MIXED QCD-EW CORRECTIONSTO DILEPTON PRODUCTION AT THE LHC IN THE HIGH INVARIANT MASS REGION

In collaboration with: F. Buccioni, F. Caola, H. Chawdhry, M. Heller, A. von Manteuffel, K. Melnikov, R. Röntsch, C.Signorile-Signorile

Based on: arXiv 2203.11237, JHEP 06 (2022) 022

Federica Devoto

OUTLINE

- How to tackle such a computation?
- What do we learn in the end?

Motivation: why do we care about mixed QCD-EW corrections @ high invariant mass?

LARGE INVARIANT MASS REGION

NEW PHYSICS SEARCHES

- New resonances with dilepton decays, distortions in kinematic distributions
- Constrain NP in model-independent way using SMEFT operators
- Flavour anomalies

Federica Devoto

LARGE INVARIANT MASS REGION

NEW PHYSICS SEARCHES

- New resonances with dilepton decays, distortions in kinematic distributions
- Constrain NP in model-independent way using SMEFT operators
- Flavour anomalies

Federica Devoto

High precision theoretical predictions within the SM needed!

MIXED CORRECTIONS IN THE LARGE INVARIANT MASS REGION

SUDAKOV FACTORIZATION

- $\alpha_s \sim 0.1, \alpha_{ew} \sim 0.01$ **CDxEW** $\sim 0.1\%$
- corrections
- W and Z boson can be detected as "real" particles!

$$\frac{\alpha_{ew}}{4\pi\sin^2\theta_W}\log^2\left(\frac{s}{m_W^2}\right)\sim 6\%,$$

 $\frac{\alpha_{ew}}{4\pi\sin^2\theta_W}\log$

[Kuhn, Penin, Smirnov '00][Ciafaloni, Ciafaloni, Comelli '01] [Denner, Pozzorini '01]

RADCOR 2023

Federica Devoto

At high energies spoiled by Sudakov logs!

Physical cut-off given by W/Z mass, large single and double logs at high energies from virtual

$$g\left(\frac{s}{m_W^2}\right) \sim 1\%, \quad \sqrt{s} = 1$$
TeV

MIXED CORRECTIONS IN THE LARGE INVARIANT MASS RFGION

SUDAKOV FACTORIZATION

- $\alpha_s \sim 0.1, \alpha_{ew} \sim 0.01$ **CDxEW** $\sim 0.1\%$
- corrections
- W and Z boson can be detected as "real" particles!

$$\frac{\alpha_{ew}}{4\pi\sin^2\theta_W}\log^2\left(\frac{s}{m_W^2}\right)\sim 6\%,$$

u_{ew} 108 $4\pi\sin^2\theta_W$

> [Kuhn, Penin, Smirnov '00][Ciafaloni, Ciafaloni, Comelli '01] [Denner, Pozzorini '01]

RADCOR 2023

Federica Devoto

At high energies spoiled by Sudakov logs!

Physical cut-off given by W/Z mass, large single and double logs at high energies from virtual

$$g\left(\frac{s}{m_W^2}\right) \sim 1\%, \quad \sqrt{s} = 1$$
TeV

MIXED CORRECTIONS IN THE LARGE INVARIANT MASS REGION

SUDAKOV FACTORIZATION

- $\alpha_s \sim 0.1, \alpha_{ew} \sim 0.01$ **CDxEW** $\sim 0.1\%$
- corrections
- W and Z boson can be detected as "real" particles!

$$\frac{\alpha_{ew}}{4\pi\sin^2\theta_W}\log^2\left(\frac{s}{m_W^2}\right)\sim 6\%,$$

 $\frac{\alpha_{ew}}{10g}$ $4\pi\sin^2\theta_W$

> [Kuhn, Penin, Smirnov '00][Ciafaloni, Ciafaloni, Comelli '01] [Denner, Pozzorini '01]

RADCOR 2023

Federica Devoto

How well does it work in TeV region?

At high energies spoiled by Sudakov logs!

