

Precision QCD calculations for vector boson observables

Thomas Gehrmann (Universität Zürich)

RADCOR 2023, Crieff, 29.5.-2.6.2023

European Research Council Established by the European Commission

based on: 2107.09085, 2203.01565, 2205.11426, 2211.13596, 2301.11827

Drell-Yan process

- Drell-Yan lepton pair (neutral-current or charged-current) production
 - Benchmark observable: multi-differential measurements
 - Precision measurements of EW parameters and parton distributions
- Standard Model theory well understood
 - NLO EW [C.Carloni Calame, G.Motagna, A.Nicrosini, A.Vicini; S.Dittmaier, M.Huber]
 - NNLO QCD and NNLO QCD+EW (+ total cross section to N3LO QCD)

[K.Melnikov, F.Petriello; S.Catani, L.Cieri, G.Ferrera, D.de Florian, M.Grazzini; C.Duhr, F.Dulat, B.Mistlberger; R.Bonciani, L.Buonocore, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano, A.Vicini; F.Buccioni, F.Caola, H.Chawdhry, F.Devoto, M.Heller, A.von Manteuffel, K.Melnikov, R.Röntsch, C.Signorile-Signorile] (talks of G.Vita, F.Devoto, N.Rana)

transverse momentum resummation to N3LL QCD

[W.Bizon, P.F.Monni, E.Re, L.Rottoli, P.Torrielli]

• Precision Tools: FEWZ, DYNNLO, DYturbo, POWHEG, ...

• Lepton pair production: EW precision observable

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}m_{ll}\mathrm{d}y_{ll}\mathrm{d}\cos\theta^*} = \frac{\pi\alpha^2}{3m_{ll}s}\sum_q P_q(\cos\theta^*) \left[f_q(x_1,Q^2)f_{\bar{q}}(x_2,Q^2) + (q\leftrightarrow\bar{q})\right]$$

• ATLAS 8 TeV measurement [1710.05167]

Observable	Central-Central	Central-Forward	lepton plane
$m_{ll} \; [{ m GeV}]$	$[46,\!66,\!80,\!91,\!102,\!116,\!150,\!200]$	[66, 80, 91, 102, 116, 150]	$\overline{\mathbf{x}}$
$ y_{ll} $	[0, 0.2, 0.4, 0.6, 0.8, 1, 1.2,	$\left[1.2, 1.6, 2, 2.4, 2.8, 3.6 ight]$	y k_1
	1.4, 1.6, 1.8, 2, 2.2, 2.4]		$z \leftarrow \uparrow \theta \land \downarrow$
$\cos heta^*$	$\left[-1, -0.7, -0.4, 0, 0.4, 0.7, 1 ight]$	[-1,-0.7,-0.4,0,0.4,0.7,1]	$x p_1 p_2$
Total Bin Count:	504	150	hadron plane

• Measured with fiducial event selection cuts (on single leptons)

Central-Central	Central-Forward	
$p_T^l > 20 { m ~GeV}$	$p_{T,F}^l > 20 \text{ GeV} \qquad p_{T,C}^l > 25 \text{ GeV}$	
$ y^l < 2.4$	$2.5 < y_F^l < 4.9 \qquad y_C^l < 2.4$	
$46~{\rm GeV} < m_{ll} < ~200~{\rm GeV}$	$66 \mathrm{GeV} < m_{ll} < 150 \mathrm{GeV}$	

• Fiducial cuts influence acceptances in triple-differential bins

• Leading order: fiducial cuts intersect bin definitions

[A.Gehrmann-De Ridder, E.W.N.Glover, A.Huss, C.Preuss, D.Walker, TG: 2301.11827]

- Leading-order forbidden bins
 - require finite Q_T of lepton pair
 - shown here: symmetric lepton pair
- → prediction starts only at NLO
 - lower accuracy
 - potential perturbative instabilities

Forbidden bins at leading order

- large theory uncertainty, poor agreement with data
- O(α_s³) corrections (Drell-Yan N³LO) obtained from V+jet at NNLO [MCFM: T.Neumann, J.Campbell; NNLOJET: A.Gehrmann-De Ridder, N.Glover, A.Huss, T.Morgan, D.Walker, TG]
 - implemented in NNLOJET using antenna subtraction (talks of M.Marcoli, O.Braun-White)
 - replace jet requirement by (small) Q_T cut
 - numerical convergence at small Q_T challenging

State-of-the-art theory prediction

- QCD NNLO (α_s^2) plus N3LO (α_s^3) in LO-forbidden bins
- combined with (NLO+HO) EW corrections [C.Carloni Calame, G.Motagna, A.Nicrosini, A.Vicini]

