

## **NNLO** Matrix-Element Corrections in VINCIA



**Definition:**  $\sigma_i^{(\ell)} = \text{perturbative coefficient}^*$  for X + j jets, at order  $(\alpha_s)^{j+\ell} \sigma_0^{(0)}$ = The full perturbative coefficient

**Problem:** off-the shelf (N)LL showers **do not** match full NNLO singularity structure. (LO shower kernels only  $\rightarrow$  iterated NLO structure.)



Peter Z Skands (Monash University — Melbourne Australia)



- = LO shower kernel (correct single-unresolved limits)

RadCor, May 2023

## Solutions

### **A.** Use off-the-shelf showers $\Rightarrow$ deal with NNLO subtleties separately.



- NNLOPS/MiNNLO<sub>PS</sub>

UN2LOPS: Sudakov from explicit unitarisation ( $\rightarrow$  event-weight flips  $\rightarrow$  low efficiencies?) MiNNLO<sub>PS</sub>/GENEVA: need analytic NNLL-NNLO Sudakov; done for several processes. Note: resummation and shower  $p_T$  variables must be the same to LL. (Effects of mismatches beyond controlled orders? Complex processes / "semi-unresolved" kinematics?)

### **B.** Make a new shower which *does* match full NNLO singularity structure.

(Want that anyway, eg for high-accuracy showers in their own right.)

**NNLO+PS**: first approaches, for some processes

• UN2LOPS [Höche et al. 1405.3607] inclusive NNLO + unitary merging

[Hamilton et al. 1212.4504] / [Monni et al. 1908.06987] regulated NLO POWHEG 1j + NNLO

• GENEVA [Alioli et al. 1211.7049] NNLO matched resummation + truncated shower

## First Problem: Phase-Space Coverage

### Iterated single branchings do not cover all of double-branching PS

E.g., strong  $p_1$ -ordering **cuts out** part of the second-order phase space



Double-differential distribution in  $\frac{p_{\perp 1}}{m}$  &  $\frac{p_{\perp 2}}{m}$  $p_{\perp 1}$  $m_{\mathbf{Z}}$ 

Example point:  $m_Z$  = 91 GeV,  $p_{T1}$  = 5 GeV,  $p_{T2}$  = 8 GeV Unordered but has  $p_{12} \ll m_Z$ : "Double Unresolved"

(Note: due to **recoil effects**, swapping the order of the two branchings does not simply give  $p_{T1} =$ 8 GeV,  $p_{T2} = 5$  GeV but for this example point just produces a different unordered set of scales.)

Example:  $Z \rightarrow qgg\bar{q}$ 

$$R_4 = \frac{\text{Sum(shower histories)}}{|M_{Z \to 4}^{(\text{LO,LC})}|^2}$$



(Averaged over other phase-space variables, uniform RAMBO scan)

## Solution: Turn Vice to Virtue



Divide double-emission phase space into strongly-ordered and unordered region:



### **Sector Definitions**

ed" 
$$\mathrm{d}\Phi_{+2}^{<} = \Theta(\hat{Q}_{+1}^2 - Q_{+2}^2)\mathrm{d}\Phi_{+2}$$

"Unordered"  $\mathrm{d}\Phi^{>}_{+2} = (1 - \Theta(\hat{Q}^2_{+1} - Q^2_{+2}))\mathrm{d}\Phi_{+2}$ 

Unique scales provided by deterministic clustering algorithm (In our case, the same as our sector-shower ordering variable)

## **New:** Direct (unordered) Double-Branching ( $2 \rightarrow 4$ ) Generator

### Developed in: Li & PZS, A Framework for Second-Order Showers, PLB 771 (2017) 59

Sudakov integral for direct double  
branchings above scale 
$$Q_B < Q_A$$
:  

$$-\ln \Delta(Q_A^2, Q_B^2) = \int_0^{Q_A^2} dQ_1^2 \int_{Q_B^2}^{Q_A^2} \frac{\text{Unordered Sector}}{dQ_2^2} \Theta(Q_2^2 - Q_1^2) f(Q_2^2)$$
We use: [Li & PS (2017); Giele, Kosower, PS (2011)]  

$$f(Q_1^2, Q_2^2) \propto \frac{\alpha_s^2(Q_2^2)}{Q_2^2(Q_1^2 + Q_2^2)} \text{ see also backup slides}$$

Trick: swap integration order  $\Rightarrow$  outer integral along  $Q_2$ 

$$= \int_{Q_B^2}^{Q_A^2} \mathrm{d}Q_2^2 \int_0^{Q_2^2} \mathrm{d}Q_1^2 \ f(Q_1^2, Q_2^2) = \int_{Q_B^2}^{Q_A^2} \mathrm{d}Q_2^2 F(Q_1^2, Q_2^2) = \int_{Q_B^2}^{Q_B^2} \mathrm{d}Q_2^2 F(Q_1^2, Q_2$$

