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A MEMORIAL



TOICHIRO KINOSHITA  (23/1/1925 - 23/3/2023)
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A young Kinoshita, USA, ca. 1953



A degree in Physics: Tokyo 1944 - 1947
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A young Kinoshita, USA, ca. 1953
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A degree in Physics: Tokyo 1944 - 1947

Yeah. And then went into Tokyo University. And then as I probably wrote somewhere, Tokyo University
should take three years, too. But because of the war situation, it was compressed into essentially one and a
half. And then you would be drafted. Actually, mostly physics graduates were not really bad off, because they
are drafted to work in some lab in the army or navy or something of that sort. But my classmates in the other
parts of the university or Daiichi High School, specializing in literature and other non-scientific stuff, most
of them were drafted into the service, and many of them passed away during the war.
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A young Kinoshita, USA, ca. 1953
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A young Kinoshita, USA, ca. 1953

A degree in Physics: Tokyo 1944 - 1947

Yeah. And then went into Tokyo University. And then as I probably wrote somewhere, Tokyo University
should take three years, too. But because of the war situation, it was compressed into essentially one and a
half. And then you would be drafted. Actually, mostly physics graduates were not really bad off, because they
are drafted to work in some lab in the army or navy or something of that sort. But my classmates in the other
parts of the university or Daiichi High School, specializing in literature and other non-scientific stuff, most
of them were drafted into the service, and many of them passed away during the war.

Crease:

Wait. First, when the atomic bombs went off in Hiroshima and Nagasaki, how far away were you?

Kinoshita:

Actually, as I said, my parents lived in Yonago, which is right north of Hiroshima, but beyond the mountain
range. So, we didn’t see anything. Only on the radio or newspaper we heard that Hiroshima was flattened.

Crease:

And did you understand what had flattened it?

Kinoshita:

Sure.
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A degree in Physics: Tokyo 1944 - 1947

Yeah. And then went into Tokyo University. And then as I probably wrote somewhere, Tokyo University
should take three years, too. But because of the war situation, it was compressed into essentially one and a
half. And then you would be drafted. Actually, mostly physics graduates were not really bad off, because they
are drafted to work in some lab in the army or navy or something of that sort. But my classmates in the other
parts of the university or Daiichi High School, specializing in literature and other non-scientific stuff, most
of them were drafted into the service, and many of them passed away during the war.

Crease:

Wait. First, when the atomic bombs went off in Hiroshima and Nagasaki, how far away were you?

Kinoshita:

Actually, as I said, my parents lived in Yonago, which is right north of Hiroshima, but beyond the mountain
range. So, we didn’t see anything. Only on the radio or newspaper we heard that Hiroshima was flattened.

Crease:

And did you understand what had flattened it?

Kinoshita:

Sure.

Crease:

And what did it say, the broadcast?

Kinoshita:

Well, he said, “Japan surrender, but don’t disturb the order” and so on. And “Accept occupation force” and
so on. Anyway, my feeling is that, “Wow, that’s good.” [laugh] So, I don’t have to die. [laugh] And, of course,
in Shinjuku Station, it’s full of people, and most people seems to be relaxed after hearing that.
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Meeting the S matrix: 1946
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Meeting the S matrix: 1946

Crease:

You said something about them being stamped top secret.

Kinoshita:

Oh, that’s a different story. While reading these Dirac papers, I'm not exactly sure we found a statement, but
we found that the Pauli mentioned that Dirac’s—no, Heisenberg’s S-matrix theory is a picture frame without
a picture in it. This statement is actually made and recorded in some part—1I can find it—but in a letter to
Dirac, I think, from Pauli, 1943 or something of that sort. There is a collection of letters to Dirac which has
this. But anyway, I don’t exactly know how I got hold of this information about Heisenberg’s S-matrix, which
was first—I didn’t know that until that time. And we start looking for Heisenberg’s S-matrix theory, which
was not in Todai’s library or physics department. But my friend Yamaguchi found out that Tomonaga’s lab
has a copy at this time. And this paper, two papers actually, were in one of these books which was smuggled
essentially into Japan by a German submarine. Actually, it was brought from Germany to someplace in the
Indian Ocean, and then there it was transferred to a Japanese submarine and carried back to Japan. [laugh

