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Motivation
I The computation of contributions to the DIS coefficient functions represents the ideal

testing ground for the possible applications for computing splitting functions.

I Theoretical predictions need to keep up with the ever-increasing precision of

experimental measurements

I Need to understand the SM background in order to resolve new physics
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Motivation

J. Baglio, C. Duhr, B. Mistlberger, R. Szafron JHEP 66 (2022)
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Deep Inelastic Scattering

Probing the hadron structure by mean of high energetic leptons :



∗



∗

I Factorize the leptonic from the hadronic part in the cross-section

σDIS
dxdy

=
2πα2

em

Q2
Lµν Wµν

Q = −q2, x =
Q2

2P · q
, y =

P · q
P · k
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Structure Functions

p = ξP

q

H(P )

l(k)
l(k′)

X

I The computation of the corresponding 4-loop Wilson coefficients is extremely

challenging from the theoretical point of view

σDIS
dxdy

=
2πα2

em

Q2
LµνWµν

Wµν =

(
Pµ −

(P · q)qµ
q2

)(
Pν −

(P · q)qν
q2

) F1(x,Q
2)

P · q

+

(
−gµν +

qµqν

q2

)
F2(x,Q

2)

+ iεµνρσ
Pρqσ

2P · q
F3(x,Q

2)

I Where the hadronic and partonic quantities are related via the PDF:

Fa(x,Q
2) =

∑
i

[
fi(ξ) ⊗ Ca,i(ξ,Q2)

]
(x)

I The problem can be simplified by using the optical theorem for extracting the Mellin

moments of the process.

A. Pelloni - RADCOR 2023 - 30.05.2023 5/18



Mellin Moments
Objective:

I Compute the hadronic cross-section Ŵµν using the forward scatting T̂µν

Discx


≈

How:

I Compute the Mellin moments of the structure functions:

Fa(x,Q
2) =

∑
i

[
fi(ξ) ⊗ Ca,i(ξ,Q2)

]
(x)

with the Mellin transform defined by

M[f(x)](N) =

∫ 1

0
dx xN−1f(x)

I The Mellin moments of cross-section correspond to the expansion coefficients

around ω = 1
x
= 0 of the Forward Scattering Amplitude :

M[Ŵµν ](N) =
1

N!

[
dNTµν

ωN

∣∣∣∣∣
ω=0
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Optical Theorem

I The optical theorem allows us to relate the cross-section to the imaginary part of

the Forward Compton Amplitude

Ŵa =
1

π
ImT̂a

Im




≈

RRRR

RRVV

RVVV

VVVV

RRRV

4-
Lo
op
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Optical Theorem

We are interested in the Mellin moments of the DIS cross-section:

M[Ŵa(x)](N) =

∫ 1

0
dx xN−1Ŵa(x) ≈

∫ 1

0
dx xN−1Discx

[
T̂a

(
1

x

)]

Re(x)

Im(x)

γ
1

Making use of T̂a(x) = ±T̂a(−x)
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Optical Theorem

We are interested in the Mellin moments of the DIS cross-section:

M[Ŵa(x)](N) ≈
∫
γ1

dω ω−1−NT̂a (ω)

Re(x)

Im(x)

γ
1

Making use of T̂a(x) = ±T̂a(−x)
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Optical Theorem

We are interested in the Mellin moments of the DIS cross-section:

M[Ŵa(x)](N) ≈
∫
γ2

dω ω−1−NT̂a (ω)

Re (ω)

Im (ω)
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Optical Theorem

We are interested in the Mellin moments of the DIS cross-section:

M[Ŵa(x)](N) ≈
1

N!

[
dNTa

ωN

∣∣∣∣∣
ω=0

Re (ω)

Im (ω)

γ
2
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System of differential equations

I Contributions to the non-singlet forward amplitude can be separated by color

structure and nf order:

C3
Fnf CFC

2
Anf C2

Fn
2
f (dabcF )2n2f

dabcF dabcA nf (dabcdF )2nf (dabcF )2CFnf C4
F
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System of differential equations

I We focus our attention on the non-singlet coefficient functions contribution of order

[n3
f
,n2
f
] for q+ γ → q+ γ:
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System of differential equations:
We process all the diagrams for the relevant process and cast them into 24 different

topologies :

Pµν



3,
4-
Lo
op

Still left with ≈ 105 different integrals to be computed!

I We can resize the problem by using IBP relations among these integrals.

I Many publicly available programs to perform reductions to master integrals each

with its strengths and weaknesses. FIRE [1901.07808]
Reduze [1201.4330]
Kira [1705.05610]
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System of differential equations
I Within each topology we perform a reduction to master integrals :

I(n)(ω, ε) =
∑
i

ci(ω, ε) · M
(n)

i
(ω, ε)

Expand in ω

, ω =
1

x

I The master integrals allow to construct a closed system of differential equations:

∂

∂ω
~M(ω, ε) = A(ω, ε) · ~M(ω, ε).