→ First generate physical scale  $Q_B$ , then generate  $0 < Q_1 < Q_B + two z$  and  $\phi$  choices





Idea: "POWHEG at NNLO" (focus here on  $e^+e^- \rightarrow 2j$ )



### Need:

- **1** Born-Local NNLO ( $\mathcal{O}(\alpha_s^2)$ ) K-factors:  $k_{NNLO}(\Phi_2)$
- 2 NLO ( $\mathcal{O}(\alpha_s^2)$ ) MECs in the first  $2 \rightarrow 3$  shower emis
- 3 LO ( $\mathcal{O}(\alpha_s^2)$ ) MECs for next (iterated)  $2 \rightarrow 3$  showed
- 4 Direct  $2 \rightarrow 4$  branchings for unordered sector, with

### gs allows to fill all of phase space

ssion: 
$$w_{\rm NLO}^{2 \rightarrow 3}(\Phi_3)$$
  
r emission:  $w_{\rm LO}^{3 \rightarrow 4}(\Phi_4)$   
th LO ( $\mathcal{O}(\alpha_s^2)$ ) MECs:  $w_{\rm LO}^{2 \rightarrow 4}(\Phi_4)$ 

## • Weight each Born-level event by local K-factor

$$k_{\rm NNLO}(\Phi_2) = 1 + \frac{V(\Phi_2)}{B(\Phi_2)} + \frac{I_{\rm S}^{\rm NLO}(\Phi_2)}{B(\Phi_2)} + \frac{VV(\Phi_2)}{B(\Phi_2)} + \int d\Phi_{+1} \left[ \frac{R(\Phi_2, \Phi_{+1})}{B(\Phi_2)} - \frac{S^{\rm NLO}(\Phi_2)}{B(\Phi_2)} + \int d\Phi_{+2} \left[ \frac{RR(\Phi_2, \Phi_{+2})}{B(\Phi_2)} - \frac{S(\Phi_2, \Phi_2)}{B(\Phi_2)} + \frac{S(\Phi_2, \Phi_$$

**Fixed-Order Coefficients:** 

Subtraction Terms (not tied to shower formalism):





Note: requires "Born-local" NNLO subtraction terms. Currently only for simplest cases. Some ideas what to do in meantime — strongly interested in local subtraction schemes



## **2** & **3** Iterated $2 \rightarrow 3$ Shower with Second-Order MECs

### Key aspect

up to matched order, include process-specific NLO corrections into shower evolution:



2 correct first branching to exclusive  $(\langle t' \rangle)$  NLO rate:

$$\Delta_{2\mapsto3}^{\mathrm{NLO}}(t_0,t') = \exp\left\{-\int_{t'}^{t_0} \mathsf{d}\Phi_{+1} \underbrace{\mathrm{A}_{2\mapsto3}(\Phi_{+1}) w_{2\mapsto3}^{\mathrm{NLO}}(\Phi_2,\Phi_{+1})}_{\mathbf{X}_{t'}}\right\}$$

**3** correct second branching to LO ME:

$$\Delta^{\mathrm{LO}}_{3\mapsto4}(t',t) = \exp\left\{-\int_t^{t'} \mathrm{d} \Phi'_{+1} \, \underline{\mathrm{A}}_{3\mapsto4}
ight\}$$

 $\left\{ \Phi_{+1}^{\prime} \right\} w_{3\mapsto4}^{\mathrm{LO}}(\Phi_{3},\Phi_{+1}^{\prime})$ 



**Iterated**: (Ordered)



### Direct $2 \rightarrow 4$ Shower with Second-Order MECs (4)

### Key aspect

up to matched order, include process-specific NLO corrections into shower evolution: VINCIA 2 correct first branching to exclusive  $(\langle t' \rangle)$  NLO rate: **Iterated**:  $_{3}(\Phi_{+1})w_{2\mapsto3}^{\mathrm{NLO}}(\Phi_{2},\Phi_{+1})$ (Ordered)  $t_0$ **3** correct second branching to LO ME:  $\left(\Phi_{+1}')w_{3\mapsto4}^{\mathrm{LO}}(\Phi_{3},\Phi_{+1}')\right\}$ 4 add direct  $2 \mapsto 4$  branching and correct it to LO ME: **Direct:** (Unordered)  $\left\{ (\Phi_{+2}) w_{2\mapsto 4}^{\mathrm{LO}}(\Phi_{2}, \Phi_{+2}) \right\}$  $2 \rightarrow 4$ ⇒ entirely based on **MECs** and **sectorisation** < t⇒ by construction, expansion of extended shower matches NNLO singularity structure

$$\Delta^{\mathrm{NLO}}_{2\mapsto3}(t_0,t') = \exp\left\{-\int_{t'}^{t_0} \mathrm{d}\Phi_{+1} A_{2\mapsto3}
ight\}$$

$$\Delta_{3\mapsto4}^{\mathrm{LO}}(t',t) = \exp\left\{-\int_{t}^{t'} \mathrm{d}\Phi_{+1}' \operatorname{A}_{3\mapsto4}\right\}$$

$$\Delta_{2\mapsto4}^{\mathrm{LO}}(t_0,t) = \exp\left\{-\int_t^{t_0} \mathrm{d}\Phi_{+2}^{>} \underline{\mathrm{A}_{2\mapsto4}}\right\}$$

**But** shower kernels **do not** define **NNLO subtraction terms**<sup>\*</sup> (!)

<sup>\*</sup>This would be required in an "MC@NNLO" scheme, but difficult to realise in antenna showers.

