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The topic of this talk will be the
simplest analytic property of scattering amplitudes:

kinematic singularities



We currently do not have a self-consistent algorithm that would
predict kinematic singularities for a given Feynman integral:

Some are easy to predict

Running example:

e n_ o
— Al(sijﬁp?):
; Ao(sij,p;) =
g /p'1 2 b P‘5\~ H Ag(Sij,p?) =0
(812,82378347845,851,]9%)
[Talks by Bechetti, Chicherin, ...] /‘

How to predict a complete list?



What could we do if we knew such an algorithm?

* Differential equations
singular points and boundary conditions

* Symbol alphabet

zeros and singularities of symbol letters

* Numerical integration
analytic continuation and contour deformations

* Bootstrapping Feynman integrals
constraints on the ansatz, discontinuities, ...



Textbook story: Landau equations
[Bjorken, Landau, Nakanishi ¢54]

For every propagator: For every vertex: For every loop:
2 2
67; = m,; E j:fg =0 E ﬂ:(ligéb =0
1Evertex 1€loop
momenta  masses Schwinger parameters

All"" singularities are obtained by studying reduced diagrams:

; — 0
for subsets of edges



For the experts: There are other formulations

In the representation (2.2.4) the x are the only integration variables.
The only surface S of singularity of the integrand is D = 0, while the
boundaries of the hypercontour are again o; = 0. Hence the analogues
of (2.2.9) and (2.2.10) are

D=9, :
4 . The Analytic
ali eather Q'.".i == 0, L (2'2‘11) S'Matrlx
vl :
or — = (0, for each i.
dee,

That these equations are essentially equivalent to (2.2.9) and (2.2.10)
can bo seen from (1.5.26) and (1.5.27), except that further investiga-
tion is required when ' = 0. This matter is taken up again in §2.10,

Bottom line: Correct for leading Landau singularities,
but accounting for all singularities becomes much more intricate




Many ways to find leading Landau singularities

(geometric methods, on-shell diagrams, Schubert calculus, elastic unitarity, ...

including examples known to all-loop orders, e.g.
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Singularities at ¢ = 5(3 — 4m?Z) [T% (1 + - 4m72r> — 1]

[SM ¢22]

Chebyshev polynomials
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Every curve is
a branch surface
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Except, there are a few asterisks...

* Second-type singularities

When all loop momenta blow up, #; — o0
[Cutkosky ‘60, Fairlie, Landshoff, Nuttall, Polkinghorne ‘62]

** Mixed-type singularities
When a subset of loop momenta blows up
[Drummond ’63, Boyling ‘67]

*** Even more new classes (today)

When loop momenta approach limits at different rates

Particularly important to understand when a diagram has
massless particles or UV/IR divergences
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Well-known problem

5.3 (***) Find in the published literature, or construct for yourself, a proof that the Landau
equations are actually necessary and sufficient for a PSS of a Feynman graph. To see
that this is a non-trivial exercise, critically examine the accounts given in a standard
textbook, €.g., Bogoliubov and Shirkov (1959); Eden et al. (1966); Itz ykson and Zuber
(1980); Peskin and Schroeder (1995); Sterman (1993). Are full proofs actually given?
Do they actually work, and cover both necessity and sufficiency? Do they apply to
the massless case, or do they make implicit assumptions only valid in the massive
case?

[Exercise 5.3, Collins
““Foundations of Perturbative QCD’’]
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Two versions of the problem

[Libby-Sterman ‘78]

Physical-region singularities
* Impose o; > 0

 Typically, already know the
external kinematics, e.g., p? — 0

* Related to SCET, expansion by regions, ...
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All singularities
(any kinematics, any sheet)

« Any complex o, ¢;

« Want to find the singular kinematics



To make sure we’re on the same page, simple example:
[QCD1loop]

1
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€ \(m? — sg3)s12 ? 5 i s12m?

