Landau Singularities Revisited

Sebastian Mizera (IAS, Princeton)
with Claudia Fevola and Simon Telen
(MPI for Mathematics in the Sciences, Leipzig)

The topic of this talk will be the simplest analytic property of scattering amplitudes:

kinematic singularities

We currently do not have a self-consistent algorithm that would predict kinematic singularities for a given Feynman integral:

$$
\left(s_{12}, s_{23}, s_{34}, s_{45}, s_{51}, p_{5}^{2}\right)
$$

[Talks by Bechetti, Chicherin, ...]

Some are easy to predict

$$
\begin{aligned}
& \swarrow \\
& s_{12}=0 \\
& \Delta_{1}\left(s_{i j}, p_{i}^{2}\right)=0 \\
& \Delta_{2}\left(s_{i j}, p_{i}^{2}\right)=0 \\
& \Delta_{3}\left(s_{i j}, p_{i}^{2}\right)=0
\end{aligned}
$$

What could we do if we knew such an algorithm?

- Differential equations
singular points and boundary conditions
- Symbol alphabet
zeros and singularities of symbol letters
- Numerical integration
analytic continuation and contour deformations
- Bootstrapping Feynman integrals constraints on the ansatz, discontinuities, ...

Textbook story: Landau equations

[Bjorken, Landau, Nakanishi '54]

For every propagator:

$$
\ell_{i}^{2}=m_{i}^{2}
$$

momenta

For every loop:
$\sum_{i \in \operatorname{loop}} \pm \alpha_{i} \ell_{i}^{\mu}=0$
Schwinger parameters

All ${ }^{* * *}$ singularities are obtained by studying reduced diagrams:

For the experts: There are other formulations

In the representation (2.2.4) the α are the only integration variables. The only surface S of singularity of the integrand is $D=0$, while the boundaries of the hypercontour are again $\alpha_{i}=0$. Hence the analogues of (2.2.9) and (2.2.10) are

$$
\left.\begin{array}{rl}
D & =0 \tag{2.2.11}\\
\text { either } \quad \alpha_{i} & =0 \\
\text { or } \quad \frac{\partial D}{\partial \alpha_{i}} & =0, \text { for each } i
\end{array}\right\}
$$

That these equations are essentially equivalent to (2.2.9) and (2.2.10) can bo seen from (1.5.26) and (1.5.27), except that further investigation is required when $C=0$. This matter is taken up again in $\S 2.10$.

Bottom line: Correct for leading Landau singularities, but accounting for all singularities becomes much more intricate

Many ways to find leading Landau singularities
(geometric methods, on-shell diagrams, Schubert calculus, elastic unitarity, ...) including examples known to all-loop orders, e.g.

Singularities at $t=\frac{1}{2}\left(s-4 m_{\pi}^{2}\right)\left[T_{\frac{\mathrm{L}+1}{2}}\left(1+\frac{8 m_{\pi}^{2}}{s-4 m_{\pi}^{2}}\right)-1\right]$
[SM '22]

Chebyshev polynomials

Leading singularities can get quite wild, e.g.

Every curve is a branch surface

Except, there are a few asterisks...

* Second-type singularities

When all loop momenta blow up, $\ell_{i} \rightarrow \infty$
[Cutkosky '60, Fairlie, Landshoff, Nuttall, Polkinghorne '62]
** Mixed-type singularities
When a subset of loop momenta blows up

```
[Drummond '63, Boyling '67]
```

*** Even more new classes (today)
When loop momenta approach limits at different rates
Particularly important to understand when a diagram has massless particles or UV/IR divergences

Well-known problem

5.3 (***) Find in the published literature, or construct for yourself, a proof that the Landau equations are actually necessary and sufficient for a PSS of a Feynman graph. To see that this is a non-tivial exercise, critically examine the accounts given in a standard textbook. e.g., Bogoliubov and Shirkov (1959); Eden et al. (1966); Itzykson and Zuber (1980); Peskin and Schroeder (1995); Sterman (1993). Are full proofs actually given? Do they actually work, and cover both necessity and sufficiency? Do they apply to the massless case, or do they make implicit assumptions only valid in the massive case?
[Exercise 5.3, Collins
"Foundations of Perturbative QCD"]

Two versions of the problem

Physical-region singularities

- Impose $\alpha_{i} \geqslant 0$
- Typically, already know the external kinematics, e.g., $p_{i}^{2} \rightarrow 0$
- Related to SCET, expansion by regions, ...