Physical cut-off given by W/Z mass, large single and double logs at high energies from virtual

$$g\left(\frac{s}{m_W^2}\right) \sim 1\%, \quad \sqrt{s} = 1$$
TeV

ON-SHELL VS OFF-SHELL

[Dittmaier, Huss, Schwinn '15] [Delto, Jaquier, Melnikov, Röntsch '20] [Buccioni et al. '20] [Bonciani, Buccioni, Rana, Vicini '20] [Behring et al. '21] [Bonciani, Buccioni, Rana, Vicini '21]

> Non-factorizable contributions suppressed in the resonance region but not in far off-shell region

Federica Devoto

[Buonocore, Grazzini, Kallweit, Savoini, Tramontano 2102.12539] [Bonciani, Buonocore, Grazzini, Kallweit, Rana, Tramontano, Vicini 2106.11953]

[Buccioni, Caola, Chawdhry, FD, Heller, von Manteuffel, Melnikov, Röntsch, Signorile-Signorile]

Double virtual contributions

Federica Devoto

$d\hat{\sigma}_{ij} = d\hat{\sigma}_{ij,LO} \left(1 + \alpha_s \Delta_{ij,NLO}^{QCD} + \alpha_{ew} \Delta_{ij,NLO}^{EW} + \alpha_s^2 \Delta_{ij,NNLO}^{QCD} + \alpha_s \alpha_{ew} \Delta_{ij,NNLO}^{QCD \otimes EW} + \alpha_s^3 \Delta_{ij,N3LO}^{QCD} + \dots \right)$

 $d\hat{\sigma}_{ij} = d\hat{\sigma}_{ij, LO} \left(1 + \alpha_s \Delta_{ij, NLO}^{QCD} + \alpha_{ew} \Delta_{ij, NLO}^{EW} + \alpha_s^2 \Delta_{ij, NNLO}^{QCD} + \alpha_s \alpha_{ew} \Delta_{ij, NLO}^{EW} \right)$

Double virtual contributions

Federica Devoto

 $\mathrm{d}\hat{\sigma}_{ij} = \mathrm{d}\hat{\sigma}_{ij,\mathrm{LO}} \left(1 + \alpha_{s} \Delta_{ij,\mathrm{NLO}}^{QCD} + \alpha_{ew} \Delta_{ij,\mathrm{NLO}}^{EW} + \alpha_{s}^{2} \Delta_{ij,\mathrm{NNLO}}^{QCD} + \alpha_{s} \alpha_{ew} \Delta_{ij,\mathrm{NNLO}}^{QCD \otimes EW} \right)$

Double virtual contributions

RADCOR 2023

Federica Devoto

 $\mathrm{d}\hat{\sigma}_{ij} = \mathrm{d}\hat{\sigma}_{ij,\mathrm{LO}} \left(1 + \alpha_{s} \Delta_{ij,\mathrm{NLO}}^{QCD} + \alpha_{ew} \Delta_{ij,\mathrm{NLO}}^{EW} + \alpha_{s}^{2} \Delta_{ij,\mathrm{NNLO}}^{QCD} + \alpha_{s} \alpha_{ew} \Delta_{ii,\mathrm{NNLO}}^{QCD \otimes EW} + \alpha_{s}^{2} \Delta_{ij,\mathrm{NNLO}}^{QCD} + \alpha_{s} \alpha_{ew} \Delta_{ii,\mathrm{NNLO}}^{QCD \otimes EW} + \alpha_{s}^{2} \Delta_{ij,\mathrm{NNLO}}^{QCD} + \alpha_{s} \alpha_{ew} \Delta_{ii,\mathrm{NNLO}}^{QCD \otimes EW} + \alpha_{s}^{2} \Delta_{ij,\mathrm{NNLO}}^{QCD} + \alpha_{s} \alpha_{ew} \Delta_{ii,\mathrm{NNLO}}^{QCD \otimes EW} + \alpha_{s}^{2} \Delta_{ij,\mathrm{NNLO}}^{QCD} + \alpha_{s} \alpha_{ew} \Delta_{ii,\mathrm{NNLO}}^{QCD \otimes EW} + \alpha_{s}^{2} \Delta_{ij,\mathrm{NNLO}}^{QCD} + \alpha_{s}^{2} \Delta_{ii,\mathrm{NNLO}}^{QCD} + \alpha_{s}^{2} \Delta_{ii,\mathrm{NNLO}}^{QCD \otimes EW} + \alpha_{s}^{2} \Delta_{ii,\mathrm{NNLO}}^{QCD} + \alpha_{s}^{2} \Delta_{ii,\mathrm{NNLO}}^{QCD \otimes EW} + \alpha_{s}^{2} \Delta_{ii,\mathrm{NNLO}}^{QCD} + \alpha_{s}^{2} \Delta_{ii,\mathrm{NNLO}}^{QCD \otimes EW} +$