Assuming:

• The DE matrix has at most a simple pole in ω:

A =
A−1

ω
+

∞∑
k=0

Akω
k

Note: Can always be done by applying a linear transformation T for system with

regular singularities :

~M → T · ~M, A →
∂T

∂ω
T−1 + T · A · T−1

J. Moser 1959, J. Henn [1412.2296], Epsilon [1701.00725], Fuchsia [1701.04269], Libra [2012.00279]
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System of differential equations
I Within each topology we perform a reduction to master integrals :

I(n)(ω, ε) =
∑
i

ci(ω, ε) · M
(n)

i
(ω, ε)

Expand in ω

, ω =
1

x

((k + 1)1− A−1)︸ ︷︷ ︸
:=Bk

·~mk+1 =
k∑

j=0

Aj~mk−j

∂

∂ω
~M(ω, ε) = A(ω, ε) · ~M(ω, ε).

~M =
∑∞

k=0
~mkω

k
A =

A−1
ω

+
∑∞

k=0
Akω

k

Gaussian Elimination:Recursive Expression:

det(Bk) = 0det(Bk) 6= 0

~mk+1 = B−1
k

·
(∑k

j=0 Aj~mk−j

)
Required by a finite number

of k

Mellin moments generation
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Expansion

I We need to fix the boundary condition for p → 0 FORCER [1704.06650]

I For all n
2,3
f

cases the transformation matrix T consists of a simple rescaling of the

master integrals

T = diag
(
ω
~a
)
, ~a ∈ N# of masters

0

I We can perform a simultaneous expansion in the dimensional regulator ε in order

to speed up the computation provide the two limits independence of the ε and ω
poles

1

f(ω) + g(ε)
, f(0) + g(0) 6= 0 if f(ω), g(ε) 6= const.

Smirnov2 [2002.08042], J. Usovitsch [2002.08173]

I The result can be efficiently expanded to high order in Mellin moments once we

reach high enough in the series expansion to the regioin of validity of the recursive

expression (det(Bk) 6= 0).

I The reductions to master integrals remain the main bottleneck of the computation

FIRE [1901.07808]
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Mellin moments at 4-loop
I Starting to explore the DIS expression for a simple subgroup [n3

f
,n2
f
] for

q+ γ → q+ γ:
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Plots from: [2211.16485]

I Expansion in ω is possible to high orders within a day:

O
(
ω1500

)
I Allows for the reconstruction of the structure functions in x-space at all orders

Harmonic series: S~m(N) → Harmonic Polylogarithms: H~n(x)

c3,ns Coming Soon!
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Adventuring further into 4-loop

The new goal is to push the same technique to new horizons:

I Consider the diagrams contributing to C3
F
nf

I Effectively 3-loop topologies with bubble insertions!

I The added degrees of freedom start to become a real problem for the reduction to

master integrals:

• Moving from 11 to 12 propagators out of 18 degrees of freedom

• Higher powers in the numerator

I Implement a tailored reduction routine for this specific problem
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Tackling the problems

General Reduction programs :

I Reliable on a wide range of problems

I Thoroughly checked through years of usage and

feedbacks

I Parallelization of the reduction problem

I Multiple ways to solve the problem and

implementation of general optimization

I Already too slow for the integrals we are dealing

with

Problem we are facing :

I Relatively contained number of integrals to be

reduced (compared with the d.o.f)

I Very few integrals have the highest complexity

(numerator/denominator powers)
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Reduction Overview

We have implemented our own reduction procedure to try to improve the main bottleneck

of our approach. The reductions is organized into three levels:

Finite Fields Algebraic Reconstruction

I Numerical Gaussian

Elimination

Solve selected IBP relations

using Finite Fields by

evaluating the variables at

some arbitrary points

I Generate instructions

table

Create a logfile to keep track

of all the arithmetic operations

performed

I Optimize logfile

Keep only the instructions

relevant to the reduction

coefficients

I Algebraic evaluation

Read out the exact

coefficients from the logfile

by using the un-replaced

variables

If the algebraic evaluation

fails than we use rational

reconstruction

I Interpolate

I Reconstruct
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Tackling the problems
Problem :

I With the current available reduction programs it would be impossible to obtain the

necessary DEs in a reasonable ammount of time

Idea :

I We want to use out taylor reduction as a complementary tool of the full reduction

How:

Obtain a fast partial reduction (not necessarily master

integrals) to be able to give simpler problems to the

public reduction programs

We then turn to FIRE for eventually refine the reduction and

obtain a factorized base for the system of DEs
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Problem :

I With the current available reduction programs it would be impossible to obtain the

necessary DEs in a reasonable ammount of time

Idea :

I We want to use out taylor reduction as a complementary tool of the full reduction

How:

Obtain a fast partial reduction (not necessarily master

integrals) to be able to give simpler problems to the

public reduction programs

We then turn to FIRE for eventually refine the reduction and

obtain a factorized base for the system of DEs

Necessary and successful for building the DEs for C3
F
nf and for C3 and n2

f
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Summary
I Use IBP identities for a reduction to master integrals and build a system of

differential equations

I Transform the system to allow for an efficient recursive expression for the extraction

of the series coefficients

I Tested the method by computing high numbers of Mellin moments for the DIS

Wilson coefficients CL, C2 and C3 at 3-loop

I Generated 1500 Mellin moments for the non-singlet n2
f
contribution at 4-loop to

obtain for the first time the corresponding Wilson coefficients

I Implemented a taylored reduction program to be usued together with publicly

available tools

Upcoming:

I Reconstruct the expression for C3 (11 extra topologies )

Future:

I Apply the same method for extracting Mellin moments at 4-loop for the C3
F
nf to

obtain the splitting functions with the newly obtain DEs (∼ 80 new topologies)

Tha
nk y

ou!
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