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The topic of this talk will be the
simplest analytic property of scattering amplitudes:

kinematic singularities
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[Talks by Bechetti, Chicherin, ...]
(s12, s23, s34, s45, s51, p

2
5)
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• Differential equations
singular points and boundary conditions

• Symbol alphabet
zeros and singularities of symbol letters

• Numerical integration
analytic continuation and contour deformations

• Bootstrapping Feynman integrals
constraints on the ansatz, discontinuities, …

…

What could we do if we knew such an algorithm? 
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Textbook story: Landau equations
[Bjorken, Landau, Nakanishi ‘54]

For every propagator: For every loop:

All*** singularities are obtained by studying reduced diagrams: 

For every vertex:

for subsets of edges

momenta Schwinger parameters
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For the experts: There are other formulations

Bottom line: Correct for leading Landau singularities,
but accounting for all singularities becomes much more intricate
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Many ways to find leading Landau singularities
(geometric methods, on-shell diagrams, Schubert calculus, elastic unitarity, …) 

including examples known to all-loop orders, e.g.

⇡

⇡

⇡

⇡

Singularities at

Chebyshev polynomials 

[SM ‘22]
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⇡+ ⇡+Leading singularities
can get quite wild, e.g.

Every curve is
a branch surface

[Hannesdottir, SM ‘22]
[SM, Telen ‘21]
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Except, there are a few asterisks…

* Second-type singularities

** Mixed-type singularities

*** Even more new classes (today)

[Cutkosky ‘60, Fairlie, Landshoff, Nuttall, Polkinghorne ‘62]

[Drummond ’63, Boyling ‘67]

Particularly important to understand when a diagram has 
massless particles or UV/IR divergences

When all loop momenta blow up, 

When a subset of loop momenta blows up  

When loop momenta approach limits at different rates
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Well-known problem

[Exercise 5.3, Collins
“Foundations of Perturbative QCD”]
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Two versions of the problem

Physical-region singularities
• Impose               .

• Typically, already know the
external kinematics, e.g.,               .

• Related to SCET, expansion by regions, …

All singularities
(any kinematics, any sheet)

• Any complex.        .
• Want to find the singular kinematics 

αi ! 0

αi, "i

[This talk]
[Talks by Ma, Navichkov, 
Maheria, Sarkar, ...]

[Libby-Sterman ‘78]
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To make sure we’re on the same page, simple example:
[QCDloop]

Total of 17 distinct singularities
(completely understood for any one-loop diagram)
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There are two inconsistencies with the standard analysis

(well-known to anyone who tried
solving Landau equations in practice)
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(I) Interplay with UV/IR divergences

Need to find kinematic singularities “underneath” UV/IR divergences

• Sits directly at an IR divergence
• No mass scales/ill-defined
• Regularize? Discard?

• Need to be much more careful:

UV/IR divergence (discard) Kinematic singularities (keep)
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(II) Beyond the standard classification

We also need to allow Schwinger parameters
(and loop momenta) to approach zero/infinity at different rates

Not just reduced diagrams
(related to toric compactifications, blow-ups, tropical geometry, …)

with and

ε
−3

ε
0

ε
0

ε
−1

Scalings can get 
quite complicated
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The goal of this talk is to address these
issues in a practical way

Q: Why does it come to light only now?
A: This is the first time we have computational tools to do it consistently

(Computational algebraic geometry, homotopy continuation, 
irreducible decomposition via monodromy, etc.) 
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Practical = be able to put it on a computer 
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Our formulation is inspired by the work of
Gelfand, Kapranov, Zelevinsky

Principal A-determinant

Singularity locus of generic generalized hypergeometric integrals

• Can’t use it directly: Singularities of Feynman 
integrals turn out to be much more complicated 

(UV/IR divergences)

• We introduce the principal Landau determinant
to formalize Landau singularities

Ask me later for a rigorous definition

[see also  Klausen ‘21, Dlapa, Helmer, Papathanasiou, Tellander ‘23]
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As usual, after integrating out the loop momenta we get:

Schwinger parametrization: 

Includes ISP’s 

Symanzik polynomials:

After integrating out the loop momenta:

Depends on
the kinematics

[Lee-Pomeransky ‘13]
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Simplest singularity

Corresponds to the leading second-type singularity
in the standard classification

How to find all ways of rescaling                       ,
leading to all inequivalent systems of equations?