## Sectorization keeps it simple

0.0

### Sector Antenna Formalism

Kosower PRD 57 (1998) 5410; PRD 71 (2005) 045016; also used in Larkoski & Peskin PRD 81 (2010) 054010; PRD84 (2011) 034034 + Showers: Lopez-Villarejo & PS JHEP 11 (2011) 150; Brooks, Preuss & PS JHEP 07 (2020) 032

- Divide *n*-gluon  $\Phi_n$  into *n* non-overlapping sectors.
- Inside each: only most singular kernel contributes.
- $\implies$  Each sector branching kernel must contain the full soft-collinear singular structure of its sector 🔽

Lorentz-invariant def of "most singular" gluon: Based on ARIADNE  $p_{\perp j}^2 = \frac{s_{ij}s_{jk}}{s_{iik}}$  with  $s_{ij} \equiv 2(p_i \cdot p_j)$ 

Suitable for **antenna approach**. Vanishes linearly when either  $s_{ij} \rightarrow 0$  or  $s_{jk} \rightarrow 0$ , quadratically when both  $\rightarrow 0$ . (One sector per gluon that can become soft; each sector also contains  $z_g \leq 1/2$  collinear part).

Same singularity structure as convention showers, but with just a single history (not factorial gro

 $\implies$  with a single unique scale

(+ generalisation to  $g \rightarrow q\bar{q}$ )

**Example:** single-branching sectors in  $H \rightarrow g_i g_j g_k$ 



## MECs are extremely simple in sector showers

### In global antenna subtraction & in conventional dipole/antenna showers: Total gluon-collinear DGLAP kernel is partial-fractioned among neighbouring "sub-antenna functions" - factorially growing number of contributing terms in each phase-space point

 $\begin{array}{ll} \hline \text{Global Antenna} \\ A^{\text{gl}}_{qg\mapsto qgg}(i_q, j_g, k_g) \rightarrow \begin{cases} \frac{2s_{ik}}{s_{ij}s_{jk}} & \text{if } j_g \text{ soft} \\ \frac{1}{s_{ij}}\frac{1+z^2}{1-z} & \text{if } i_q \parallel j_g \\ \frac{1}{s_{jk}}\frac{1+z^3}{1-z} & \text{if } j_g \parallel k_g \end{cases} \xrightarrow{\text{Sector Antenna}} \\ \begin{array}{ll} \text{if } i_g \parallel k_g \end{array} \rightarrow \begin{cases} \frac{2s_{ik}}{s_{ij}s_{jk}} & \text{if } j_g \text{ soft} \\ \frac{1}{s_{ij}}\frac{1+z^2}{1-z} & \text{if } i_q \parallel j_g \\ \frac{1}{s_{jk}}\frac{2(1-z(1-z))^2}{z(1-z)} & \text{if } j_g \parallel k_g \end{array}$ 

= partial-fractioned  $g \rightarrow gg$  DGLAP kernel  $\square$ 

### $\Rightarrow$ Sector kernels can be replaced by direct ratios of (colour-ordered) tree-level MEs:

Global shower:  $A_{IK \to ijk}^{\text{glb}}(i, j, k) \to A_{IK \to ijk}^{\text{glb}} \frac{|M_{n+1}(\dots, i, j, k, \dots)|^2}{\sum_{h \in \text{histories}} A_h |M_n(\dots, I_h, K_h, \dots)|^2} = \text{complicated}_{\text{Fischer & Prestel EPJC77(2017)9}}$ 

Note: can just use ME also in denominator, not shower kernel, since we matched at previous order "already"



## Validation: Real and Double-Real Corrections





Slide adapted from C. Preuss

## The Real-Virtual Correction Factor

 $w_{2\mapsto3}^{\mathrm{NLO}} = w_{2\mapsto3}^{\mathrm{LO}} \left(1\right)$ 

studied analytically in detail for  $Z \rightarrow q\bar{q}$  in [Hartgring, Laenen, PS JHEP 10 (2013) 127