All singularities (any kinematics, any sheet)

- Any complex α_{i}, ℓ_{i}
- Want to find the singular kinematics

```
[Talks by Ma, Navichkov,
    Maheria, Sarkar, ...]
```


To make sure we're on the same page, simple example:

[QCDloop]

$$
\begin{aligned}
& I_{4}^{\{D=4-2 \epsilon\}}\left(0, p_{2}^{2}, p_{3}^{2}, p_{4}^{2} ; s_{12}, s_{23} ; 0,0,0, m^{2}\right)=\frac{1}{\left(s_{12} s_{23}-m^{2} s_{12}-p_{2}^{2} p_{4}^{2}+m^{2} p_{2}^{2}\right)} \\
\times & {\left[\frac{1}{\epsilon} \ln \left(\frac{\left(m^{2}-p_{4}^{2}\right) p_{2}^{2}}{\left(m^{2}-s_{23}\right) s_{12}}\right)+\operatorname{Li}_{2}\left(1+\frac{\left(m^{2}-p_{3}^{2}\right)\left(m^{2}-s_{23}\right)}{p_{2}^{2} m^{2}}\right)-\operatorname{Li}_{2}\left(1+\frac{\left(m^{2}-p_{3}^{2}\right)\left(m^{2}-p_{4}^{2}\right)}{s_{12} m^{2}}\right)\right.} \\
+ & 2 \operatorname{Li}_{2}\left(1-\frac{m^{2}-s_{23}}{m^{2}-p_{4}^{2}}\right)-2 \operatorname{Li}_{2}\left(1-\frac{p_{2}^{2}}{s_{12}}\right)+2 \operatorname{Li}_{2}\left(1-\frac{p_{2}^{2}\left(m^{2}-p_{4}^{2}\right)}{s_{12}\left(m^{2}-s_{23}\right)}\right) \\
+ & \left.2 \ln \left(\frac{\mu m}{m^{2}-s_{23}}\right) \ln \left(\frac{\left(m^{2}-p_{4}^{2}\right) p_{2}^{2}}{\left(m^{2}-s_{23}\right) s_{12}}\right)\right]+\mathcal{O}(\epsilon)
\end{aligned}
$$

Total of 17 distinct singularities
(completely understood for any one-loop diagram)

There are two inconsistencies with the standard analysis

(well-known to anyone who tried
solving Landau equations in practice)

(I) Interplay with UV/IR divergences

- Need to be much more careful:
$\frac{1}{\epsilon^{k}} f\left(s_{i j}, p_{i}^{2}\right)$ \nearrow
UV/IR divergence (discard) Kinematic singularities (keep)

Need to find kinematic singularities "underneath" UV/IR divergences

(II) Beyond the standard classification

We also need to allow Schwinger parameters (and loop momenta) to approach zero/infinity at different rates

$$
\alpha_{i} \rightarrow \varepsilon^{w_{i}} \alpha_{i} \quad \text { with } \quad \epsilon \rightarrow 0 \quad \text { and } \quad w_{i} \in \mathbb{Z}
$$

Scalings can get quite complicated

Not just reduced diagrams
(related to toric compactifications, blow-ups, tropical geometry, ...)

The goal of this talk is to address these issues in a practical way

Q: Why does it come to light only now?
A: This is the first time we have computational tools to do it consistently
\uparrow
(Computational algebraic geometry, homotopy continuation, irreducible decomposition via monodromy, etc.)

Practical = be able to put it on a computer

Our formulation is inspired by the work of Gelfand, Kapranov, Zelevinsky

Principal A-determinant
\Leftrightarrow

Singularity locus of generic generalized hypergeometric integrals
[see also Klausen '21, Dlapa, Helmer, Papathanasiou, Tellander '23]

- Can't use it directly: Singularities of Feynman integrals turn out to be much more complicated (UV/IR divergences)
- We introduce the principal Landau determinant to formalize Landau singularities

Modern Birkhäuser Classics

Discriminants,
Resultants, and Multidimensional Determinants
I.M. Gelfand
M.M. Kapranov
A.V. Zelevinsky

As usual, after integrating out the loop momenta we get:

$$
\mathcal{I}_{\nu_{1}, \nu_{2}, \ldots, \nu_{m}}=\int \frac{\mathrm{d}^{\mathrm{D}} \ell_{1} \mathrm{~d}^{\mathrm{D}} \ell_{2} \cdots \mathrm{~d}^{\mathrm{D}} \ell_{\mathrm{L}}}{P_{1}^{\nu_{1}} P_{2}^{\nu_{2}} \cdots P_{m}^{\nu_{m}}}
$$

Includes ISP's

Schwinger parametrization:

$$
\sum_{i=1}^{m} \alpha_{i} P_{i}=\sum_{a, b=1}^{\mathrm{L}} \ell_{a} \cdot \ell_{b} \mathbf{Q}_{a b}+2 \sum_{a=1}^{\mathrm{L}} \ell_{a} \cdot \mathbf{L}_{a}+c
$$

Symanzik polynomials:

$$
\mathcal{U}:=\operatorname{det} \mathbf{Q}, \quad \mathcal{F}:=\left(\mathbf{L}^{\top} \cdot \mathbf{Q L}-c\right) \mathcal{U}
$$