L R Gt e aaeee .
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The Kinoshita-Lee-Nauenberg Theorem
(1962)

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 4 JULY-AUGUST 1962

Mass Singularities of Feynman Amplitudes™

Torcairo KINOSHITA

Laboratory of Nuclear Studies, Cornell University,
Ithaca, New York
(Received January 4, 1962)

Feynman amplitudes, regarded as functions of masses, exhibit various singularities when masses of
internal and external lines are allowed to go to zero. In this paper, properties of these mass singular-
ities, which may be defined as pathological solutions of the Landau condition, are studied in detail. A
general method is developed that enables us to determine the degree of divergence of unrenormalized
Feynman amplitudes at such singularities. It is also applied to the determination of mass dependence
of a total transition probability. It is found that, although partial transition probabilities may have
divergences associated with the vanishing of masses of particles in the final state, they always cancel
each other in the calculation of total probability. However, this cancellation is partially destroyed if
the charge renormalization is performed in a conventional manner. This is related to the fact that
interacting particles lose their identity when their masses vanish. A new description of state and a new
approach to the problem of renormalization seem to be required for a consistent treatment of this limit.




The lepton anomalous magnetic moment
(1967-2018)

RIKEN-QHP-25

Tenth-Order QED Contribution to the Electron g—2
and an Improved Value of the Fine Structure Constant

Tatsumi Aoyama,"? Masashi Hayakawa,?2 Toichiro Kinoshita,*? and Makiko Nio?

! Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya, 464-8602, Japan
2 Nishina Center, RIKEN, Wako, Japan 351-0198
3 Department of Physics, Nagoya University, Nagoya, Japan 464-8602
4 Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York, 14853, U.S.A
(Dated: August 21, 2012)

This paper presents the complete QED contribution to the electron g—2 up to the tenth order.
With the help of the automatic code generator, we have evaluated all 12672 diagrams of the tenth-
order diagrams and obtained 9.16 (58)(a/7)°. We have also improved the eighth-order contribution
obtaining —1.9097 (20)(a/7)*, which includes the mass-dependent contributions. These results lead
to ac(theory) = 1 159 652 181.78 (77) x 10~ '?. The improved value of the fine-structure constant
a~! =137.035 999 174 (35) [0.25ppb] is also derived from the theory and measurement of a..

PACS numbers: 13.40.Em, 14.60.Cd, 06.20.Jr, 12.20.Ds
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Some years later, a retirement celebration at Cornell - July 2014



Some years later, a retirement celebration at Cornell - July 2014

“Professor Toichiro Kinoshita was a giant in precision calculations in quantum electrodynamics,”
said Tung-Mow Yan, professor of physics emeritus (A&S). “The results of Tom and his team are still
the best in the world.”




Some years later, a retirement celebration at Cornell - July 2014

“His focus on the integrity of his work on high-precision QED was off-scale,” Lepage said. “It's a

masterpiece of science. I'm amazed by Tom'’s tenacity and extraordinary diligence.”
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Algebraic Topology Methods
in the Theory of Feynman
Relativistic Amplitudes’

TULLIO REGGE

PART I

In this lecture I would like to introduce you to the spirit and to some
of the technicalities of the work currently being carried out by Lascoux and
myself on Feynman relativistic amplitudes (FRA).

FRA are analytic functions of a very special kind which have been
defined in connection with relativistic field theory. It is not my job here to
discuss at length their definition, as this has been done already by Lascoux
and Hepp in previous lectures. The reason why these functions are interest-
ing to so many people could be summarized as follows:

1. The scattering amplitude for any physical process can be in principle
expressed, if field theory is right, as a power expansion in the coupling con-
stants, each coefficient being a Feynman relativistic amplitude.

2. In general we cannot compute explicitly these amplitudes since they
are given by rather complicated integrals. We are therefore happy to gather
whatever information is available on them, including analytic properties,
which may yield, hopefully, dispersion relations.

3. Even supposing that we know each amplitude, the following troubles
may arise: the power expansion may not converge for some values of the
parameters involved; the power expansion never converges and it should be
interpreted as an asymptotic series; some of the coefficients are infinite.