RADCOR 2023

Towards full N3LO in Drell-Yan observables

Inclusive coefficient functions (total cross section) at N3LO

- computed analytically
 - three-loop form factors
 - inclusive phase space up to triple emission
 - 100s of loop and phase-space master integrals
- Results
 - virtual photon exchange [C.Duhr, F.Dulat, B.Mistlberger]
 - charged-current Drell-Yan: W[±] production [C.Duhr, F.Dulat, B.Mistlberger]
 - neutral-current Drell-Yan: γ^{*}/Z⁰ production
 [C.Duhr, B.Mistlberger]
 - associated VH production [n3loxs: J.Baglio, C.Duhr, B.Mistlberger, R.Szafron]

Towards full N3LO in Drell-Yan observables

Differential distributions at N3LO

- parton-level implementation of all V+jet processes at NNLO
- combined with three-loop virtual corrections (form factor)
- subtraction scheme for handling of infrared-singular contributions

Subtraction methods applicable at N3LO

• Projection to Born [M.Cacciari, F.Dreyer, A.Karlberg, G.Salam, G.Zanderighi]

$$\frac{d\sigma_X^{N3LO}}{dO} = \frac{d\sigma_{X+j}^{NNLO}}{dO} - \frac{d\sigma_{X+j}^{NNLO}}{dO_B} + \frac{d\sigma_X^{N3LO, incl}}{dO_B}$$

• **q**_T **subtraction** [S.Catani, M.Grazzini]

$$\frac{d\sigma_X^{N3LO}}{dO} = \mathcal{H}_{N3LO} \otimes \frac{d\sigma_X^{LO}}{dO} + \left[\int_{q_{T,X}} \frac{d\sigma_{X+j}^{NNLO}}{dO} - \frac{d\sigma_{X,CT}^{NNLO}}{dO} (q_T) \right]$$

Towards full N3LO in Drell-Yan observables

NNLOJET implementation of Drell-Yan processes at N3LO

[X.Chen, E.W.N.Glover, A.Huss, T.Z.Yang, H.X.Zhu, TG: 2107.09085]

- based on V+jet at NNLO
- using antenna subtraction for infrared subtraction at NNLO

Genuine N3LO singularities: q_T subtraction

- obtain q_T counterterm from expansion of N3LL q_T resummation to $O(\alpha_s^{-3})$
- ingredients: three-loop soft and beam functions [Y.Li, H.X.Zhu; M.Ebert, B.Mistlberger, G.Vita; M.X.Luo, H.X.Zhu, T.Z.Yang, Y.J.Zhu] (talk of G.Vita)
- check: independence on q_{T,cut} slicing parameter
- check: reproduce inclusive coefficient functions (no ingredients or methodology in common!)

N3LO in Drell-Yan observables

Rapidity distribution of lepton pair

- N3LO corrections uniform in y
- same size as inclusive N3LO K-factor
- N3LO outside NNLO scale uncertainty
- scale uncertainty remains at 1% level
- still: inclusive in lepton kinematics

N3LO in Drell-Yan observables

Matching of N3LO with N3LL resummation

[X.Chen, E.W.N.Glover, A.Huss, P.F.Monni, E.Re, L.Rottoli, P.Torrielli, TG: 2203.01565]

- resummation in momentum space (RadISH)
- fiducial cross sections: lepton pair and single lepton distributions in NC Drell-Yan process
- improved perturbative convergence: uncertainty on NNLO+NNLL larger than NNLO-only

N3LO in Drell-Yan observables

Normalized fiducial distributions in W production

[X.Chen, E.W.N.Glover, A.Huss, T.Z.Yang, H.X.Zhu, TG: 2205.11426 and work in progress]

- relevant for W mass extraction (CDF II, future LHC measurements) (talk of P.Torrielli)
- N3LO corrections for CDFII kinematics flat in m_T , but non-trivial shape in p_T^{-1} , E_T^{-miss}

[G.Fontana]

Quark singlet contributions

Vector boson coupling to internal quark loop

- contributions not included in differential Drell-Yan calculations at $O(\alpha_s^3)$
- but: included in inclusive N3LO coefficient function [C.Duhr, B.Mistlberger]
- amplitudes with vector and axial-vector couplings
 - three-loop quark form factors [A.Primo, TG; L.Chen, M.Czakon, M.Niggetiedt]
 - two-loop V+qqg [T.Peraro, L.Tancredi, TG: 2211.13596]
 - one-loop V+qqgg, V+qqq'q' [Z.Bern, L.Dixon, D.Kosower]

Two-loop axial-vector V+qqg amplitudes

Non-singlet V+qqg two-loop amplitudes well known

• computed with vector coupling, axial vector follows from chirality conservation [L.Garland, N.Glover, A.Koukoutsakis, E.Remiddi, TG]

Singlet amplitudes: basis decomposition [T.Peraro, L.Tancredi; L.Chen]