 $\Rightarrow$  now: generalisation & (semi-)automation in VINCIA in form of NLO MECs

$$+ w_{2\mapsto 3}^{\mathrm{V}}$$



## **Real-Virtual Corrections: NLO MECs**

Rewrite NLO MEC as product of LO MEC and "Born"-local K-factor  $1 + w^V$ ("POWHEG in the exponent"):

$$w_{2\mapsto3}^{\mathrm{NLO}}(\Phi_2,\Phi_{+1})=w_{2\mapsto3}^{\mathrm{LO}}(\Phi_2,\Phi_{+1})\times(1+w_{2\mapsto3}^{\mathrm{V}}(\Phi_2,\Phi_{+1}))$$

Local correction given by three terms:

$$\begin{split} & w_{2 \mapsto 3}^{\rm V}(\Phi_2, \Phi_{+1}) = \left( \frac{{\rm RV}(\Phi_2, \Phi_{+1})}{{\rm R}(\Phi_2, \Phi_{+1})} + \frac{{\rm I}^{\rm NLO}(\Phi_2, \Phi_{+1})}{{\rm R}(\Phi_2, \Phi_{+1})} \right. \\ & {\rm NLO \; Born} + 1j \qquad + \int_0^t {\rm d} \Phi_{+1}' \left[ \frac{{\rm RR}(\Phi_2, \Phi_{+1}, \Phi_{+1}')}{{\rm R}(\Phi_2, \Phi_{+1})} - \frac{{\rm S}^{\rm NLO}(\Phi_2, \Phi_{+1}, \Phi_{+1}')}{{\rm R}(\Phi_2, \Phi_{+1})} \right] \right) \\ & {\rm NLO \; Born} \qquad - \left( \frac{{\rm V}(\Phi_2)}{{\rm B}(\Phi_2)} + \frac{{\rm I}^{\rm NLO}(\Phi_2)}{{\rm B}(\Phi_2)} + \int_0^{t_0} {\rm d} \Phi_{+1}' \left[ \frac{{\rm R}(\Phi_2, \Phi_{+1}')}{{\rm B}(\Phi_2)} - \frac{{\rm S}^{\rm NLO}(\Phi_2, \Phi_{+1}')}{{\rm B}(\Phi_2)} \right] \right) \\ & {\rm shower} \qquad + \left( \frac{\alpha_{\rm S}}{2\pi} \log \left( \frac{\kappa^2 \mu_{\rm PS}^2}{\mu_{\rm R}^2} \right) + \int_t^{t_0} {\rm d} \Phi_{+1}' \, {\rm A}_{2 \mapsto 3}(\Phi_{+1}') w_{2 \mapsto 3}^{\rm LO}(\Phi_2, \Phi_{+1}') \right) \end{split}$$

• First and third term from NLO shower evolution, second from NNLO matching • Calculation can be (semi-)automated, given a suitable NLO subtraction scheme



## **New:** NNLO+PS for $H \rightarrow b\bar{b}$

### Slide adapted from C. Preuss



### NNLO accuracy in $H \rightarrow 2j$ implies **NLO correction in first** emission and LO correction in second emission.





## "VINNLOPS" : Generalisations and Limitations

### The VINNLOPS method (aka NNLO MECs) is in principle general

First fully-differential NNLO matching; built on shower with NNLO-accurate pole structure

No dependence on any auxiliary scales or external analytic input other than the fixed-order amplitudes

### Addition of <u>colour singlets</u> trivial; automation on the level of "process classes". E.g., if $e^+e^- \rightarrow 2j$ implemented, also $e^+e^- \rightarrow 2j + X$ with any set of colour singlets X.

### Additional final-state partons straightforward. In practice, some pitfalls:

Born-local NNLO weight not available in general.

Quark-gluon double-branching antenna functions develop spurious singularities, but: No exact knowledge of double-branching kernels required. Sector-antenna functions can effectively be replaced by matrix-element ratios. Subtractions via "colour-ordered projectors" under development.

### For <u>hadronic initial states</u>, the technique remains structurally the same.

Interplay of NLO parton evolution and NLO shower evolution needs clarification. Further questions on phase-space coverage ("power showers" needed to fill full PS?)

## Extra Slides

## Further Work

### **Current status**

[Brooks, Preuss, PS, 2003.00702] [PS, Verheyen, <u>2002.04939</u>] Full-fledged sector shower for ISR and FSR, including multipole-coherent QED shower Efficient sector-based CKKW-L style LO merging & POWHEG Hooks [Hoche, Mrenna, Payne, Preuss, PS, 2106.10987] [Brooks, Preuss, <u>2008.09468</u>]

### Soon ...

**VINCIANNLO** implementation of SM colour-singlet decays  $(V/H \rightarrow q\bar{q}, H \rightarrow gg)$ Automation of iterated tree-level MECs. Using interfaces to MadGraph & Comix. Final-Final double-branchers ( $2 \rightarrow 4$  antenna branchers; QG parents still need work).

Next few years (post doc opening soon at Monash) Iterated NLO MECs for final-state radiators. Using MCFM interface [Campbell, Hoche, Preuss 2107.04472] **Incoming Partons** (double-branchings, interplay with PDFs, initial-state phase space, ...)

