Advances in the nested soft-collinear subtraction scheme

Chiara Signorile-Signorile

RADCOR 2023

In collaboration with: Fabrizio Caola, Federica Devoto, Kirill Melnikov, Raoul Röntsch, Davide Maria Tagliabue

Karlsruher Institut für Technologie

Take-home message

When the complexity of the problem increases, look at simple, recurring structures!

The problem

Hard collisions at the LHC are described in terms of quark and gluon cross sections

$$\mathrm{d}\sigma = \int \mathrm{d}x_1 \,\mathrm{d}x_2 \,f_i(x_1) f_j(x_2) \,\mathrm{d}\sigma_{ij} \,\mathcal{F}\left(1 + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^n}{Q^n}\right)\right)$$

$$d\sigma_{ij} = d\sigma_{ij, LO} (1 + \alpha_s \Delta_{ij, NLO}^{QCD} + \alpha_{ew} \Delta_{ij, NLO}^{EW} + \alpha_s^2 \Delta_{ij, NN}^{QCD})$$

Problem: extract infrared $1/\epsilon$ poles in d-dimension without integrating over the resolved phase space fully differential predictions for IR-safe observables

- Phase space singularities of the real radiation
- Explicit poles from virtual contributions

$$\int d\Phi_g = \int \left[-\frac{1}{2} \int \frac{1}{2} \int$$

Finite in d=4, integrable numerically

Why is NNLO so difficult?

Common starting point, **common problems**:

- clear understanding of which **singular configurations** do actually contribute,
- Understanding how to deal with multiple radiators and overlapping singularities,
- Integrate the subtraction terms in d-dimensions.

Many schemes are available:

Antenna [Gehermann-De Ridder et al. 0505111]

ColorfulINNLO [Del Duca et al. 1603.08927]

Nested-soft-collinear subtraction [Caola et al. 1702.01352]

STRIPPER subtraction [Czakon 1005.0274]

Analytic Sector Subtraction [Magnea et al. 1806.09570]

Geometric IR subtraction [Herzog 1804.07949]

Unsubtraction [Sborlini et al. 1608.01584]

FDR [*Pittau*, 1208.5457]

Universal Factorisation [Sterman et al. 2008.12293]

Subtraction

$$\int |\mathscr{M}|^2 F_J \,\mathrm{d}\phi_d = \int \left(|\mathscr{M}|^2 F_J - K \right) \,\mathrm{d}\phi_4 + \int \mathcal{M}_J \,\mathrm{d}\phi_4 + \int$$

Despite the common problem a variety of different strategies have been designed.

Most of them feature a **relevant degree of complexity**, which might hide simplifications and recurring patterns.

Nested soft-collinear subtraction at NNLO: generalities

Extension of FKS subtraction to NNLO [Caola, Melnikov, Röntsch 1702.01352]

Strongly-ordered configurations have also to be included: E

Soft limits:

- Non-trivial structure of double-soft eikonal
- Strongly-ordered limits to disentangle

$$1 = \theta \left(E_{g_5} - E_{g_6} \right) + \theta \left(E_{g_6} \right)$$

$$\frac{1}{\overrightarrow{n_{1}}\cdot\overrightarrow{n_{2}})+E_{1}E_{3}(1-\overrightarrow{n_{1}}\cdot\overrightarrow{n_{3}})+E_{2}E_{3}(1-\overrightarrow{n_{2}}\cdot\overrightarrow{n_{3}})}$$

$$E_{1}\ll E_{2}, \quad E_{2}\ll E_{1}$$

$$\overbrace{\overrightarrow{n_{1}}\cdot\overrightarrow{n_{2}}<\overrightarrow{n_{1}}\cdot\overrightarrow{n_{3}}}^{1}$$

$$\overbrace{\overrightarrow{n_{2}}\cdot\overrightarrow{n_{3}}<\overrightarrow{n_{1}}\cdot\overrightarrow{n_{3}}}^{1}$$