! See also: The Analytic S-Matrix, R. J. Eden, P. V. Landshoff, D. I. Olive, and
J. C. Polkinghorne, Cambridge University Press, 1966.
433
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René Pascal Klauseng, 25 February 2023

This is a minor updated version of my PhD thesis (date of the original version 3™ August
- 2022), which I defend at the Institute of Physics at Johannes Gutenberg University Mainz
~ on the 24t of November 2022. The referees were Christian Bogner (Johannes Gutenberg
=) University Mainz) and Dirk Kreimer (Humboldt University of Berlin).
I\l
el
[5)
&9
7o) Abstract
I\l

arXiv:2302.13184v1 [hep-th]

In this thesis we will study Feynman integrals from the perspective of A-hypergeometric

functions, a generalization of hypergeometric functions which goes back to Gelfand, Kapra-

nov, Zelevinsky (GKZ) and their collaborators. This point of view was recently initiated

by the works [74] and [150]. Tnter alia, we want to provide here a concise summary of

the math of A-hype otric theory in order to substantiate this

viewpoint. This overview will concern u.schta of polytopal geometry, multivariate dis-
s as well as holonomic D-modules.

As we will subsequently show, every scalar Feynman integral is an A-hypergeometric
function. Furthermore, all coeffcients of the Laurent expansion as appearing in dimen-
sional and analyti ization can be 1 by A-hypergeometric functions as
well. By applying tho esults of GKZ. we derive am explicit formula for series represen-
tations of Feynman integrals. Those series representations take the form of Horn hyper-
geometric functions and can be obtained for every regular triangulation of the Newton
polytope Newt(U + F) of the sum of Symanzik polynomials. Those series can be of higher
dimension, but converge fast for certain kinematical regions, which also allows an efficient
numerical application. We will sketch an algorithmic h which s F
integrals numerically by means of these series representations. Further, we will examine
possible issues which can arise in a practical usage of this approach and provide strategies
to solve them. As an illustrative example we will present series representations for the
fully massive sunset Feynman integral.

Moreover, the A-hypergeometric theory enables us to give a mathematically rigor-
ous description of the analytic structure of Feynman integrals (also known as Landau
variety) by means of principal A-determinants and A-discriminants. This description of
the singular locus will also comprise the various second-type singularities. Furthermore,
we will find contributions to the singular locus occurring in higher loop diagrams, which
seem to have been overlooked in previous approaches. By means of the Horn-Kapranov-
parameterization we also provide a very efficient way to determine parameterizations of
Landau varieties. We will illustrate those methods by determining the Landau variety
of the dunce’s cap graph. We furthermore present a new approach to study the sheet
structure of multivalued Feynman integrals by use of coamoebas.

Klausen 2302.13184




Commun. math. Phys. 15, 83—132 (1969)

The Monodromy Rings of a Class
of Self-Energy Graphs

G. PonzaNoO, T. REGGE, E. R. SPEER* and M. J. WESTWATER*

Institute for Advanced Study, Princeton, New Jersey

Received April 18, 1969

Abstract. The monodromy rings of self-erergy graphs, with two vertices and an
arbitrary number of connecting lines, are determined.

§ 1. Introduction

This paper is the first of a series of publications in which we hope to
elucidate in a systematic way the properties of Feynman integrals. The
motivation for this work is clear: we hope to develop sufficiently the
methods of investigating functions of several complex variables defined
by integrals to give a basis for the determination of the analytic structure
of the S-matrix itself. This is admittedly not an easy task and one whose
outcome we cannot guarantee. An ideal research program should be
carried out in three steps:

oy

KN

Fig. 9. The self-energy graph Gy




Commun. math. Phys. 18, 1—64 (1970)
© by Springer-Verlag 1970

The Monodromy Rings of One Loop
Feynman Integrals

G. PonzaNo, T. REGGE, E. R. SPEER*, and M. J. WESTWATER*

Institute for Advanced Study, Princeton, New Jersey

Received January 20, 1970

Abstract. The monodromy rings of Feynman integrals for one loop graphs with an
arbitrary number of lines are determined.