Required from fixed-order community (anticipated on ~ short time scale) **Born-local NNLO k-factors** for "arbitrary" processes; in reasonable CPU time?



## Final Remarks: Perspectives for Matching at N3LO

**TOMTE** (similar in spirit to UN2LOPS) [Prestel, <u>2106.03206</u>] & [Bertone, Prestel, <u>2202.01082</u>] Starts from NNLO+PS matched cross section for X + jet ~ UN2LOPS Allow jet to become unresolved, regulated by shower Sudakov Remove unwanted NNLO terms and subtract projected 1-jet bin from 0-jet bin Include N3LO jet-vetoed zero-jet cross section Some challenges:

Large amount of book-keeping -> complex code & computational bottlenecks? Many counter-events, counter-counter-events, etc -> many weight sign flips.  $\implies$  Huge computing resources for relatively slow convergence?

**N3LO MECs?** (hypothetical extension of VINCIANNLO MECs) Method in principle generalises.

• • •

Add direct-triple ( $2 \rightarrow 5$ ) branchings to cover all of phase space: in principle **simple**. **Challenging**: need local NNLO subtractions for Born + 1.

## The Solution that worked at LO: Smooth Ordering





$$\propto \int_{p_{\perp}^2}^{m^2} \frac{1}{1 + \frac{q_{\perp}^2}{Q_{\perp}^2}} \frac{\mathrm{d}q_{\perp}^2}{q_{\perp}^2} \ln\left[\frac{m^2}{q_{\perp}^2}\right] \sim \left(\frac{1}{2}\ln^2\left[\frac{Q_{\perp}^2}{p_{\perp}^2}\right] + \ln\left[\frac{Q_{\perp}^2}{p_{\perp}^2}\right] \ln\left[\frac{m^2}{Q_{\perp}^2}\right]\right)$$

# Smooth ordering: An excellent approximation (at tree level)



Even after three sequential shower emissions, the smooth shower approximation is still a very close approximation to the matrix element **over all of phase space** 

## (Why it works?)

### The antenna factorisations are on shell

**n** on-shell partons  $\rightarrow$  **n+1** on-shell partons In the first  $2 \rightarrow 3$  branching, final-leg virtualities assumed ~ 0



Interpretation: off-shell effect



Good agreement with ME  $\rightarrow$  good starting point for  $2\rightarrow 4$ 

$$\frac{p(n \to n+1)}{2p_i \cdot p_j} = \frac{1}{2p_i \cdot p_j + \mathcal{O}(p_{\perp n+1}^2)}$$

# Smooth ordering: nice tree-level expansions (small ME corrections) $\Rightarrow$ good 2 $\rightarrow$ 4 starting point

But we worried the Sudakov factors were "wrong"  $\Rightarrow$  not good starting point for 2 $\rightarrow$ 3 virtual corrections? Not good exponentiation?



For unordered branchings (e.g., double-unresolved) effective 2→4 Sudakov factor effectively → LL Sudakov for intermediate (unphysical) 3parton point

## $2 \rightarrow 4$ Trial Generation

$$\frac{1}{(16\pi^2)^2} a_{\text{trial}}^{2 \to 4} = \frac{2}{(16\pi^2)^2} a_{\text{trial}}^{2 \to 3} (Q_3^2) P_{\text{imp}} a_{\text{trial}}^{2 \to 3} (Q_4^2)$$

$$= C \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{128}{(Q_3^2 + Q_4^2)Q_4^2} .$$
(15)

Solution for constant trial 
$$\alpha_{s}$$
  
 $\mathcal{A}_{2\to4}^{\text{trial}}(Q_{0}^{2}, Q^{2}) = C I_{\zeta} \frac{\ln(2)\hat{\alpha}_{s}^{2}}{8\pi^{2}} \ln \frac{Q_{0}^{2}}{Q^{2}} \ln \frac{m^{4}}{Q_{0}^{2}Q^{2}}$   
 $\Rightarrow Q^{2} = m^{2} \exp\left(-\sqrt{\ln^{2}(Q_{0}^{2}/m^{2}) + 2f_{R}/\hat{\alpha}_{s}^{2}}\right)$   
where  $f_{R} = -4\pi^{2} \ln R/(\ln(2)CI_{\zeta})$ . (Same I<sub>zeta</sub> as in GKS)

