k" ~ (1,1,1)Q
Collinear region to p: k" ~ (A, 1, )\%)Q
Collinear region to [ : k" ~ (1, A, )\%)Q

Soft region : kK" ~ (A, A, A)Q

Approximate the original integral w.r.t. each region:
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I = i D12 2 l—U./ ;’Uﬁ{ﬁ )2k 1, 1 _13 N2k p_+ P2 +i0) + ..



The method of regions (MoR)

Four regions in total:

Hard region : k¥ ~ (1,1,1)Q
Collinear region to p: k" ~ (A, 1, )\%)Q
Collinear region to [ : k" ~ (1, A, ,\%)Q

Soft region : k" ~ (A, A, A)Q

The original integral is reproduced.

1 QQ QZ ﬂ.Z
_ ], L= =1 1 — + O\
= Dbl Dy 1 = g (I g + 5+ 00

This equality holds up to ALL orders of A!

(More examples are presented in Smirnov’s book “Applied Asymptotic
Expansions in Momenta and Masses™.)



The method of regions (MoR)

One can also use the Lee-Pomeransky representation.
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The method of regions (MoR)

P1

One can also use the Lee-Pomeransky representation.
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The method of regions (MoR)

P1

One can also use the Lee-Pomeransky representation.

X -D/2
I(ax:s8)=C [ do.x” ! (’P{;I:: S]) |
V0 (H )

t '::_'fl'

T_ edge
Plx,s) =U(x) + F(x, s),

:ZH;;;& F(x ZQTQHT€+Z/{ Zm Te .

T e¢T! edT?

Applying the method of regions

Hard region : @1, a2, z3 ~ A’
Collinear region to py : @1, 23 ~ A1, x5 ~ A"
Collinear region to ps : & ~ )\D, To, Ly ~ A1

Soft region : &1, xo ~ A7l g~ A2

P2



The method of regions (MoR)

Momentum representation

Divide the entire integration
measure into regions

Approximate the integrand
only

Sum over the contributions

Parameter representation

Divide the entire integration
measure into regions

Approximate the integrand
only

Sum over the contributions



The method of regions (MoR)

Momentum representation

- Divide the entire integration
measure into regions

- Approximate the integrand
only

- Sum over the contributions

- Regions are chosen based
on examples and
experience.

Parameter representation

- Divide the entire integration
measure into regions

- Approximate the integrand
only

- Sum over the contributions

- Regions are given by
Newton polytopes
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The Newton polytope approach

* This is a systematic way to find the regions.

* For a given Lee-Pomeransky polynomial, we construct the
associated Newton polytope: it is the convex hull of the
exponents of the Lee-Pomeransky polynomial.

 For example,
a1

73(3{:, S) =T +To + T3y — P1X1X3 — Pol2X3 — (1 X1X2

(1,0,0;0) | (0,0,1;0) (1,0,1;1) (1,1,0;0)

(0,1,0;0) (0,1,1;1)

P1 D2



The Newton polytope approach

* This is a systematic way to find the regions.

* For a given Lee-Pomeransky polynomial, we construct the
associated Newton polytope: it is the convex hull of the
exponents of the Lee-Pomeransky polynomial.

 For example,
a1

73(3{:, S) =T +To + T3y — P1X1X3 — Pol2X3 — (1 X1X2

(1,0,0;0) | (0,0,1;0) (1,0,1;1) (1,1,0;0)

(0,1,0;0) (0,1,1;1)

P1 D2

* The regions are the lower facets of this Newton polytope!



The Newton polytope approach

Back to our example:

Each region (hard, collinear-1, , soft) corresponds to a
specific facet containing certain points.

73(:13, 3) =T1 + T2+ T3 — PIT1T3 — PyT2T3 — q1T1T2

(1,0,0;0) | (0,0,1;0) (1,0,1;1) (1,1,0;0)

(0,1,0;0) (0,1,1;1)

These points are in the

Hard region : @1, xa, 23 ~ A’
D/2
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The Newton polytope approach

Back to our example:

Each region (hard, collinear-1, , soft) corresponds to a
specific facet containing certain points.

73(:13, S) =T] + T+ X3 — Pir1T3 — PyTaT3 — q1T1T2

(1,0,0;0) (0,0,1;0) (1,0,1;1) (1,1,0;0)

These points are in the collinear-1 facet.



The Newton polytope approach

Back to our example:

Each region (hard, collinear-1, , soft) corresponds to a
specific facet containing certain points.