$$\overbrace{\overrightarrow{n_{1}}\cdot\overrightarrow{n_{3}}<\overrightarrow{n_{1}}\cdot\overrightarrow{n_{3}}}^{1}$$

$$\overbrace{\overrightarrow{n_{1}}\cdot\overrightarrow{n_{3}}<\overrightarrow{n_{1}}\cdot\overrightarrow{n_{3}}}^{1}$$

$$-E_{g_5}$$

Nested soft-collinear subtraction at NNLO: generalities

Extension of FKS subtraction to NNLO [Caola, Melnikov, Röntsch 1702.01352]

Strongly-ordered configurations have also to be included: *E*

Collinear limits:

- Single, double and triple collinear limits to disentangle
- Strongly-ordered limits to disentangle in triple collinear sector

Non-trivial structures to integrate \rightarrow double-soft and triple-collinear kernels [Caola, Delto, Frellesvig, Melnikov '18, Delto, Melnikov '19]

$$\frac{1}{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}) + E_{1}E_{3}(1 - \overrightarrow{n_{1}} \cdot \overrightarrow{n_{3}}) + E_{2}E_{3}(1 - \overrightarrow{n_{2}} \cdot \overrightarrow{n_{3}})}$$

$$F_{1} \ll E_{2}, \quad E_{2} \ll E_{1}$$

$$\int_{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}} < \overrightarrow{n_{1}} \cdot \overrightarrow{n_{3}}}^{1} \int_{\overrightarrow{n_{2}} \cdot \overrightarrow{n_{3}} < \overrightarrow{n_{1}} \cdot \overrightarrow{n_{3}}}^{1} \int_{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{3}} < \overrightarrow{n_{1}}}^{1} \int_{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{3}} < \overrightarrow{n_{1}} = \int_{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{3}} = \int_{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{3}} < \overrightarrow{n_{1}} = \int_{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{3}} = \int_{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{1}} = \int_{\overrightarrow{n_{1}} \cdot \overrightarrow$$

Nested soft-collinear subtraction at NNLO: generalities

Example: DIS [Asteriadis, Caola, Melnikov, Röntsch '19]

• Extract double soft singularities first $(E_5 \sim E_6 \rightarrow 0)$ inserting the identity

$$I = (I - \mathcal{S}) + \mathcal{S}$$

• Gluons ordered in energy -> only one single soft singularity. Insert the identity

$$I = (I - S_6) + S_6$$

 Collinear singularities: partition function [Frixione, Kunszt, Signer '96] and sectoring [Czakon '10,11, Czakon, Heymes '14] to separate overlapping singularities.

Double-soft singularity regularized but still contains single soft and collinear singularities. Subtraction term; soft gluons decouple; integrate analytically over phase space of gluons 5 and 6

$$g_{s,b}^2 \times \text{Eikonal}(1,4,5,6) \times \left| \underbrace{\xrightarrow{}}_{\underbrace{}} \right|^2$$

State of the art:

Separation of complex $pp \rightarrow N$ processes into simpler building blocks

QCD corrections to Drell-Yan Both initial state momenta [Caola, Melnikov, Röntsch '19]

Focus on simple processes \rightarrow full control of the procedure, check against analytic results sometime possible.

Application to Z+j production

Higgs decay Both final state momenta [Caola, Melnikov, Röntsch '19]

Deep Inelastic Scattering One initial and **one final** state momenta [Asteriadis, Calola, Melnikov Röntsch '19]

Identify potentially unresolved partons \rightarrow extra partitioning:

$$\Delta^{(km)} = \frac{p_{\perp,i\neq k,m}}{\sum\limits_{i=3}^{5} p_{\perp,i}}.$$