Solution for first-order running α<sub>s</sub> (also used as overestimate for 2-loop running):

where

 $y = \frac{\ln k_{\mu}^2 m^2}{\ln k_{\mu}^2 Q_0^2}$ 

In particular, the trial function for sector A (B) is independent of momentum  $p_6(p_3)$  which makes it easy to translate the  $2 \rightarrow 4$  phase spaces defined in eq. (6) to shower variables. Technically, we generate these phase spaces by oversampling, vetoing configurations which do not fall in the appropriate

$$P_{\text{trial}}^{2 \to 4} = \frac{\alpha_s^2}{\hat{\alpha}_s^2} \frac{a_4}{a_{\text{trial}}^{2 \to 4}}$$

$$Q^{2} = \frac{4\Lambda^{2}}{k_{\mu}^{2}} \left(\frac{k_{\mu}^{2}m^{2}}{4\Lambda^{2}}\right)^{-1/W_{-1}(-y)} \text{Lambert W}.$$
 (20)

$$\frac{\frac{2}{4\Lambda^2}}{\frac{2}{6}} \exp\left[-f_R b_0^2 - \frac{\ln k_\mu^2 m^2 / 4\Lambda^2}{\ln k_\mu^2 Q_0^2 / 4\Lambda^2}\right],$$

## Scale Definitions

### **Conventional** ("global") **shower-branching (and subtraction) formalisms:**

Each phase-space point receives contributions from several branching "histories" = clusterings  $\sim$  sum over (singular) kernels  $\implies$  full singularity structure  $\checkmark$ 

|                                                   |                | Number of Histories for $n$ Branchings |      |                   |                                           | (Colour-ordered; starting from a single $q\bar{q}$ pair) |       |        |          |
|---------------------------------------------------|----------------|----------------------------------------|------|-------------------|-------------------------------------------|----------------------------------------------------------|-------|--------|----------|
|                                                   |                | n = 1                                  | n=2  | n = 3             | n = 4                                     | n = 5                                                    | n = 6 | n = 7  |          |
|                                                   | CS Dipole      | 2                                      | 8    | 48                | 384                                       | 3840                                                     | 46080 | 645120 |          |
|                                                   | Global Antenna | 1                                      | 2    | 6                 | 24                                        | 120                                                      | 720   | 5040   |          |
| Fewer partial-fraction<br>but still factorial are | nings,<br>owth | NLO                                    | NNLO | N <sup>3</sup> LO | (relevant for iterated MECs & multi-leg m |                                                          |       |        | merging) |

### When these are generated by a shower-style formalism (a la POWHEG):

Each term has its own value of the shower scale = scale of last branching Complicates the definition of an unambiguous matching condition between the (multi-scale) shower and the (single-scale) fixed-order calculation. 1<sup>st</sup> attempt: define matching condition via fully exclusive jet cross sections [Hartgring, Laenen, PS, 1303.4974] 2<sup>nd</sup> attempt: define double-branching "sectors" with unique scales [Li, PS, 1611.00013] 3<sup>rd</sup> attempt: sectorise everything [Campbell, Höche, Li, Preuss, PS, 2108.07133]

Borrow some concepts from FKS to calculate "Born"-local real integral in NLO MECs:

Decompose (colour-ordered) real correction into shower sectors:

$$\int_{0}^{t'} d\Phi'_{+1} \left[ \frac{\mathrm{RR}(\Phi_{2}, \Phi_{+1}, \Phi'_{+1})}{\mathrm{R}(\Phi_{2}, \Phi_{+1})} - \frac{\mathrm{S}^{\mathrm{NLO}}(\Phi_{2}, \Phi_{+1}, \Phi'_{+1})}{\mathrm{R}(\Phi_{2}, \Phi_{+1})} \right]$$
$$= \sum_{j} \int_{0}^{t'} d\Phi_{ijk}^{\mathrm{ant}} \Theta_{ijk}^{\mathrm{sct}} \left[ \frac{\mathrm{RR}(\Phi_{3}, \Phi_{ijk}^{\mathrm{ant}})}{\mathrm{R}(\Phi_{3})} - \mathcal{A}_{lK \mapsto ijk}^{\mathrm{sct}}(i, j, k) \right]$$

- Integral over shower sector  $\Theta_{iik}^{sct}$  in general **not analytically calculable**
- Need to add/subtract integral over "simple" sector with known integral:

$$\int_{0}^{t'} \mathrm{d}\Phi_{ijk}^{\mathrm{ant}} \left[\Theta_{ijk}^{\mathrm{sct}} - \Theta_{ijk}^{\mathrm{simple}}\right] A_{lK\mapsto ijk}^{\mathrm{sct}}(i,j,k) + \int_{0}^{t'} \mathrm{d}\Phi_{ijk}^{\mathrm{ant}} \Theta_{ijk}^{\mathrm{simple}} A_{lK\mapsto ijk}^{\mathrm{sct}}(i,j,k)$$

 $\Rightarrow$  Adds **bottleneck**, as difference of step functions not ideal for MC integration

## **Colour-Ordered Projectors**

**Better**: use smooth projectors [Frixione et al. 0709.2092]

$$\operatorname{RR}(\Phi_3, \Phi_{+1}') = \sum_j \frac{C_{ijk}}{\sum_m C_{\ell mn}} \operatorname{RR}(\Phi_3, \Phi_{ijk}^{\operatorname{ant}}), \quad C_{ijk} = A_{IK \mapsto ijk} \operatorname{R}(\Phi_3)$$

• **But**: antenna-subtraction term **not positive-definite**!