Double virtual contributions

RADCOR 2023

Federica Devoto

Double virtual contributions

Federica Devoto

RADCOR 2023

Scattering amplitudes

Two-loop integrals involving several energy scales

• [Heller, von Manteuffel, Schabinger '20] [Heller, von Manteuffel, Schabinge, Spiesberger '21]

Federica Devoto

RADCOR 2023

Extension of nested soft-collinear subtraction scheme to deal with mixed corrections

[Buccioni, Caola, Chawdhry, FD, Heller, von Manteuffel, Melnikov, Röntsch, Signorile-Signorile]

Regularisation of infrared divergences

TWO-LOOP AMPLITUDES

Fermionic contributions

RADCOR 2023

Bosonic contributions

TWO-LOOP AMPLITUDES

Fermionic contributions

RADCOR 2023

2-point function: not so hard to compute...

Bulk of renormalization @ $O(\alpha \alpha_s)$

Contains large logs at high invariant mass S

TWO-LOOP AMPLITUDES

Bosonic contributions

Fully analytic computation of two-loop helicity amplitudes for dilepton production

[Heller, von Manteuffel, Schabinger, Spiesberger 1907.00491,2012.05918]

Federica Devoto

Complicated two-loop master integrals with up to two internal masses and nonrationalizable square roots

2-loop QCDxEW

Federica Devoto

2-loop QCDxEW 2-loop QCDxEW

Federica Devoto

INFRARED REGULARISATION

Nested soft-collinear subtraction scheme [Caola, Melnikov, Röntsch 1702.01352]

Initially developed for pure NNLO QCD processes

RADCOR 2023

Exploit color coherence, e.g. soft and collinear limits commute

INFRARED REGULARISATION

Nested soft-collinear sub [Caola, Melnikov, Röntsch 1702

Initially developed for pure NNLO QCD processes

RADCOR 2023

How do we extend the scheme to mixed QCD-EW corrections? soft mits commute

ully local and analytic

Non-trivial structure of doublesoft eikonal, need energy ordering $1 - \theta(E - E) + \theta(E - E)$

g(6) \mathcal{F}

5

 $J_q(5)$

$$1 = \theta (E_{g_1} - E_{g_2}) + \theta (E_{g_2} - E_{g_1})$$

Non-trivial structures to integrate over phase-space

Federica Devoto

Mixed QCDxEW

Double-soft limit factorizes into product of two "NLO"-eikonals

$$\lim_{E_g, E_\gamma \to 0} |\mathcal{M}_{RR}|^2 = g_s^2 \operatorname{Eik}(p_1, p_2; p_5) e^2 \sum_{i,j} Q_i Q_j \operatorname{Eik}(p_i, p_j; p_6)$$

Initial-state radiation only Strongly ordered limits to disentangle in triple-collinear sectors

Federica Devoto

RADCOR 2023

COLLINEAR LIMITS

Mixed QCDxEW

Final state QED radiation, more sectors needed

No photon-gluon collinear limit!

NNLO QCD

Federica Devoto

RADCOR 2023

COLLINEAR LIMITS

Mixed QCDxEW

Final state QED radiation, more sectors needed

No photon-gluon collinear limit!

NNLO QCD

Federica Devoto

RADCOR 2023

COLLINEAR LIMITS

Mixed QCDxEW

Final state QED radiation, more sectors needed

No photon-gluon collinear limit!