Application to Z+j production

 $+\Theta$

 $-\langle (I -$

 $+\langle (I -$

+

Subtraction terms

 $+ \langle (I -$

Fully regulated contribution

+ $(ij) \in I$

$$\begin{split} &P_{\rm LM}^{4>5} \rangle + \langle (I-S_4)S_5 \,\Delta^{(45)}F_{\rm LM}^{4>5} \rangle \\ &S_{45})(I-S_5) \Big\{ \sum_{i\in{\rm TC}} \Big[\Theta^{(a)}C_{45,i}(I-C_{5i}) + \Theta^{(b)}C_{45,i}(I-C_{45}) \\ &\Theta^{(c)}C_{45,i}(I-C_{4i}) + \Theta^{(d)}C_{45,i}(I-C_{45}) \Big] \omega_{4i5i} \Big\} \,\Delta^{(45)}F_{\rm LM}^{4>5} \rangle \\ &S_{45})(I-S_5) \sum_{(ij)\in{\rm DC}} C_{4i}C_{5j} \,\omega_{4i5j} \,\Delta^{(45)}F_{\rm LM}^{4>5} \rangle \\ &S_{45})(I-S_5) \Big\{ \sum_{i\in{\rm TC}} \Big[\Theta^{(a)}C_{5i} + \Theta^{(b)}C_{45} + \Theta^{(c)}C_{4i} + \Theta^{(d)}C_{45} \Big] \,\omega_{4i5i} \\ &\sum_{j)\in{\rm DC}} \Big[C_{4i} + C_{5j} \Big] \,\omega_{4i5j} \Big\} \,\Delta^{(45)}F_{\rm LM}^{4>5} \rangle \\ &S_{45})(I-S_5) \Big\{ \sum_{i\in{\rm TC}} \Big[\Theta^{(a)}(I-C_{45,i})(I-C_{5i}) + \Theta^{(b)}(I-C_{45,i})(I-C_{45,i})(I-C_{45,i})(I-C_{45,i}) \Big] \\ &- \Theta^{(c)}(I-C_{45,i})(I-C_{4i}) + \Theta^{(d)}(I-C_{45,i})(I-C_{45}) \Big] \omega_{4i5i} \\ &\sum_{\rm DC} \Big[(I-C_{4i})(I-C_{5j}) \,\omega_{4i5j} \Big\} \,\Delta^{(45)}F_{\rm LM}^{4>5} \rangle \end{split}$$

 $(ij) \in DC \longrightarrow (ij) \in \{(12), (13), (21), (23), (31), (32)\}$ $i \in \mathrm{TC} \longrightarrow i \in \{1, 2, 3\}.$