Determines the
“pinch surface”

(incidence variety)
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Example
U + F = α2α6α8s14 + α3α5α7s34 + α2α4α7s24 + α1α3α4s12 + α3α4α6s35 + α1α3α5s12 + α1α3α6s12

+ α1α3α7s12 + α3α6α7s12 + α1α3α8s12 + α1α4α8s12 + α2α5α7s15 + α2α5α8s23 + α1α4α6s35

+ α2α4α6s35 + α1α4α7s35 + α4α6α7s35 + α3α6α8s35 + α4α6α8s35 + α1α5α8s45 + α1α4 + α2α4

+ α3α4 + α1α5 + α2α5 + α3α5 + α1α6 + α2α6 + α3α6 + α1α7 + α2α7 + α3α7 + α4α7 + α5α7

+ α6α7 + α1α8 + α2α8 + α3α8 + α4α8 + α5α8 + α6α8 + α1α5α6p
2
5 + α2α5α6p

2
5 + α3α5α6p

2
5

+ α1α5α7p
2
5 + α5α6α7p

2
5 + α5α6α8p

2
5

U + F → ε
−6 [α1α3(α4 + α5)s12 + α2α5α7s15 + α2α4α7s24]

re
sc

al
e

The solution of                                       for this scaling is: s24 − s15 = 0

ε
−3

ε
0

ε
0

ε
−1

∂αi
(U + F) = 0

Not a reduced 
diagram
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Back in the loop-momentum space

!1 = p1 +O(ε)

!2 = p1 + p2 + p4 + p3
α5

α4 + α5

+O(ε)

ε
−3

ε
0

ε
0

ε
−1
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Related to the new perspective on soft/collinear 
divergences in terms of the Schwinger parameters

Edges expanding at 
different relative rates

[Arkani-Hamed, Hillman, SM ‘22]

ρ,λ,σ → ∞

ζ, δ, ξ → ∞

[see also  Gardi, Herzog, Jones, Ma, Schlenk ‘22]
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For the experts: Classification
solved by polyhedral/tropical geometry

Newton polytope

(dimension = number of 
propagators + ISP’s)

• Classifies all ways of degenerating the system of equations
• Codimension-1 faces (facets) are used in sector decomposition

[FIESTA, pySecDec, ...]
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Number of new systems of generalized “Landau equations”

Without numerators: 4895

With numerators: 117097

Compared to just 28 = 256  
reduced diagrams

These turn out to be impossible to solve using standard elimination theory 
tools such as Gröbner bases            introduce a numerical algorithm
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Geometry of singularities for one face

Y1

7�!⇡

Y2

Y3Y4

Schwinger
parameters

kinematic
space

are components 
of pinch surfaces

Y = Y1 ∪ Y2 ∪ Y3 ∪ Y4 ∪ . . .
So

lv
in

g 
th

e 
eq

ua
tio

ns
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Discard dominant components (UV/IR divergences)

Y1

7�!⇡

Schwinger
parameters

kinematic
space

Solution for any value of kinematics
(regulated by dim. reg.)
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We’re only interested in codimension-1 singularities

7�!⇡

Y2

Y3

Schwinger
parameters

kinematic
space

{s35s45 − s12p
2
5 = 0}{s24 − s15 = 0}For example:
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Numerical strategy

• Intersect with random planes to collect samples
• Consistently filter out UV/IR divergences

• Gives the degree of the curve
• Write an ansatz

    
• Reconstruct the integer coefficients              with the samples

… repeat the same for all the other 4894 faces (parallelizable)

Ask me later 
for details
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Open-source implementation in Julia:
PrincipalLandauDeterminants.jl

(soon on arXiv)

1

2 3 4

56

7
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Example result

{detG(p1+p2, p3+p4) = 0}

{detG(p1+p4, p2+p3) = 0}

{∆5 := detG(p1, p2, p3, p4) = 0}

{Σ5 := 16∆5 + p25s24[p
2
5(s15+s23−s34) + 2s12s15

−2s45s15 − 2s12s23 − 2s23s34 + 2s34s45] = 0}

Gram 
determinants

[matches with Abreu, Chicherin, Ita, 
Page, Sotnikov, Tschernow, Zoia]
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Including inverse powers of numerators can also
introduce new singularities
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One-slide summary

• Predicting singularities of cutting-edge Feynman integrals forces us
to revisit the standard formulation of Landau equations

• Classification of Landau singularities much richer than just
reduced diagrams, particularly when massless particles are present

• New tool for the community:
PrincipalLandauDeterminants.jl

(soon on arXiv) 
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Thank you
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