NNLO QCD

Federica Devoto

RADCOR 2023

COLLINEAR LIMITS

Mixed QCDxEW

Final state QED radiation, more

 $d\hat{\sigma}_{\rm mix}^{q\bar{q}} = d\hat{\sigma}_{\rm vv}^{q\bar{q}} + d\hat{\sigma}_{\rm rv,\gamma}^{q\bar{q}} + d\hat{\sigma}_{\rm rv,q}^{q\bar{q}} + d\hat{\sigma}_{\rm rr,q\gamma}^{q\bar{q}} + d\hat{\sigma}_{\rm rr,q\gamma}^{q\bar{q}}$ Fully analytic $d\hat{\sigma}_{\mathrm{mix},q\gamma}^{q\bar{q}} = d\hat{\sigma}_{\mathrm{el},q\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{bt},q\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathcal{O}_{\mathrm{plo}},q\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{reg},q\gamma}^{q\bar{q}}$

Final result written in terms of simple recurring structures! Stable numerical evaluation

RADCOR 2023

$$\hat{\sigma}_{\mathrm{rr},q\bar{q}}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{pdf}}^{q\bar{q}}$$

Sum of divergent pieces

Explicit poles cancellation

Fully differential wrt unresolved particles

Sum of finite pieces

See Chiara's talk on Thursday for advances in nested soft-collinear subtraction!

 $d\hat{\sigma}_{\mathrm{mix},g\gamma}^{q\bar{q}} = d\hat{\sigma}_{\mathrm{el},q\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{bt},q\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathcal{O}_{\mathrm{nlo}},g\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{reg},g\gamma}^{q\bar{q}}$

"Elastic" contribution

Federica Devoto

"Elastic" contribution

+ $h(s) \times$

Federica Devoto

 $d\hat{\sigma}_{\mathrm{mix},g\gamma}^{q\bar{q}} = \left(d\hat{\sigma}_{\mathrm{el},g\gamma}^{q\bar{q}} \right) + d\hat{\sigma}_{\mathrm{bt},g\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathcal{O}_{\mathrm{nlo}},g\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{reg},g\gamma}^{q\bar{q}}$

$$2s \cdot d\hat{\sigma}_{el,g\gamma}^{q\bar{q}} = \left\langle F_{LVV+LV^{2}}^{(QCD\times EW), \text{fin}}(1_{q}, 2_{\bar{q}}, 3, 4) \right\rangle \\ + \left[\alpha \right] \left\langle \left[\mathcal{G}_{EW} + 3Q_{q}^{2} \log \left(\frac{s}{\mu^{2}} \right) \right] F_{LV}^{(QCD), \text{fin}}(1_{q}, 2_{\bar{q}}, 3, 4) \right\rangle \\ + \left[\alpha_{s} \right] C_{F} \left[\frac{2}{3} \pi^{2} + 3 \log \left(\frac{s}{\mu^{2}} \right) \right] \left\langle F_{LV}^{(EW), \text{fin}}(1_{q}, 2_{\bar{q}}, 3, 4) \right\rangle \\ + \left[\alpha \right] \left[\alpha_{s} \right] C_{F} \left\langle \left\{ Q_{q}^{2} \left[-\frac{4\pi^{4}}{45} + \left(2\pi^{2} + 32\zeta_{3} \right) \log \left(\frac{s}{\mu^{2}} \right) \right. + \left(9 - \frac{4\pi^{2}}{3} \right) \log^{2} \left(\frac{s}{\mu^{2}} \right) \right] + \mathcal{G}_{EW} \left(\frac{2\pi^{2}}{3} + 3 \log \left(\frac{s}{\mu^{2}} \right) \right) \right\} F_{LM}(1_{q}, 2_{\bar{q}}, 3, 4) \right\rangle$$

Belleville Control

 $d\hat{\sigma}_{\mathrm{mix},q\gamma}^{q\bar{q}} = d\hat{\sigma}_{\mathrm{el},q\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{bt},q\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathcal{O}_{\mathrm{plo}},q\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{reg},q\gamma}^{q\bar{q}}$

"Boosted" contribution

Federica Devoto

 $d\hat{\sigma}_{\mathrm{mix},g\gamma}^{q\bar{q}} = d\hat{\sigma}_{\mathrm{el},g\gamma}^{q\bar{q}} + \left(d\hat{\sigma}_{\mathrm{bt},g\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathcal{O}_{\mathrm{nlo}},g\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{reg},g\gamma}^{q\bar{q}}\right)$