Application to Z+j production

$$\begin{split} \frac{1}{3!} \langle F_{\mathrm{LM}}(1_q, 2_q; 3_g, 4_g, 5_g) \rangle &= \langle S_{45} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle + \langle (I - S_4) S_5 \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \langle (I - S_{45}) (I - S_5) \big\{ \sum_{i \in \mathrm{TC}} \left[\Theta^{(a)} C_{45,i} (I - C_{5i}) + \Theta^{(b)} C_{45,i} (I - C_{45}) \right] \\ &+ \Theta^{(c)} C_{45,i} (I - C_{4i}) + \Theta^{(d)} C_{45,i} (I - C_{45}) \Big] \omega_{4i5i} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &- \langle (I - S_{45}) (I - S_5) \sum_{(ij) \in \mathrm{DC}} C_{4i} C_{5j} \, \omega_{4i5j} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \langle (I - S_{45}) (I - S_5) \big\{ \sum_{i \in \mathrm{TC}} \left[\Theta^{(a)} C_{5i} + \Theta^{(b)} C_{45} + \Theta^{(c)} C_{4i} + \Theta^{(d)} C_{45} \right] \omega_{4i5i} \right\} \\ &+ \sum_{(ij) \in \mathrm{DC}} \left[C_{4i} + C_{5j} \right] \omega_{4i5j} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \langle (I - S_{45}) (I - S_5) \big\{ \sum_{i \in \mathrm{TC}} \left[\Theta^{(a)} (I - C_{45,i}) (I - C_{5i}) + \Theta^{(b)} (I - C_{45,i}) \big] \omega_{4i5i} \\ &+ \sum_{(ij) \in \mathrm{DC}} (I - C_{4i,i}) (I - C_{5j}) \, \omega_{4i5j} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \sum_{(ij) \in \mathrm{DC}} (I - C_{4i}) (I - C_{5j}) \, \omega_{4i5j} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \sum_{(ij) \in \mathrm{DC}} (I - C_{4i}) (I - C_{5j}) \, \omega_{4i5j} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \sum_{(ij) \in \mathrm{DC}} (I - C_{4i}) (I - C_{5j}) \, \omega_{4i5j} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \sum_{(ij) \in \mathrm{DC}} (I - C_{4i}) (I - C_{5j}) \, \omega_{4i5j} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \sum_{(ij) \in \mathrm{DC}} (I - C_{4i}) (I - C_{5j}) \, \omega_{4i5j} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \sum_{(ij) \in \mathrm{DC}} (I - C_{4i}) (I - C_{5j}) \, \omega_{4i5j} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \sum_{(ij) \in \mathrm{DC}} (I - C_{4i}) (I - C_{5j}) \, \omega_{4i5j} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \sum_{(ij) \in \mathrm{DC}} (I - C_{4i}) (I - C_{5j}) \, \omega_{4i5j} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \sum_{(ij) \in \mathrm{DC}} (I - C_{4i}) (I - C_{5j}) \, \omega_{4i5j} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \sum_{(ij) \in \mathrm{DC}} (I - C_{4i}) (I - C_{5j}) \, \omega_{4i5j} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \sum_{(ij) \in \mathrm{DC}} (I - C_{4i}) (I - C_{5j}) \, \omega_{4i5j} \big\} \, \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ &+ \sum_{(ij$$

In principle generalisable to n-

Implemented numerically \rightarrow no issues in increasing the number of partons

 $(ij) \in DC \longrightarrow (ij) \in \{(12), (13), (21), (23), (31), (32)\}$ $i \in \mathrm{TC} \longrightarrow i \in \{1, 2, 3\}.$

Application to Z+j production

$$\frac{1}{3!} \langle F_{\mathrm{LM}}(1_q, 2_{\bar{q}}; 3_g, 4_g, 5_g) \rangle = \langle S_{45} \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle + \langle (I - S_4) S_5 \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ + \langle (I - S_{45})(I - S_5) \Big\{ \sum_{i \in \mathrm{TC}} \left[\Theta^{(a)} C_{45,i}(I - C_{5i}) + \Theta^{(b)} C_{45,i}(I - C_{45}) \right] \\ + \Theta^{(c)} C_{45,i}(I - C_{4i}) + \Theta^{(d)} C_{45,i}(I - C_{45}) \Big] \omega_{4i5i} \Big\} \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ + O^{(c)} C_{45,i}(I - S_5) \sum_{(ij) \in \mathrm{DC}} C_{4i} C_{5j} \omega_{4i5j} \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ - \langle (I - S_{45})(I - S_5) \Big\{ \sum_{i \in \mathrm{TC}} \left[\Theta^{(a)} C_{5i} + \Theta^{(b)} C_{45} + \Theta^{(c)} C_{4i} + \Theta^{(d)} C_{45} \right] \omega_{4i5i} \right\} \\ + \sum_{(ij) \in \mathrm{DC}} \left[C_{4i} + C_{5j} \right] \omega_{4i5j} \Big\} \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ + \sum_{(ij) \in \mathrm{DC}} \left[C_{4i} + C_{5j} \right] \omega_{4i5j} \Big\} \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle \\ + O^{(c)} (I - S_{45})(I - S_5) \Big\{ \sum_{i \in \mathrm{TC}} \left[\Theta^{(a)}(I - C_{45,i})(I - C_{45,i}) \Big] \omega_{4i5i} \\ + \sum_{(ij) \in \mathrm{DC}} (I - C_{4i})(I - C_{5j}) \omega_{4i5j} \Big\} \Delta^{(45)} F_{\mathrm{LM}}^{4>5} \rangle$$