After integrating out the loop momenta:

$$
\mathcal{I}_{\nu_{1}, \nu_{2}, \ldots, \nu_{m}}=\# \int_{0}^{\infty} \frac{\mathrm{d}^{m} \alpha}{(\mathcal{U}+\mathcal{F})^{\mathrm{D} / 2}} \alpha_{1}^{\nu_{1}-1} \alpha_{2}^{\nu_{2}-1} \cdots \alpha_{m}^{\nu_{m}-1}
$$

Simplest singularity

Determines the "pinch surface" (incidence variety)

$$
\begin{aligned}
\mathcal{U}+\mathcal{F} & =0 \\
\partial_{\alpha_{i}}(\mathcal{U}+\mathcal{F}) & =0 \quad \text { for } \quad i=1,2, \ldots, m
\end{aligned}
$$

Corresponds to the leading second-type singularity in the standard classification

How to find all ways of rescaling $\alpha_{i} \rightarrow \varepsilon^{w_{i}} \alpha_{i}$

 leading to all inequivalent systems of equations?
Example

$$
\begin{aligned}
\mathcal{U}+\mathcal{F}= & \alpha_{2} \alpha_{6} \alpha_{8} s_{14}+\alpha_{3} \alpha_{5} \alpha_{7} s_{34}+\alpha_{2} \alpha_{4} \alpha_{7} s_{24}+\alpha_{1} \alpha_{3} \alpha_{4} s_{12}+\alpha_{3} \alpha_{4} \alpha_{6} s_{35}+\alpha_{1} \alpha_{3} \alpha_{5} s_{12}+\alpha_{1} \alpha_{3} \alpha_{6} s_{12} \\
& +\alpha_{1} \alpha_{3} \alpha_{7} s_{12}+\alpha_{3} \alpha_{6} \alpha_{7} s_{12}+\alpha_{1} \alpha_{3} \alpha_{8} s_{12}+\alpha_{1} \alpha_{4} \alpha_{8} s_{12}+\alpha_{2} \alpha_{5} \alpha_{7} s_{15}+\alpha_{2} \alpha_{5} \alpha_{8} s_{23}+\alpha_{1} \alpha_{4} \alpha_{6} s_{35} \\
& +\alpha_{2} \alpha_{4} \alpha_{6} s_{35}+\alpha_{1} \alpha_{4} \alpha_{7} s_{35}+\alpha_{4} \alpha_{6} \alpha_{7} s_{35}+\alpha_{3} \alpha_{6} \alpha_{8} s_{35}+\alpha_{4} \alpha_{6} \alpha_{8} s_{35}+\alpha_{1} \alpha_{5} \alpha_{8} s_{45}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{4} \\
& +\alpha_{3} \alpha_{4}+\alpha_{1} \alpha_{5}+\alpha_{2} \alpha_{5}+\alpha_{3} \alpha_{5}+\alpha_{1} \alpha_{6}+\alpha_{2} \alpha_{6}+\alpha_{3} \alpha_{6}+\alpha_{1} \alpha_{7}+\alpha_{2} \alpha_{7}+\alpha_{3} \alpha_{7}+\alpha_{4} \alpha_{7}+\alpha_{5} \alpha_{7} \\
& +\alpha_{6} \alpha_{7}+\alpha_{1} \alpha_{8}+\alpha_{2} \alpha_{8}+\alpha_{3} \alpha_{8}+\alpha_{4} \alpha_{8}+\alpha_{5} \alpha_{8}+\alpha_{6} \alpha_{8}+\alpha_{1} \alpha_{5} \alpha_{6}^{2} p_{5}+\alpha_{5} \alpha_{6}^{2}+\alpha_{3} \alpha_{5} \alpha_{6} p_{5}^{2} \\
& +\alpha_{1} \alpha_{5} \alpha_{7} p_{5}^{2}+\alpha_{5} \alpha_{6} \alpha_{7} p_{5}^{2}+\alpha_{5} \alpha_{6} \alpha_{8} p_{5}^{2}
\end{aligned}
$$

Not a reduced diagram

$$
\mathcal{U}+\mathcal{F} \rightarrow \varepsilon^{-6}\left[\alpha_{1} \alpha_{3}\left(\alpha_{4}+\alpha_{5}\right) s_{12}+\alpha_{2} \alpha_{5} \alpha_{7} s_{15}+\alpha_{2} \alpha_{4} \alpha_{7} s_{24}\right]
$$

The solution of $\partial_{\alpha_{i}}(\mathcal{U}+\mathcal{F})=0$ for this scaling is: $s_{24}-s_{15}=0$

Back in the loop-momentum space

Related to the new perspective on soft/collinear divergences in terms of the Schwinger parameters

Edges expanding at different relative rates

$$
\begin{aligned}
& \rho, \lambda, \sigma \rightarrow \infty \\
& \zeta, \delta, \xi \rightarrow \infty
\end{aligned}
$$

[Arkani-Hamed, Hillman, SM '22]
[see also Gardi, Herzog, Jones, Ma, Schlenk '22]

For the experts: Classification solved by polyhedral/tropical geometry

- Classifies all ways of degenerating the system of equations
- Codimension-1 faces (facets) are used in sector decomposition
[FIESTA, pySecDec, ...]