"Boosted" contribution

Federica Devoto

$$2s \cdot d\sigma_{\mathrm{bt},g\gamma}^{q\bar{q}} = [\alpha] [\alpha_s] 2C_F Q_q^2 \int_0^1 dz_1 dz_2 \, \tilde{P}_{qq}^{\mathrm{NLO}}(z_1, E_c) \left\langle \frac{F_{\mathrm{LM}}(z_1 \cdot 1, z_2 \cdot 2, 3, 4)}{z_1 z_2} \right\rangle \tilde{P}_{qq}^{\mathrm{NLO}}(z_2, E_c) + \sum_{i=1}^2 \int_0^1 dz \, \tilde{P}_{qq}^{\mathrm{NLO}}(z, E_c) \left[[\alpha] \, Q_q^2 \left\langle F_{\mathrm{LV}}^{(i),(\mathrm{QCD}), \,\mathrm{fin}}(1_q, 2_{\bar{q}}, 3, 4; z) \right\rangle + [\alpha_s] \, C_F \left\langle F_{\mathrm{LV}}^{(i),(\mathrm{EW}), \,\mathrm{fin}}(1_q, 2_{\bar{q}}, 3, 4; z) \right\rangle \right] + [\alpha] [\alpha_s] \, C_F \, \sum_{i=1}^2 \int_0^1 dz \left\langle \left\{ Q_q^2 \, P_{qq}^{\mathrm{NNLO}}(z, E_c) + \tilde{P}_{qq}^{\mathrm{NLO}}(z, E_c) \right. \\ \left. \times \left[Q_e^2 \, G_{e^2} + 2Q_q Q_e \left(G_{eq}^{(1,2)} + (-1)^i \log \left(\frac{s_{i3}}{s_{i4}} \right) \log(z) \right) \right] \right\} F_{\mathrm{LM}}^{(i)}(1_q, 2_{\bar{q}}, 3, 4; z) \right\rangle$$

Belleville Control

$$d\hat{\sigma}_{\mathrm{mix},g\gamma}^{q\bar{q}} = d\hat{\sigma}_{\mathrm{el},g\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{bt}}^{q\bar{q}}$$

NLO-like contributions with extra resolved particle

Federica Devoto

RADCOR 2023

 $d\hat{\bar{q}}_{\mathrm{t},g\gamma} + d\hat{\sigma}^{q\bar{q}}_{\mathcal{O}_{\mathrm{nlo}},g\gamma} + d\hat{\sigma}^{q\bar{q}}_{\mathrm{reg},g\gamma}$

"ONLO" contribution

$$d\hat{\sigma}_{\mathrm{mix},g\gamma}^{q\bar{q}} = d\hat{\sigma}_{\mathrm{el},g\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{bt}}^{q\bar{q}}$$

NLO-like contributions with extra resolved particle

Federica Devoto

RADCOR 2023

 $+ d\hat{\sigma}^{q\bar{q}}_{\mathrm{reg},g\gamma}$ $\bar{q}_{\mathrm{t},g\gamma} + d\hat{\sigma}^{q\bar{q}}_{\mathcal{O}_{\mathrm{nlo}},g\gamma}$

"ONLO" contribution

$$d\hat{\sigma}_{\mathrm{mix},g\gamma}^{q\bar{q}} = d\hat{\sigma}_{\mathrm{el},g\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{bt},g\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathcal{O}_{\mathrm{nlo}},g\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{reg},g\gamma}^{q\bar{q}}$$

RADCOR 2023

Fully regulated contribution!

Two extra resolved particles, but finite in d=4! All singular contributions have been regulated

$$d\hat{\sigma}_{\mathrm{mix},g\gamma}^{q\bar{q}} = d\hat{\sigma}_{\mathrm{el},g\gamma}^{q\bar{q}} + d\hat{\sigma}_{\mathrm{bt}}^{q\bar{q}}$$

RADCOR 2023

 $^{\prime}\hat{\sigma}_{\mathrm{reg},g\gamma}^{qar{q}}$, $d\bar{q}_{\mathrm{ot},g\gamma} + d\hat{\sigma}_{\mathcal{O}_{\mathrm{nlo}},g\gamma}^{q\bar{q}}$

Fully regulated contribution!

Two extra resolved particles, but finite in d=4! All singular contributions have been regulated

... WHAT DO WE LEARN?