Drawbacks identified v

- The **bookkeeping** becomes cumbersome \rightarrow large numbersome harge n
- Calculating all subtraction t hide a number of simplifica before explicit evaluation.
- Writing color-correlations as intermediate steps facilitat leads to non-trivial general

 $(ij) \in DC \longrightarrow (ij) \in \{(12), (13), (21), (23), (31), (32)\}$ $i \in \mathrm{TC} \longrightarrow i \in \{1, 2, 3\}.$

Summary of the talk

- A subtraction scheme based of FKS was proposed.
- for arbitrary kinematics.
- Application to simple processes worked out straightforwardly.
- This can be done because we know how to deal with **multiple radiators** [partitioning, energy ordering]
- simplifications that are suggested by the simple structure of Catani's operator.
- This suggests that we may need to take **some steps back**.

• Singular kernels for initial- and final-state emission are known. Integration of the most complicated double-unresolved limits performed

• In principle, general formulas for subtraction terms and fully-resolved components for an arbitrary number of partons are available.

• However, for non-trivial processes (e.g. V+j) several difficulties arise: partitioning, energy ordering and Casimir operators obscure

Virtual corrections: color-correlations, elastic terms

$$\langle F_{\rm LV}(1\dots n) \rangle = \frac{\alpha_s}{2\pi} \langle 2 \Re (\mathcal{I}_1(\epsilon)) F_{\rm LM} \rangle$$

Soft real: color-correlations, elastic terms

$$\langle S_k \Delta^{(k)} F_{\mathrm{LM}}(1 \dots n | k) \rangle = \langle I_{1,R}(\epsilon) F_{\mathrm{LM}} \rangle$$

$$\mathcal{I}_1(\epsilon) = \frac{1}{2} \frac{e^{\epsilon \gamma_E}}{\Gamma(1-\epsilon)} \sum_i \frac{1}{\mathbf{T}_i^2} \Big(\mathbf{T}_i^2 \frac{1}{\epsilon^2} + \gamma_i \frac{1}{\epsilon} \Big) \sum_{j \neq i} \mathbf{T}_i \cdot \mathbf{T}_j \Big(\frac{\mu^2}{2p_i \cdot p_j} \Big)^{\epsilon} \epsilon^{\epsilon}$$

$$I_{1,R}(\epsilon) = -\frac{(2E_{\max}/\mu)^{-2\epsilon}}{\epsilon^2} \sum_{i\neq j}^n \eta_{ij}^{-\epsilon} K_{ij} \mathbf{T}$$

$$\bar{P}_{qq}^{\text{AP},0}(z) = 2\mathcal{D}_0(z) - (1+z) + \frac{3}{2}\delta$$

Virtual corrections: color-correlations, elastic terms

$$\langle F_{\rm LV}(1\dots n) \rangle = \frac{\alpha_s}{2\pi} \langle 2 \Re (\mathcal{I}_1(\epsilon)) F_{\rm LM} \rangle$$

Soft real: color-correlations, elastic terms

$$\langle S_k \Delta^{(k)} F_{\mathrm{LM}}(1 \dots n | k) \rangle = \langle I_{1,R}(\epsilon) F_{\mathrm{LM}} \rangle$$