Number of new systems of generalized "Landau equations"

Without numerators: 4895
Compared to just $2^{8}=256$ reduced diagrams

With numerators: 117097

These turn out to be impossible to solve using standard elimination theory tools such as Gröbner bases \Longrightarrow introduce a numerical algorithm

Geometry of singularities for one face

Discard dominant components (UV/IR divergences)

We're only interested in codimension- 1 singularities

Numerical strategy

- Intersect with random planes to collect samples Ask me later for details
- Consistently filter out UV/IR divergences
- Gives the degree of the curve
- Write an ansatz

$$
\sum_{a, b, c, d, e, f} C_{a b c d e f} s_{12}^{a} s_{23}^{b} s_{34}^{c} s_{45}^{d} s_{51}^{e} p_{5}^{2 f}=0
$$

- Reconstruct the integer coefficients $C_{a b c d e f}$ with the samples
... repeat the same for all the other 4894 faces (parallelizable)

Open-source implementation in Julia:
PrincipalLandauDeterminants.jl (soon on arXiv)

```
edges = [[6,1], [1,2], [2,3], [3,4], [4,5], [5,6], [6,7], [7,3]]
nodes = [1,2,4,7,5]
internal_masses = [0,0,0,0,0,0,0,0]
external_masses = [0,0,0,0,M2]
getPLD(edges, nodes, internal_masses, external_masses, method = :sym)
```


Example result

$$
\begin{gathered}
\left\{p_{5}^{2}=0\right\} \cup\left\{s_{i j}=0 \text { for all } i j \neq 25\right\} \\
\left\{s_{i 5}-p_{5}^{2}=0 \text { for } i=1,2,3,4\right\} \\
\left\{s_{12}-s_{45}=0\right\} \cup\left\{s_{12}-s_{35}=0\right\} \\
\left\{s_{24}-s_{15}=0\right\} \cup\left\{s_{14}-s_{35}=0\right\} \\
\left\{s_{24}-s_{35}=0\right\} \cup\left\{s_{23}-s_{15}=0\right\} \\
\left\{s_{23}-s_{45}=0\right\} \cup\left\{s_{15}-s_{34}=0\right\} \\
\left\{s_{35} s_{45}-s_{12} p_{5}^{2}=0\right\} \\
\left\{s_{15} s_{35}-s_{24} p_{5}^{2}=0\right\} \\
\left\{s_{15} s_{45}-s_{23} p_{5}^{2}=0\right\} \\
\left\{p_{5}^{2} s_{12}-\left(s_{15}-p_{5}^{2}\right)\left(s_{25}-p_{5}^{2}\right)=0\right\} \\
\left\{p_{5}^{2} s_{23}-\left(s_{25}-p_{5}^{2}\right)\left(s_{35}-p_{5}^{2}\right)=0\right\}
\end{gathered}
$$

Including inverse powers of numerators can also introduce new singularities

$$
\begin{gathered}
\left\{2 s_{12}-s_{35}=0\right\} \\
\left\{s_{12}-s_{24}=0\right\} \\
\left\{s_{12}-s_{14}=0\right\} \\
\left\{p_{5}^{2}\left(s_{35}-2 s_{12}\right)+s_{12} s_{45}=0\right\} \\
\left\{s_{12} s_{15}-s_{24} s_{45}=0\right\} \\
\left\{\left(s_{34}-s_{15}\right) s_{45}+s_{23}\left(s_{35}+s_{45}\right)=0\right\} \\
\left\{p_{5}^{2}\left(s_{34}-s_{15}\right)+s_{12} s_{15}+s_{23} s_{34}+\left(s_{15}-s_{34}\right) s_{45}=0\right\} \\
\left\{s_{23}\left(s_{12}+s_{34}-p_{5}^{2}\right)+\left(s_{15}-s_{34}\right) s_{45}=0\right\}
\end{gathered}
$$

One-slide summary

- Predicting singularities of cutting-edge Feynman integrals forces us to revisit the standard formulation of Landau equations
- Classification of Landau singularities much richer than just reduced diagrams, particularly when massless particles are present
- New tool for the community:

$$
\begin{aligned}
& \text { PrincipalLandauDeterminants.jl } \\
& \text { (soon on arXiv) }
\end{aligned}
$$

Thank you