D=4—2¢
177
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p2m2

2 _ 2 22 2 .
n 2L12<1—u) —2Liz(1—&)+2m2(1_ p3(m p4)> S m

m?2 — p3 512 s12(m? — s23)
pm, (m® — p})p3
+ 2h1( )hn( ) + O(e
m? — S23 (Tn2'—'823)812 ( ) 51

Total of 17 distinct singularities
(completely understood for any one-loop diagram)
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There are two inconsistencies with the standard analysis

(well-known to anyone who tried
solving Landau equations in practice)



(I) Interplay with UV/IR divergences

e Need to be much more careful:  Sits directly at an IR divergence
1 5 * No mass scales/ill-defined
_kf (Sij y Ps ) * Regularize? Discard?
€
UV/IR divergence (discard) Kinematic singularities (keep)

Need to find kinematic singularities “underneath” UV/IR divergences
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(IT) Beyond the standard classification

We also need to allow Schwinger parameters
(and loop momenta) to approach zero/infinity at different rates

' with e — 0 and w; € 7

Scalings can get
quite complicated

Not just reduced diagrams
(related to toric compactifications, blow-ups, tropical geometry, ...)



The goal of this talk is to address these
issues in a practical way

Q: Why does it come to light only now?
A: This is the first time we have computational tools to do it consistently

(Computational algebraic geometry, homotopy continuation,
irreducible decomposition via monodromy, etc.)



Practical = be able to put it on a computer




Our formulation is inspired by the work of
Gelfand, Kapranov, Zelevinsky

Principal A-determinant
<~
Singularity locus of generic generalized hypergeometric integrals

= Modern Birkhaduser Classics

[see also Klausen ‘21, Dlapa, Helmer, Papathanasiou, Tellander ‘23] Discriminants,
Resultants, and
Multidimensional
, L. ] . Determinants
* Can't use it directly: Singularities of Feynman
integrals turn out to be much more complicated
(UV/IR divergences)
 We introduce the principal Landau determinant _
to formalize Landau singularities N

Ask me later for a rigorous definition
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As usual, after integrating out the loop momenta we get:

/ dD€1 dD€2 T dDgL Includes ISP’s
prl p2’/2 oo PYm

Il/l,l/g,...,l/m -

Schwinger parametrization:

m L L
Zaipi: Zga'ngab—'_nga'La—Fc
1=1 a=1

a,b=1
Symanzik polynomials: Depends on
the kinematics
U = det Q, F=LT-QL—-c)U
After integrating out the loop momenta:

Qv vi—1 rvo—1 Vi, — 1

o dm
Il/l,l/g,...,l/m = #/ (U+f)D/2 Qaq Gy SR & %% [Lee-Pomeransky ¢13]
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Simplest singularity

Determines the U - 'F =0

“pinch surface” — C
(incidence variety) ao” (Z/[ ™ ‘F) 0 for i=1,2....m

Corresponds to the leading second-type singularity
in the standard classification

How to find all ways of rescaling o; — ¢ ¢;
leading to all inequivalent systems of equations?



Example

U + F = Qo gI8S14 + X357 834 + (a2 Qly7S24 + (X1 (X304812 + (X304 QgS35 + (X1 Al3(X5S12 + (V1 A3 S12
+ ajazarsie + az3aearsia + 1a3agSie + pggSi2 + Qo7 815 + Qa5 igSa3 + N1 (LG S35
+ o4 (S35 + 147835 + 47535 + a30g(X8 S35 + g4 g(X8 S35 + 158545 + 10y -+ a0y
+ a3y + Q105 + oy + i3y + i1 g + Qo vg + i3 + Q1 Oy + Qo vy + i3y + Qe + Qs ey
+ agay + ajag + asag + asag + agag + asag + agag + a1a5a6p§ + a2a5a6p§ + 043045046p§

2 2 2
+ apasarps + asagarps + s P;

rescale

Not a reduced
diagram

/

Z/{ + .F — 8_6 [alag(a4 + 045)812 + 2057515 + Ck2044Ck7824]

The solution of (9ai (Z/{ + F ) — (0 for this scaling is: S24 — S15 — 0
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Back in the loop-momentum space

073

ly = p1 +p2 +Dpa+p3
Q4 + Q5
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Related to the new perspective on soft/collinear
divergences in terms of the Schwinger parameters

) e e
O
prol P S
Edges expanding at o f C C ‘ f
different relative rates _k
Py A, 0 — OO £ (€

G,0,§ — 00

[Arkani-Hamed, Hillman, SM ‘22]

[see also Gardi, Herzog, Jones, Ma, Schlenk ‘22]
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For the experts: Classification
solved by polyhedral/tropical geometry