Hard-collinear IS: no color-correlations, boosted and elastic terms

$$\sum_{i=1}^{2} \left\langle (I - S_k) C_{ik} \omega_{ik} \Delta^{(k)} F_{\text{LM}}(1 \dots n|k) \right\rangle = [\alpha_s] \sum_{i=1}^{2} \left\langle -\frac{1}{\epsilon} \bar{P}_{qq}^{\text{AP},0}(z) \otimes F_{\text{LM}}^{(i)}(z) + P_{\text{fin},\text{qq}} \otimes F_{\text{LM}}^{(i)}(z) + \hat{\Gamma}_{q_i} F_{\text{LM}} \right\rangle$$
Hard-collinear FS: no color-correlations, elastic terms
$$\sum_{i=3}^{n} \left\langle (I - S_k) C_{ik} \omega_{ik} \Delta^{(k)} F_{\text{LM}}(1 \dots n|k) \right\rangle = [\alpha_s] \sum_{i=3}^{n} \left(\hat{\Gamma}_{g_i} F_{\text{LM}} \right)$$

$$\sum_{i=3}^{n} \left\langle \hat{\Gamma}_{f_i} F_{\text{LM}} \right\rangle$$

$$\sum_{i=3}^{n} \left\langle (I - S_k) C_{ik} \omega_{ik} \Delta^{(k)} F_{\mathrm{LM}} (1 \dots n | k) \right\rangle = [\alpha_s] \sum_{i=3}^{n} \left\langle \hat{\Gamma}_{g_i} F_{\mathrm{LM}} \right\rangle$$

PDFs renormalisation: no color-correlations, boosted terms

$$\mathrm{d}\sigma_{\mathrm{nlo}}^{\mathrm{PDF}} = \frac{\alpha_s}{2\pi} \frac{1}{\epsilon} \sum_{i=1}^2 \left\langle \bar{P}_{qq}^{\mathrm{AP},0}(z) \otimes F_{\mathrm{LM}}^{(i)}(z) \right\rangle$$

$$\mathcal{I}_1(\epsilon) = \frac{1}{2} \frac{e^{\epsilon \gamma_E}}{\Gamma(1-\epsilon)} \sum_i \frac{1}{\mathbf{T}_i^2} \left(\mathbf{T}_i^2 \frac{1}{\epsilon^2} + \gamma_i \frac{1}{\epsilon} \right) \sum_{j \neq i} \mathbf{T}_i \cdot \mathbf{T}_j \left(\frac{\mu^2}{2p_i \cdot p_j} \right)^{\epsilon} \epsilon^{\frac{1}{2}} \mathbf{T}_i \cdot \mathbf{T}_j \left(\frac{\mu^2}{2p_i \cdot p_j} \right)^{\epsilon} \epsilon^{\frac{1}{2}} \mathbf{T}_i \cdot \mathbf{T}_j \left(\frac{\mu^2}{2p_i \cdot p_j} \right)^{\epsilon} \mathbf{T}_j \cdot \mathbf{T}_j \left(\frac{\mu^2}{2p_i \cdot p_j} \right)^{\epsilon} \mathbf{T}_j \left(\frac{\mu^2}{2p_j \cdot p_j} \right)^{\epsilon} \mathbf{T}_j \left(\frac{$$

$$I_{1,R}(\epsilon) = -\frac{(2E_{\max}/\mu)^{-2\epsilon}}{\epsilon^2} \sum_{i\neq j}^n \eta_{ij}^{-\epsilon} K_{ij} \mathbf{T}$$

$$\bar{P}_{qq}^{\text{AP},0}(z) = 2\mathcal{D}_0(z) - (1+z) + \frac{3}{2}\delta$$

Combining everything together

$$\mathrm{d}\sigma_{\mathrm{NLO}} = \mathrm{d}\sigma_{\mathrm{R}} + \mathrm{d}\sigma_{\mathrm{V}} + \mathrm{d}\sigma$$