73(:13, S) =T] + T+ X3 — Pir1T3 — PyTaT3 — q1T1T2

(0,0,1;0) (1,1,0;0)

(0.:1.0:0) (0,1,1;1)
These points are on the collinear-2 facet:



The Newton polytope approach

Back to our example:

Each region (hard, collinear-1, , soft) corresponds to a
specific facet containing certain points.

7:)(33, S) =Ty +To + T3 — })%;’I}l.’lf‘;g — ]’)%:]ﬁg;’l’fg — q%;’l’;‘lf}.’.‘g
(0,0,1;0) (1,0,1;1) (1,1,0:0)

(0,1,1;1)
These points are on the soft facet.



The Newton polytope approach

* Newton polytope = convex hull of the exponents
If a graph has N propagators, then the Newton
polytope is (N+1)-dimensional.

* Regions: the lower facets of the Newton polytope!

 Some computer codes: Asy2, ASPIRE, pySecDec

! '?,'-";;_Fg_ UsF

 Our aim: an analytic way to determine the"
regions.




Relating regions to Landau equations

* The Landau equations . ?(k.p.q)=0 VeeG
0
Ok,

D(k,p,q;a) =0 Vae{l,...,L}.

are necessary conditions for infrared singularity. The solutions of
the Landau equations are called pinch surfaces.

 The pinch surfaces of hard processes has been studied in detail
in the past decades.

* Motivation: it looks that the infrared regions are in one-to-one
correspondence with the pinch surfaces!



On-shell expansion




Relating regions to Landau equations
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Relating regions to Landau equations

q1

Regions

P1 P2




Relating regions to Landau equations

q1

Solutions of
Landau equajions

P1 P2




Relating regions to Landau equations

* This correspondence can be extended to ALL orders.

e E.Gardi, F.Herzog, S.Jones, YM, J.Schlenk 22

Each solution of the Landau equations corresponds to a region,
provided that some requirements of H,J,S are satisfied.

1 R qr




Relating regions to Landau equations

* This correspondence can be extended to ALL orders.

e E.Gardi, F.Herzog, S.Jones, YM, J.Schlenk 22

Each solution of the Landau equations corresponds to a region,
provided that some requirements of H,J,S are satisfied.

e Requirement of H: all the internal propagators of H,.q., which is the reduced form
of H, are off-shell.

o Requirement of J: all the internal propagators of J; req. which is the reduced form of

I
the contracted graph J;, carry exactly the momentum pl'.

o Requirement of S: every connected component of S must connect at least two different
jet subgraphs J; and J;.

Landau equations -> Regions!



Relating regions to Landau equations

* Based on this conclusion, we can construct a graph-finding
algorithm to unveil all the regions.

* Afishnet example

Step 1: constructing the “jets”:

p1 p2 p1 D2
Ya oy :

P4 p3 P4 p3

p1 p2 p1 D2
Y3b - Y4 :

P4 P3 P4 P3



Relating regions to Landau equations

* Based on this conclusion, we can construct a graph-finding
algorithm to unveil all the regions.

* Afishnet example
Step 2: overlaying the “jets”:

P1 D2

P4 p3

This algorithm does not involve constructing Newton polytopes, and
can be much faster.



Relating regions to Landau equations

 E.Gardi, F.Herzog, S.Jones, YM, J.Schlenk 22

In addition, one can use this knowledge to study the analytic
structure of wide-angle scattering, which further leads to properties
regarding the commutativity of multiple on-shell expansions.

Theorem 4. If R is a jet-pairing soft region that appears in the on-shell expansion of a

wide-angle scattering graph G, then the all-order expansion of Z(G) in this region can be
written as follows:

T 1(s) = ( H (P?)Pf:‘.e{f:‘) : Z ( H (—g;;‘?)‘rfe) T{{f]]_' (s\t), (5.8)

piet ki,-...kj 20  p2et

_ _ _ o —(R
where pg;(€) is a linear function of €, k; are non-negative integer powers and T { kf (s\ t)
1s a function of the off-shell kinematics, independent of any p;‘f ct.



Do all the regions
correspond to the solutions
of the Landau equations?



Relating regions to Landau equations

* YM’23, to appear

For on-shell expansions, all the regions must correspond to the
solutions of the Landau equations!




Relating regions to Landau equations

* YM’23, to appear

Regions <-> Landau equations!

The proof is based on graph-theoretical approaches.