§ 1. Introduction

This paper is the second of a series whose general aims were outlined
in the introduction to the first paper [1]. In this paper we make a system-
atic study of the Feynman integral for a general one loop graph in an
arbitrary space-time dimension ; we classify the possible paths of analytic
continuation, label the determinations of the function over a fixed base
point, and obtain explicit formulae for the action of analytic continuation
on the vector space spanned by these determinations.

Fig. 1. The single loop graph Gy




Fortschritte der Physik 20, 365—420 (1972)

The Monodromy Rings of the Necklace Graphs

Torrio REGGE

Institute for Advanced Study, Princeton, New Jersesy 08540

EvceeENE R. SPEER

Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

and

MicHAEL J. WESTWATER

Department of Mathematics, University of Washington,
Seattle, Washington 98105

Abstract

A necklace graph is a Feynman graph obtained from a single loop graph by replacing each
internal line by a multiplet (i.e. a set of one or more internal lines joining the same two ver-
tices). In this paper the monodromy rings of the necklace graphs-are determined.

Fig. 1. The necklace graph ¢ (5;1,2,1, 8, 3)




Differential equations for one-loop generalized
Feynman integrals

G. Barucchi
Istituto di Fisica dell’Universitd, Torino, laly
Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Italy.

Istituto di Fisica Matematica dell’Universita, Torino, Italy

G. Ponzano
Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Italy

Istituto di Fisica dell’Universita, Torino, {taly
(Receive 21 July 1972)

A system of (2N - 1) first-order linear homogeneous differential equations in each variable is derived for
the generalized (with Speer A parameters) Feynman integrals corresponding to the one-loop graph
with N external lines. This system of differential equations is shown to belong to the class studied

by Lappo-Danilevsky. A connection with the matrix representation of the monodromy group in all
variables is pointed out.
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Weinzierl 2201.03593 Feyn man pa rameters

Scalar Feynman integrals in momentum space are defined by

- d’k, ” 1
Ig (v, d) = ld/Q/Hmd/z P m)”

Feynman’s trick always allow to perform the integration over loop momenta

_ T(v—1d/2) , = T I e
fo (vi,d) = IT—, T(v;) /zjzod 20 (1_229) ( % ) Fv=ld/2 2

J=1

T is a co-tree: its complement is a spanning tree of the graph G.

The complement of Cg is a spanning 2-forest of the graph G.
U and F are homogeneous in the parameters, of degree £ and ./+/ , respectively.

The integrand (including the measure) is homogeneous of degree zero.



Weinzierl 2201.03593 Proj ective fO ms

Parametrised Feynman integrands are naturally interpreted as projective forms

For any subset A, |A| =a, of D ={1,...,n}, define the ordered (volume) a-form

‘ wa = dzi, N\...N\dz;,, l

The a-form can be ‘integrated’ to an (a-1)-form defining

€x,B = (—1)|Bk|, B, = {’I:E B,1 < k} ,

The (a-1)-form n differentiates to w, and vanishes on the boundary sub-simplexes

‘ dna = awa . | for example ‘ M{1,2,3} = 21dz2 Ndzg — 22dz1 Ndz3 + 23dz1 Ndzz, l

One then defines affine and projective g-forms as

affine =P  projective

* Ra rational’ and homogeneous of degree -q
* Ts rational’ and homogeneous of degree -(q+1)

(21 + 22 + 23 + 24)*
21272 H1,2,34} >

for example | ¥ =

(rz123 + 2224)



Weinzierl 2201.03593 Proj ective fO ms

Parameter integrands belong to the class of projective (n-1)-forms

with P =v - .0 d/2, and Q homogeneous as appropriate

Two theorems then hold

‘ Theorem 1. The boundary of a projective form is itself projective. ' —P |BP identities!

Theorem 2. Given two integration domains, 0,0’ € C", if their image in PC"™ ' is the same
simplex, then fo O] = fo, Oy

* On-1is a closed form, Stokes theorem applies.
* 1Nn-1 vanishes on the boundary cone.

"Cheng-Wu’ theorem: use any partial
sum of parameters in the O-function.

—
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A general identity

Choosing the standard simplex as integration domain

With appropriate Q(z), D(z) and P, this defines a large class of generalised Feynman integrals

We can now move around the set of GFls, exploiting the closure of the set of projective
forms under exterior differentiation (Theorem 1).