• To render this well-defined, need to work on **colour-ordered** level

$$\mathrm{RR} = \mathcal{C} \sum_{\alpha} \mathrm{RR}^{(\alpha)} - \frac{\mathcal{C}}{N_{\mathrm{C}}^2} \sum_{\beta} \mathrm{RR}^{(\beta)} \pm \dots$$

• Different colour factors enter with different sign, but **no sign changes** within one term

$$\mathcal{C}\left[\frac{C_{ijk}}{\sum\limits_{m}C_{\ell mn}}\frac{\mathrm{RR}^{(\alpha)}(\Phi_{3},\Phi_{ijk}^{\mathrm{ant}})}{\mathrm{R}(\Phi_{3})}-A_{IK\mapsto ijk}\right]$$

⇒ Numerically **better behaved**, uses **standard antenna-subtraction** terms

## New: Sectorized CKKW-L Merging in Pythia 8.306



Brooks & Preuss, "Efficient multi-jet merging with the VINCIA sector shower", 2008.09468

### **Ready for serious applications** (Note: Vincia also has dedicated POWHEG hooks) Work ongoing to optimise baseline algorithm. Work at Fermilab: NNLO matching, $2 \rightarrow 4$ sector antennae, MCFM interface, ... Vincia tutorial: <a href="http://skands.physics.monash.edu/slides/files/Pythia83-VinciaTute.pdf">http://skands.physics.monash.edu/slides/files/Pythia83-VinciaTute.pdf</a>

## POWHEG as **MECs**

POWHEG master formula (for 2 Born jets):  

$$\langle O \rangle_{\rm NLO+PS}^{\rm PowhEG} = \int d\Phi_2 B(\Phi_2)$$

Main trick: matrix-element correction (MEC) in first shower emission

$$S_{2}(t_{0}, O) = \Delta_{2}(t_{0}, t_{c})O(\Phi_{2}) + \int_{t_{c}}^{t_{0}} d\Phi_{+1} A_{2\mapsto 3}(\Phi_{+1}) w_{2\mapsto 3}^{\text{MEC}} \Delta_{2}(t, t_{c})O(\Phi_{2})$$
Shower PS and kernel
Born + 1 Tree-level MEC



## **POWHEG as MECs**

POWHEG master formula (for 2 Born jets):  

$$\langle O \rangle_{\rm NLO+PS}^{\rm PowhEG} = \int d\Phi_2 B(\Phi_2)$$

**Main trick**: matrix-element correction (MEC) in first shower emission

$$S_{2}(t_{0}, O) = \Delta_{2}(t_{0}, t_{c})O(\Phi_{2}) + \int_{t_{c}}^{t_{0}} d\Phi_{+1} A_{2\mapsto 3}(\Phi_{+1}) w_{2\mapsto 3}^{\text{MEC}} \Delta_{2}(t, t_{c})O(\Phi_{2})$$
Shower PS and kernel
Born + 1 Tree-level MEC



Sector showers: denominator is normally a single term (discussed more later)

Slide adapted from C. Preuss



### POWHEG as MECS

POWHEG master formula (for 2 Born jets):  

$$\langle O \rangle_{\rm NLO+PS}^{\rm PowhEG} = \int d\Phi_2 B(\Phi_2)$$

**Main trick**: matrix-element correction (MEC) in first shower emission

$$S_{2}(t_{0}, O) = \Delta_{2}(t_{0}, t_{c})O(\Phi_{2}) + \int_{t_{c}}^{t_{0}} d\Phi_{+1}$$
where  $w_{2\mapsto3}^{\text{MEC}} = \frac{\mathrm{R}(\Phi_{2}, \Phi_{+1})}{A_{2\mapsto3}(\Phi_{+1})\mathrm{B}(\Phi_{2})}$  and
$$\Delta_{2}(t, t') = \exp\left(-\int_{t'}^{t} d\Phi_{+1}A_{2}\right)$$

Global showers: denominator is generally a sum of terms Sector showers: denominator is normally a single term (discussed more later)

Slide adapted from C. Preuss





## Vice to Virtue: Define Ordered and Unordered Phase-Space Sectors



Intermediate "clustered" on-shell 3-parton state at (C) is merely a convenient stepping stone in phase space rightarrow integrate out

## Colour MECs

### Sector kernels can be replaced by ratios of (colour-ordered) tree-level MEs:

Global shower: 
$$A_{IK \to ijk}^{\text{glb}}(i, j, k) \to A_{IK \to ijk}^{\text{glb}} \frac{|A|}{\sum_{h \in \text{histor}}}$$