PHENOMENOLOGICAL RESULTS

Setup:	$\sqrt{s} = 13.6 \mathrm{TeV}$	$m_{ll} > 200$ G
occup.	$m_1 = 0$	$R_{l\gamma}=0.1~($
	l	$p_{\perp}^l > 30 \mathrm{G}$

RADCOR 2023

GeV dressed leptons) **i**eV

 $\sqrt{p_{\perp}^{l^+} p_{\perp}^{l^-}} > 35 \,\text{GeV}$ $|y_l| < 2.5$

 $\mu_F = \mu_R = m_{ll}/2$

 G_{μ} scheme vs $\alpha(m_Z)$ scheme

σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta \sigma^{(0,1)}$	$\delta \sigma^{(2,0)}$	$\delta \sigma^{(1,1)}$
q ar q	1561.42	340.31	-49.907	44.60	-16.80
$\gamma\gamma$	59.645		3.166		
qg		0.060		-32.66	1.03
$q\gamma$			-0.305		-0.207
$g\gamma$					0.2668
gg				1.934	
sum	1621.06	340.37	-47.046	13.88	-15.71

σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta \sigma^{(0,1)}$	$\delta \sigma^{(2,0)}$	$\delta \sigma^{(1,1)}$
q ar q	1561.42	340.31	-49.907	44.60	-16.80
$\gamma\gamma$	59.645		3.166		
qg		0.060		-32.66	1.03
$q\gamma$			-0.305		-0.207
$g\gamma$					0.2668
gg				1.934	
sum	1621.06	340.37	-47.046	13.88	-15.71

σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta \sigma^{(0,1)}$	$\delta \sigma^{(2,0)}$	$\delta\sigma^{(1,1)}$
q ar q	1561.42	340.31	-49.907	44.60	-16.80
$\gamma\gamma$	59.645		3.166		
qg		0.060		-32.66	1.03
$q\gamma$			-0.305		-0.207
$g\gamma$					0.2668
gg				1.934	
sum	1621.06	340.37	-47.046	13.88	-15.71

σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta \sigma^{(0,1)}$	$\delta \sigma^{(2,0)}$	$\delta\sigma^{(1,1)}$
q ar q	1561.42	340.31	-49.907	44.60	-16.80
$\gamma\gamma$	59.645		3.166		
qg		0.060		-32.66	1.03
$q\gamma$			-0.305		-0.207
$g\gamma$					0.2668
gg				1.934	
sum	1621.06	340.37	-47.046	13.88	-15.71

σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta \sigma^{(0,1)}$	$\delta \sigma^{(2,0)}$	$\delta \sigma^{(1,1)}$
$q \bar{q}$	1561.42	340.31	-49.907	44.60	-16.80
$\gamma\gamma$	59.645		3.166		
qg		0.060		-32.66	1.03
$q\gamma$			-0.305		-0.207
$g\gamma$					0.2668
gg				1.934	
sum	1621.06	340.37	-47.046	13.88	-15.71

σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta \sigma^{(0,1)}$	$\delta \sigma^{(2,0)}$	$\delta \sigma^{(1,1)}$
$q \bar{q}$	1561.42	340.31	-49.907	44.60	-16.80
$\gamma\gamma$	59.645		3.166		
qg		0.060		-32.66	1.03
$q\gamma$			-0.305		-0.207
$g\gamma$					0.2668
gg				1.934	
sum	1621.06	340.37	-47.046	13.88	-15.71

σ [fb]	$\sigma^{(0,0)}$	$\delta \sigma^{(1,0)}$	$\delta \sigma^{(0,1)}$	$\delta \sigma^{(2,0)}$	$\delta \sigma^{(1,1)}$
q ar q	1561.42	340.31	-49.907	44.60	-16.80
$\gamma\gamma$	59.645		3.166		
qg		0.060		-32.66	1.03
$q\gamma$			-0.305		-0.207
$g\gamma$					0.2668
gg				1.934	
sum	1621.06	340.37	-47.046	13.88	-15.71

<1% NNLO-QCD -3% NLO-EW

$\sigma[{ m fb}]$	$\sigma^{(0,0)}$	$\delta \sigma^{(1,0)}$	$\delta \sigma^{(0,1)}$	$\delta \sigma^{(2,0)}$	$\delta \sigma^{(1,1)}$	
$qar{q}$	1561.42	340.31	-49.907	44.60	-16.80	
$\gamma\gamma$	59.645		3.166			
qg		0.060		-32.66	1.03	
$q\gamma$			-0.305		-0.207	
$g\gamma$					0.2668	
gg				1.934	TOP AT THE ADDRESS AND A STREET	
sum	1621.06	340.37	-47.046	13.88	-15.71	