Define for example

This identity applies at any loop order, encompasses IBP identities and dimensional shifts, and
feeds into a hierarchy of differential equations directly in parameter space.



One-loop identities

One-loop parameter integrals can be written in a very compact form

n+1 v;—1
'y —d/2 i—1 %5
Ig(Vi,d) e (ny / ) dn25 1— Zn—+1 H]_l J .
T, (v, + v—d/2
Jj=1 2 zj 20 n+1l i—1
i=1 23:1 SijRi%j

where the first Symanzik polynomial has been labelled as a new variable with a new index

n

Znt+l = E Zi Up+1 =V —d+1.
i=1

and the extended Cayley matrix has been introduced

2 2
4G —a) . . .
S’I:j —= # (Z,] :1,...,n)7 S’I:,'I”L—I—l — 87’L+1,’i = __2Z,

We now pick as Hi(z) the numerator of the one-loop integrand, treat each term in the sum
defining wn-2 independently, and properly adjust the value of P. Thus

n n v—d n+1

v,—1 vi—1

H; = 0ip z;’ > "z = on |] 27,
Jj=1

Differentiation with respect to each z; lowers the value of the index v; while differentiating
the denominator effectively shifts the value of d. A set of IBP identities follows.



One-loop identities

The one-loop IBP identities can be described in terms of raising and lowering operators.
Denoting the index set by R , and picking three subsets |, ], and R, define

Hn+1 zl/j —1

J::1 : v—d/2 "’ _> I ., j , IC
(Z;:rfz;;llﬁ'jzizj) / f({ } 1 { }O { }1)

F({re, . vma}) = F({RY) = ngz

The simple form of the first Symanzik polynomial leads to the identity

n

Y R =i}, {i}y) = F{R—{n+1}}y,{n+1};)

=1

The general IBP identity can then be specialised at one loop. At differential level one finds

n+1
g+ 3 (st 3ms) F({R = Ko (kb)) = =7 F({B} L AR — b))

k=1

v—d
+ v—(d+1)/2 f({n+1}_ , {R—{n+1}},).

* There are n equations: as kinematic derivatives raise vi's , IBP identities lower them.
* At one loop, a Barucchi-Ponzano-Regge (BPR) theorem holds:

—P Master integrals obey a closed system of (at most) (2" - 1) first-order differential equations.
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Massless box

As a simple example we consider the one-loop massless box

(Zl —+ 29 + z3 —+ Z4)26
2+t¢€

Loox = T(2+ € / - = T(2+€) 1(0,0,0,0; 2€)

Sn—1 (7“2123 + 2224)

where r = t/s and for the box family we use the notation I(vy = Lvy — 1v3 — 1,04 — Lv5).

The generalised Cayley matrix is very simple

Taking derivatives with respect to Mandelstam invariants raises the values of vi’s in pairs

0-1(0,0,0,0;2¢) = —(2+¢€)1(1,0,1,0;2¢) 0r-1(1,0,1,0;2¢) = —(3+4¢€) 1(2,0,2,0;2e).

IBP identities and the BPR theorem suggest a (redundant) basis of four master integrals

{I(O, 0,0,0;2¢),1(1,0,1,0;2¢),1(0,1,0,1;2¢),I(1,1,1,1; 26)} :




Massless box

We use the freedom to initialise the recursion by picking vi=3, v,=2, vs=v4=1. Then,for h = 1

2 2€
1(1,0,1.0:2
3+¢€ (’ T 6)+3—|—e

r1(2,0,2,0;2¢) + / dwn_o =

1(2,0,1,0; —1 + 2€).

With these choices, the boundary term in the recursion vanishes

2e
2223 (21 + 29 + 23 + 24)

(3 + E)(T’Z123 + 2’224)3"‘6

(22d23 AN dzy — z3dz9 N dzg + z4d2z9 N\ dz3)

1(0,0,0,0; 2€) 0 —(24¢) 0 0
: 0 _3+te 0 _3+e
ob = o | 110.1,0:20) | _ t : L
1(0,1,0,1;2¢) 0 0 0 —(3+¢€)
. _ 1 1 __ 14e+43r
I(1,1,1,1; 2¢) 0 —Grara Graras ) ~ Gror(+n

The result is not in canonical form, but it can be brought to it, for example with the technique
of Magnus exponentiation. The system can then be solved iteratively in € as usual, which gives

k(e)[1 logr =2 1_. 1_. 1 3
o = 2| = — — 4 el =Lia(—=7r) = = Lio(=1)1 |
b r | € 2€ 1 " \2 t3(—r) 2 iz(=r)logr 12 6T

— ilog(l +7) (log27" + 772) + iﬂz logr + %C(3)) + 0(62)] :

Matching known results (see for example Henn 2201.03593).