- four-dimensional basis vectors: $p_1^{\mu}; p_2^{\mu}; p_3^{\mu}; v_A^{\mu} = \varepsilon^{\alpha\beta\gamma\mu} p_{1\alpha} p_{2\beta} p_{3\gamma}$
- with: $v_A \cdot v_A = (d-3)s_{12}s_{13}s_{23}/4$
- amplitude decomposition into form factors (F_i : vector, G_i : axial-vector) $\mathcal{M} = -i\sqrt{4\pi\bar{\alpha}_s} \operatorname{T}^a_{ij} \varepsilon_{4,\mu}\varepsilon_{3,\nu}A^{\mu\nu}$

$$\begin{aligned} A^{\mu\nu} &= \bar{u}(p_2) \not\!p_3 u(p_1) \Big[F_1 p_1^{\mu} p_1^{\nu} + F_2 p_2^{\mu} p_1^{\nu} + F_3 g^{\mu\nu} + G_1 p_1^{\mu} v_A^{\nu} + G_2 p_2^{\mu} v_A^{\nu} + G_3 v_A^{\mu} p_1^{\nu} \Big] \\ &+ \bar{u}(p_2) \gamma^{\nu} u(p_1) \Big[F_4 p_1^{\mu} + F_5 p_2^{\mu} \Big] + \bar{u}(p_2) \gamma^{\mu} u(p_1) F_6 p_1^{\nu} \\ &+ \bar{u}(p_2) \not\!p_A u(p_1) \Big[G_4 p_1^{\mu} p_1^{\nu} + G_5 p_2^{\mu} p_1^{\nu} \Big] + G_6 \Big[\bar{u}(p_2) \gamma^{\mu} u(p_1) v_A^{\nu} + \bar{u}(p_2) \gamma^{\nu} u(p_1) v_A^{\mu} \end{aligned}$$

Two-loop axial-vector V+qqg amplitudes

Computation of form factors using projectors

- four-dimensional basis, projections performed in *d* dimensions
- using Larin γ_5 in axial-vector coupling $\gamma^{\mu}\gamma^5 \rightarrow \frac{1}{2} \left(\gamma^{\mu}\gamma^5 \gamma^5\gamma^{\mu}\right) = \frac{1}{6} \epsilon^{\mu\nu\rho\sigma} \gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}$
- renormalization of axial vector non-singlet and singlet currents in QCD
- coupling constant renormalization

Resulting form factors are IR-divergent at one-loop and two-loop

- define finite remainders using IR subtraction [S.Catani; L.Dixon, E.Gardi, L.Magnea; T.Becher, M.Neubert]
- results four-dimensional, justify absence of evanescent form factors and projectors

$$F_{i,\text{fin}}^{(1)} = F_i^{(1)} - I_1(\epsilon)F_i^{(0)} \qquad \qquad G_{i,\text{fin}}^{(1)} = G_i^{(1)} - I_1(\epsilon)G_i^{(0)}$$

$$F_{i,\text{fin}}^{(2)} = F_i^{(2)} - I_1(\epsilon)F_i^{(1)} - I_2(\epsilon)F_i^{(0)} \qquad \qquad G_{i,\text{fin}}^{(2)} = G_i^{(2)} - I_1(\epsilon)G_i^{(1)} - I_2(\epsilon)G_i^{(0)}$$

Two-loop axial-vector V+qqg amplitudes Helicity amplitudes, including vector boson decay to leptons, e.g.

$$M_{L+L}^{v} = \frac{1}{\sqrt{2}} \left[\langle 12 \rangle [13]^{2} \left(\alpha_{1} \langle 536] + \alpha_{2} \langle 526] \right) + \alpha_{3} \langle 25 \rangle [13] [36] \right]$$
$$M_{L+L}^{a} = \frac{1}{\sqrt{2}} \left[\langle 12 \rangle [13]^{2} \left(\beta_{1} \langle 536] + \beta_{2} \langle 526] \right) + \beta_{3} \langle 25 \rangle [13] [36] \right]$$

- coefficients expressed in terms of form factors
- non-singlet: $\alpha_i = -\beta_i$, after IR subtraction (chirality conservation)
- dressed with $SU(2) \otimes U(1)$ couplings and gauge boson propagator factors

New result: singlet axial-vector amplitudes at two loops

- anomalous for single quark flavour, vanish for mass-degenerate quark isospin doublets
- finite remainder for top-bottom mass splitting (large- m_t expansion, $m_b = 0$)

Summary

- Drell-Yan process enables broad range of precision studies
- Complex interplay between observable definitions and fiducial cuts
- Demands ultimate per-cent level precision on fiducial distributions
 - N3LO fixed-order, matched on N3LL resummation
 - combined with higher-order electroweak corrections
- First results, enabled by important computational advances
 - N3LO corrections uniform in inclusive observables
 - non-trivial shape deformations for some fiducial distributions
 - quark-singlet type loop amplitudes ready to be included
- Preparing for LHC phenomenology at ultimate precision