-3% NLO-EW

$\sigma [{ m fb}]$	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta \sigma^{(0,1)}$	$\delta \sigma^{(2,0)}$	$\delta\sigma^{(1,1)}$]
$qar{q}$	1561.42	340.31	-49.907	44.60	-16.80	
$\gamma\gamma$	59.645		3.166			
qg		0.060		-32.66	1.03	
$q\gamma$			-0.305		-0.207	
$g\gamma$					0.2668	
gg				1.934	and the second sec	
sum	1621.06	340.37	-47.046	13.88	-15.71	
<1% NNLO-QCE						

		0/
σ [fb]		
q ar q		ixed
$\gamma\gamma$		
qg		
$q\gamma$		
$g\gamma$		
gg		
sum	1621.06	340.37

-3% NLO-EW

Prediction up to NNLO-QCD

$$\sigma^{(0,0)} + \delta\sigma^{(1,0)} + \delta\sigma^{(0,1)} + \delta\sigma^{(2,0)} = 1928.3^{+1.0}_{-0}$$

Prediction including mixed QCD-EW

$$\sigma^{(0,0)} + \delta\sigma^{(1,0)} + \delta\sigma^{(0,1)} + \delta\sigma^{(2,0)} + \delta\sigma^{(1,1)} = 1912.6^{+0.65\%}_{-0\%} \text{ fb}$$

Federica Devoto

EW

Scale variations

 G_{μ} scheme vs $\alpha(m_Z)$ scheme

Mixed corrections push down theory uncertainty below 1%!

Prediction up to NNLO-QCD

$$\sigma^{(0,0)} + \delta\sigma^{(1,0)} + \delta\sigma^{(0,1)} + \delta\sigma^{(2,0)} = 1928.3^{+1.0}_{-0}$$

Prediction including mixed QCD-EW

$$\sigma^{(0,0)} + \delta\sigma^{(1,0)} + \delta\sigma^{(0,1)} + \delta\sigma^{(2,0)} + \delta\sigma^{(1,1)} = 1912.6^{+0.65\%}_{-0\%} \text{ fb}$$

Federica Devoto

Mixed corrections push down theory uncertainty below 1%!

Prediction up to NNLO-QCD

$$\sigma^{(0,0)} + \delta\sigma^{(1,0)} + \delta\sigma^{(0,1)} + \delta\sigma^{(2,0)} = 1928.3^{+1.0}_{-0}$$

Prediction including mixed QCD-EW

$$\sigma^{(0,0)} + \delta\sigma^{(1,0)} + \delta\sigma^{(0,1)} + \delta\sigma^{(2,0)} + \delta\sigma^{(1,1)} = 1912.6^{+0.65\%}_{-0\%} \text{ fb}$$

Federica Devoto

Mixed corrections push down theory uncertainty below 1%!

Prediction up to NNLO-QCD

$$\sigma^{(0,0)} + \delta\sigma^{(1,0)} + \delta\sigma^{(0,1)} + \delta\sigma^{(2,0)} = 1928.3^{+1.0}_{-0}$$

Prediction including mixed QCD-EW

$$\sigma^{(0,0)} + \delta\sigma^{(1,0)} + \delta\sigma^{(0,1)} + \delta\sigma^{(2,0)} + \delta\sigma^{(1,1)} = 0$$

Federica Devoto

-1.8% -0.15% fb.

Mixed corrections push down theory uncertainty below 1%!

$$\cos \theta^* = \frac{p_{\ell^-}^+ p_{\ell^+}^- - p_{\ell^-}^- p_{\ell^+}^+}{m_{\ell\ell} \sqrt{m_{\ell\ell}^2 + p_{\ell\ell,\perp}^2}} \times \operatorname{sgn}(p_{\ell\ell,z})$$

$$A_{\rm FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}, \qquad \qquad \sigma_F = \int_0^1 d\cos\theta^* \, \frac{d\sigma(pp \to \ell^- \ell^+)}{d\cos\theta^*} \qquad \qquad \sigma_B = \int_{-1}^0 d\cos\theta^* \, \frac{d\sigma(pp \to \ell^- \ell^+)}{d\cos\theta^*}$$