P = Newt (Z/f + F ) S—— Newton polytope

(0,0,1) (dimension = number of
A . propagators +ISF)
(1,0,1) T (0,1,1)

(1,0,0) (0,1,0)

v

(1,1,0)

» Classifies all ways of degenerating the system of equations
» Codimension-1 faces (facets) are used in sector decomposition

[FIESTA, pySecDec, ...]
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Number of new systems of generalized “Landau equations”

Compared to just 28 = 256
Without numerators: 4895 reduced diagrams

With numerators: 117097

These turn out to be impossible to solve using standard elimination theory
tools such as Grobner bases — introduce a numerical algorithm



Solving the equations

Geometry of singularities for one face
Y=Y1UY,UY5UY,U...

I / are components
of pinch surfaces

l
Y, : ¥s

Schwinger

parameters \
- 5 e
|

NS—" |
771 ,

kinematic
space
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Discard dominant components (UV/IR divergences)

Schwinger
parameters

gl

kinematic
space

\ Solution for any value of kinematics
(regulated by dim. reg.)

7T(Y1) =J



We're only interested in codimension-1 singularities

Y3

Schwinger

parameters \
-~ \_/ Y, ‘l’ l N—"

o] —

|

. . '

kinematic [
’ -_—"

space

7T(Y2) 7T(Y3)

For example: {s24 — 515 = 0} {s35845 — 81229% = 0}
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Numerical strategy

- Intersect with random planes to collect samples Askme later
* Consistently filter out UV/IR divergences
* Gives the degree of the curve
* Write an ansatz
Z Cabede f 3?23833543253%29? =0
abc,d,e, f
* Reconstruct the integer coefficients Cpqq. f with the samples

... repeat the same for all the other 4894 faces (parallelizable)



Open-source implementation in Julia:
PrincipallandauDeterminants. jl
(soon on arXiv)

edges = [[6,1],[1,2], [2,3], (3,41, [4,5], [5,6]1,(6,71,[7,3]]
nodes = [1,2,4,7,5]

internal_masses = [0,0,0,0,0,0,0,0]

external_masses = [0,0,0,0,M2]

getPLD(edges, nodes, internal_masses, external_masses, method = :sym)




Example result

{p2 =0} U {s;; = 0 for all ij # 25}
{si5 —ps = 0 for i = 1,2,3,4}
{s12 — 845 = 0} U {s12 — 835 = 0} / -
{s24 — 515 = 0} U {s14 — s35 = 0} g /p1 b A p‘5\\ H
{s24 — s35 = 0} U {s23 — s15 = 0}
{s23 — s45 = 0} U {s15 — s34 = 0}

{det G(p1+p2, p3+ps) = 0}
{det(?@h:+p4,p2+ﬂkﬁ =:0}

2
_ — 0
{s35545 81219; i {As := det G(p1,p2,p3,p4) = 0}
{s15835 — s24p5 = 0} dGr?m -
- - eterminants
2 {s15545 223295 = 0}2 {35 := 16As5 —|—p§824[p§<315—|—823—834) + 2512515
{p5812 - (515 - p5)(825 _ p5) — 0} —2545515 — 2519523 — 2523834 + 2334545] — O}

2 2 2
_ _ —p3) =0
5523 — (825 — P5)(835 — P5) } [matches with Abreu, Chicherin, Ita,

Page, Sotnikov, Tschernow, Zoial]
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Including inverse powers of numerators can also
introduce new singularities

{2512 — 535 = 0}
{512 — 524 = 0}
{s12 — 514 = 0}
{p2(s35 — 2512) + 512545 = 0}
{s12515 — 24545 = 0}
{(s34 — 515) 545 + 523 (S35 + 545) = 0}
{pg (S34 — S15) + S12515 + S23534 + (S15 — S34) Sa5 = 0}

{523 (512 + S34 — P3) + (515 — S34) S45 = 0}



One-slide summary

* Predicting singularities of cutting-edge Feynman integrals forces us
to revisit the standard formulation of Landau equations

* Classification of Landau singularities much richer than just
reduced diagrams, particularly when massless particles are present

* New tool for the community:
PrincipallandauDeterminants. jl
(soon on arXiv)



Thank you