Ulx) = Z H Te. Flx,s) = — Zs.f.g H Te +U(x) Z mf.n .
T2 ¢T

T {.E'f'l {ﬁ_ 2 e

Spanning trees Spanning 2-trees Spanning trees

The problem of verifying regions is translated into the problem of
finding certain minimum spanning (2-)trees!



Relating regions to Landau equations

* YM’23, to appear

Result: “the on-shell region theorem”

On-shell region theorem
The region vectors appearing in the on-shell expansion of wide-angle scattering
arc all of the form of vy = (up 1, uR2, ..., ur N; 1), such that for each edge e,
o upe=>0 < ecC H:
o upe=-1 << ecJ;
e up. =2 <& ecS.
The subgraphs H,.J, S are shown in the figure 24, which further satisfy:
(1) for each 1VI component of H, the total momentum flowing into it is off-shell;
(2) for each 1VI component of J;. the total momentum flowing into it is pf’;
(3) every connected component of S connects at least two different jets.




Threshold expansion




Relating regions to Landau equations

* YM’23, to appear
Generic picture

PK




Relating regions to Landau equations

* YM’23, to appear
Examples
P1 p2 P1 p2

P4 [o o [1 pP3 P4 [1 o P3




Relating regions to Landau equations

YM ’23, to appear
Result: the “threshold region theorem”

Threshold region theorem
The region vectors appearing in the threshold expansion of wide-angle scattering
are all of the form of v = (up1,ur2,...,ur nN; 1), such that for each edge e,
e up.—10 & e C H;
o up.=-1 & eclJ;
® URe= 2 <& ecCAb.
The subgraphs H,.J, S are shown in the figure 26, which further satisfy the following.
(1) Requirement of H: the momentum flowing into each 1VI component of H is
off-shell.
(2) Requirement of .J:
e the total momentum flowing into each 1VI component of J is Pt
e the 1VI component of Ji, which is attached by the external momentum p,
must contain a vertex v where a soft momentum enters, and v cannot be
shared by another 1VI component of Ji:
e all the jets are infrared-compatible.
(3) Requirement of S: every component of S connects two or more jets.




Mass expansion

11')

P



Relating regions to Landau equations

* YM’23, to appear

Graphs of the following configuration are considered
_I)

P? = M?, n° = m?, m? < M?.

P

More modes are included:

hard, collinear, soft,

semi-hard,

soft-collinear, soft?-collinear, soft3-collinear, ....



Relating regions to Landau equations

* YM’23, to appear
More modes are included:

hard, collinear, soft, semi-hard, soft-collinear, soft?-collinear,
soft3-collinear, ....

* To characterize these regions: a “terrace formalism”




Relating regions to Landau equations

* YM’23, to appear
More modes are included:

hard, collinear, soft, semi-hard, soft-collinear, soft?-collinear,
soft3-collinear, ....

* To characterize these regions: a “terrace formalism”

Q

p




The “terrace formalism”

(some terrace fi

elds

N



Main conclusion

The regions corresponding to a given graph can be
predicted from the infrared picture!

- on-shell expansion: hard, collinear, soft.
- threshold expansion: hard, collinear, soft.

- mass expansion: hard, collinear, soft, semi-hard,
soft-collinear, soft?-collinear...



Outlook 1/2

E.Gardi, F.Herzog, S.Jones, YM [in preparation]
Regions in 2-to-2 high energy limit:

hard, collinear, soft, Glauber, soft-collinear, collinear3, ...

P P

kinematic limit:

2 2 2 :
pi =p5=p3=p; =0,
it < s ~ |ul,

M P3

(11 —HFJEJE = 8,
(p1+p3)” =1,

(p1 + pa)* = u,



Outlook 1/2

E.Gardi, F.Herzog, S.Jones, YM [in preparation]
Regions in 2-to-2 high energy limit:

hard, collinear, soft, Glauber, soft-collinear, collinears, ...

T

3 Not facets of the (original) Newton polytope

Cancellations occur within the Lee-Pomeransky
polynomial, such as

(xi=xj)-(...)

(xixj = xkx1)+(...)

Much more to explore!



Outlook 2/2

What will the conclusions be in some other expansions
and/or processes!

Can one even justify the method of regions with the help of
our results?

These results can be useful to investigate the infrared
structure of gauge theories (e.g. the IR forest formula, etc.).

Application to other studies involving Newton polytopes,
resummation, SCET?



Thank you!