	$ ilde{A}_{ m FB}$	$A_{ m FB}$
$\Phi^{(1)}$	$0.1442^{+0.05\%}_{-0.31\%}$	$0.1440^{+0.11\%}_{-0.09\%}$
$\Phi^{(2)}$	$0.1852^{+0.08\%}_{-0.40\%}$	$0.1847^{+0.10\%}_{-0.19\%}$
$\Phi^{(3)}$	$0.2401^{+0.13\%}_{-0.64\%}$	$0.2388^{+0.06\%}_{-0.47\%}$
$\Phi^{(4)}$	$0.3070^{+0.49\%}_{-1.5\%}$	$0.3031^{+0.19\%}_{-1.2\%}$

$$\cos \theta^* = \frac{p_{\ell^-}^+ p_{\ell^+}^- - p_{\ell^-}^- p_{\ell^+}^+}{m_{\ell\ell} \sqrt{m_{\ell\ell}^2 + p_{\ell\ell,\perp}^2}} \times \operatorname{sgn}(p_{\ell\ell,z})$$

$A_{\rm FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B},$	$\sigma_F = \int_0^1 d\cos\theta^* \frac{d\sigma(pp \to q)}{d\cos\theta}$	$\frac{\ell^{-}\ell^{+}}{\theta^{*}} \qquad \sigma_{B} = \int_{-1}^{0} d\cos\theta^{*} \frac{d\sigma(pp \to \ell)}{d\cos\theta}$
---	--	---

	Without mixed QCDxEW	
	$ ilde{A}_{ m FB}$	$A_{ m FB}$
$\Phi^{(1)}$	$0.1442^{+0.05\%}_{-0.31\%}$	$0.1440^{+0.11\%}_{-0.09\%}$
$\Phi^{(2)}$	$0.1852^{+0.08\%}_{-0.40\%}$	$0.1847^{+0.10\%}_{-0.19\%}$
$\Phi^{(3)}$	$0.2401^{+0.13\%}_{-0.64\%}$	$0.2388^{+0.06\%}_{-0.47\%}$
$\Phi^{(4)}$	$0.3070^{+0.49\%}_{-1.5\%}$	$0.3031^{+0.19\%}_{-1.2\%}$

$$\cos\theta^{*} = \frac{p_{\ell^{-}}^{+} p_{\ell^{+}}^{-} - p_{\ell^{-}}^{-} p_{\ell^{+}}^{+}}{m_{\ell\ell} \sqrt{m_{\ell\ell}^{2} + p_{\ell\ell,\perp}^{2}}} \times \operatorname{sgn}(p_{\ell\ell,z})$$

$$A_{FB} = \frac{\sigma_{F} - \sigma_{B}}{\sigma_{F} + \sigma_{B}}, \qquad \sigma_{F} = \int_{0}^{1} d\cos\theta^{*} \frac{d\sigma(p_{P} \to \ell^{-}\ell^{+})}{d\cos\theta^{*}} \qquad \sigma_{B} = \int_{-1}^{0} d\cos\theta^{*} \frac{d\sigma(p_{P} \to \ell^{-}}{d\cos\theta}$$

$$Without mixed QCD \times EW \qquad QCD \times EW$$

$$A_{FB} \qquad A_{FB} \qquad A_{FB}$$

$$\Phi^{(1)} \qquad 0.1442^{+0.05\%}_{-0.31\%} \qquad 0.1440^{+0.11\%}_{-0.09\%}$$

$$F^{(2)} \qquad correction from mixed corrections in TeV region!$$

$$\Phi^{(4)} \qquad 0.3070^{+0.49\%}_{-1.5\%} \qquad 0.3031^{+0.19\%}_{-1.2\%}$$

CONCLUSIONS

- have to be taken into account
- for efficient and extensive phenomenological studies
- energies Sudakov factorisation works very well

Federica Devoto

For % level accuracy on tail of distributions as well as NP searches mixed QCD-EW effects

Our computation makes use of fully analytic amplitudes and subtraction scheme, allowing

Mixed corrections amount to 1% even in non Sudakov-dominated regime, at extreme

THANKYOU FOR THE ATTENTION!