Bern, Dixon, Kosower hep-ph/9306240

Massless pentagon

The massless pentagon is well-known to reduce to a sum of boxes with a massive leg in d=4.

The reduction of propagators happens in our framework through boundary terms: thus we
consider low values of the indices, starting with vi = 1. Picking for example h = 1, we get

The 3-form w3 for h = 1 does not vanish on the z1 = 0 boundary, which contributes

2
/ dws + s13 1(0,0,1,0,0; 2¢) 4+ s14 1(0,0,0,1,0;2¢) = € 1(0,0,0,0,0; —1 + 2¢) ,
S5{1,2,3,4,5} 2+

€

/ N{2,3,4,5}
S(2,3,4,5} (

(20 + 23 + 24 + 25)%¢

_

2+€ box(825) ’
So42924 + So52225 + S352325)

The exercise repeats for all values of h, generating permutations of s;j. The resulting system

is algebraic and can be solved for the original pentagon integral in d = 4 - 2¢, yielding

(0 0 S13 S14 0\
0 0 0 S924 S25

S13 0 0 0 S35
S14 S24 0 0 0
\ 0 S25 S35 0 0 )

Coefficent matrix

2(2 +€) 1(0,0,0,0,0; 1 + 2€) = { s e
13914925

813824 + 813825 — S14825 + 514535 — 524835 7@

b
513524825 ox
813824 — 813825 1+ S14825 — 514835 + S24835 7®

- b
513824535 ox

4 813524 — 813825 + S14825 — $14835 — 524535 I(4)

bo
814824535 *

513824 — 513825 1 S14825 + 514835 — 524535) 76

8145825535 box}
+2¢1(0,0,0,0,0;—1 + 2€).

BDK
solution
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“Banana” integrals are very interesting: two-point, elliptics, Calabi-Yau’s; were studied by Regge.
The first Symanzik polynomial is very simple and symmetric

[+1 S :
U= 2. 5z Raising and lowering operators obey sum
= 1+0eR5e-Rl+1 _> 5=\)]
P rules similar to the case of one-loop n-legs
Consider the famlly T —1,vp— 1,03 — 1;A) = / ns 21”1—1z2’/2—1z§3—1 (2120 + 2223 + 2321 )™ .
( d = 2 = 28’ 7 = P2/m2 ) St.2,3) [2212223 — (2122 + 2923 + 2321)(21 + 2o + 23)]

Once again we use the numerator for IBPs H =2{"""2y" 25" (12 + 2223 + 2321)™

The recursion gives non-vanishing boundary terms, and they are simple "bubble’ integrals

/ 1 / Z1Z2(z1z2)1+36 (—1)26 F(l + E)F(l -+ E)
d(.c)l = =
{1,2}

T 2(1+e¢) L2 (a4 22))242¢ 242 D(2+ 2€)

Through elimination, one finds a system of two first-order differential equations for the
1(0,0,0, 3¢) and 1(1,0,0;1 + 3€). It turns into the known 2d-order equation for the sunrise

z d? 1 3 1 d 1 1
AL Y Ly _ + I _
3 dz? (000, 3¢) (3 z—9 T 3(z — 1)) dz (000, 3¢) (4(2 —9) ) (000, 3¢)
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Outlook

Digging back into ancient history may deliver hidden treasures.

Some of the old mathematical results may be worth translating into modern language.
Parameter space may provide a new way to walk through the integral woods.
Symmetries and graphical properties are best encoded in parameter language.

Parameter-space differential equations are closely related to monodromies.

It is worthwhile to study more complex examples and explore systematics.

The parameter-space road to differential equations is worth exploring!
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