**Example:**  $Z \rightarrow q\bar{q} + 2g$ 

### Can also incorporate (fixed-order) sub-leading colour effects by "colour MECs": [Giele, Kosower, PS, <u>1102.2126</u>]

$$w_{\rm col} = rac{\sum_{lpha,eta} \mathcal{M}_{lpha}}{\sum_{lpha} |\mathcal{M}_{lpha}|}$$

$$P_{\text{MEC}} = w_{\text{col}} \frac{A_4^0(1_q, 3_g, 4_g, 2_{\bar{q}})}{A_3^0(\tilde{13}_q, \tilde{34}_g, 2_{\bar{q}})} \theta(p_{\perp, 134}^2 < p_{\perp, 243}^2) + w_{\text{col}} \frac{A_4^0(1_q, 3_g, 4_g, 2_{\bar{q}})}{A_3^0(1_q, \tilde{34}_g, \tilde{23}_{\bar{q}})} \theta(p_{\perp, 243}^2 < p_{\perp, 134}^2)$$
$$w_{\text{col}} = \frac{A_4^0(1, 3, 4, 2) + A_4^0(1, 4, 3, 2) - \frac{1}{N_{\text{C}}^2} \tilde{A}_4^0(1, 3, 4, 2)}{A_4^0(1, 3, 4, 2) + A_4^0(1, 4, 3, 2)}$$

 $\frac{|M_{n+1}(\dots, i, j, k, \dots)|^2}{|A_h|M_n(\dots, I_h, K_h, \dots)|^2} = \frac{\text{complicated}}{|\text{Fischer & Prestel 1706.06218}|}$  $\frac{k, ...)|^2}{|...|^2} = simple [Lopez-Villarejo & PS <u>1109.3608]</u>$ 

 $rac{\mathcal{M}_{eta}^{*}}{|2|}$ 

## Real and Double-Real MEC factors

Separation of double-real integral defines tree-level MECs:

$$\int_{t}^{t_{0}} d\Phi_{+2} \frac{\text{RR}(\Phi_{2}, \Phi_{+2})}{\text{B}(\Phi_{2})} = \int_{t}^{t_{0}} d\Phi_{+2}^{>} \frac{\text{RR}(\Phi_{2}, \Phi_{+2})}{\text{B}(\Phi_{2})} + \int_{t}^{t_{0}} d\Phi_{+2}^{<} \frac{\text{RR}(\Phi_{2}, \Phi_{+2})}{\text{B}(\Phi_{2})}$$

$$= \int_{t}^{t_{0}} d\Phi_{+2}^{>} \frac{\text{A}_{2\mapsto 4}(\Phi_{+2}) w_{2\mapsto 4}^{\text{LO}}(\Phi_{2}, \Phi_{+2})}{\text{direct/unordered } n \to n+2}$$

$$+ \int_{t'}^{t_{0}} d\Phi_{+1} \frac{\text{A}_{2\mapsto 3}(\Phi_{+1}) w_{2\mapsto 3}^{\text{LO}}(\Phi_{2}, \Phi_{+1})}{\text{Iterated/ordered branching #1}} \int_{t}^{t'} d\Phi_{+1}' \frac{\text{A}_{3\mapsto 4}(\Phi_{+1}') w_{3\mapsto 4}^{\text{LO}}(\Phi_{3}, \Phi_{+1}')}{\text{Iterated/ordered branching #2}}$$

**Iterated tree-level** MECs in **ordered** region:

$$egin{aligned} & w^{ ext{LO}}_{2\mapsto3}(\Phi_2,\Phi_{+1}) = rac{ ext{R}(\Phi_2,\Phi_{+1})}{ ext{A}_{2\mapsto3}(\Phi_{+1}) ext{B}(\Phi_2)} \ & w^{ ext{LO}}_{3\mapsto4}(\Phi_3,\Phi_{+1}') = rac{ ext{RR}(\Phi_3,\Phi_{+1}')}{ ext{A}_{3\mapsto4}(\Phi_{+1}') ext{R}(\Phi_3)} \end{aligned}$$

**Tree-level** MECs in **unordered** region:

$$w_{2\mapsto4}^{\mathrm{LO}}(\Phi_2,\Phi_{+2}) = rac{\mathrm{RR}(\Phi_2,\Phi_{+2})}{\mathrm{A}_{2\mapsto4}(\Phi_{+2})\mathrm{B}(\Phi_2)}$$

Thus, the full tree-level 4parton matrix element is imposed

Not only in the direct/ unordered phase-space sector, but **also** in the iterated/ordered sector

### The VINCIA Sector Antenna Shower [Brooks, Preuss & PS 2003.00702]

### Full-fledged "sector" antenna shower implemented since Pythia 8.304

PartonShowers:Model = 2

Sector approach is merely an **alternative way** to fraction singularities, so **formal** accuracy\* of the shower should be retained.



Note: same (global) tune parameters used for sector runs with Vincia

NB: also fully compatible with POWHEG Box for NLO Matching (dedicated Vincia POWHEG UserHooks).





<sup>\*</sup>We have not yet quantified the formal logarithmic accuracy of VINCIA.