= $\langle F_{\mathrm{LM}}(1 \dots n | k) \rangle$

where the subtraction for the real contribution is done iteratively starting with the soft singularities, we get

$$d\sigma_{\rm NLO} = \left\langle \left[[\alpha_s] I_{1,R}(\epsilon) + \frac{\alpha_s}{2\pi} 2\Re \left(\mathcal{I}_1(\epsilon) \right) + I_C(\epsilon) \right] F_{\rm LM} \right\rangle + [\alpha_s] \sum_{i=1}^2 \left\langle -\frac{1}{\epsilon} \bar{P}_{qq}^{\rm AP,0}(z) \otimes F_{\rm LM}^{(i)}(z) + P_{\rm fin,qq} \otimes F_{\rm LM}^{(i)}(z) \right\rangle + \frac{\alpha_s}{2\pi} \frac{1}{\epsilon} \sum_{i=1}^2 \left\langle \bar{P}_{qq}^{\rm AP,0}(z) \otimes F_{\rm LM}^{(i)}(z) \right\rangle + \sum_{i=1}^n \left\langle (I - S_k)(I - C_{ik}) \Delta^{(k)} \omega^{ik} F_{\rm LM}(1 \dots n|k) \right\rangle$$

PDF $+\langle F_{\rm LV}(1\ldots n)\rangle + {\rm d}\sigma_{\rm PDF}$

Combining everything together

$$d\sigma_{
m NLO} = d\sigma_{
m R} + d\sigma_{
m V} + d\sigma$$

= $\langle F_{
m LM}(1 \dots n|k) \rangle$

where the subtraction for the real contribution is done iteratively starting with the soft singularities, we get

Simple interplay between $\left[V + S_i R + (I - S_i)C_{ij}R\right]_{elastic}$ and

PDF $+\langle F_{\rm LV}(1\ldots n)\rangle + {\rm d}\sigma_{\rm PDF}$

estly finite

$$d \left[\left(1 - S_i \right) C_{ij} R \right]_{\text{boost}} + \text{PDFs}$$

Lesson from NLO

Simple interplay between $[V + S_i R + (I - S_i)C_{ij}R]_{elastic}$ and $[(1 - S_i)C_{ij}R]_{boost} + PDFs$ should arise also at NNLO. $I + [\alpha_s] I_C(\epsilon)$

$$[\alpha_s]I_{1,T}(\epsilon) \equiv \left(\frac{\alpha_s}{2\pi}\right) 2\operatorname{Re}\left(\mathcal{I}_1(\epsilon)\right) + [\alpha_s]I_{1,R}(\epsilon)$$

What we are going to see

- Elementary, my dear Watson!
- Well... yes and no:

• Starting from **IR poles of double-virtual**, we want to find **subtraction terms** that can "**complete**" it:

identify structures similar to those encountered at NLO,

get rid of color-correlations and reduce the rest to a sum over external-leg contributions.

• Clearly the poles have to cancel, thus a relations between different contributions must exist. • However, finding such relations is not easy because of partitioning and energy ordering, that are crucial to fully define the singular configurations.

Double virtual contribution

Universal structure, regulated by Catani's operator, valid for any number of external coloured partons [Catani '98] . Features a single structure with color-correlations

$$\begin{split} \left\langle F_{\rm LVV} \right\rangle &= \left(\frac{\alpha_s}{2\pi}\right)^2 \left\langle \frac{1}{2} \left(2\Re(\mathcal{I}_1(\epsilon))\right)\right|^2 F_{\rm LM} - \frac{\beta_0}{\epsilon} 2\Re(\mathcal{I}_1(\epsilon)) F_{\rm LM} \\ &+ \frac{e^{-\epsilon\gamma_{\rm E}} \Gamma(1-2\epsilon)}{\Gamma(1-\epsilon)} \frac{\beta_0}{\epsilon} 2\Re(\mathcal{I}_1(2\epsilon)) F_{\rm LM} + \frac{e^{-\epsilon\gamma_{\rm E}} \Gamma(1-2\epsilon)}{\Gamma(1-\epsilon)} K 2\Re(\mathcal{I}_1(2\epsilon)) F_{\rm LM} \\ &+ 2 \frac{e^{\epsilon\gamma_{\rm E}}}{4\epsilon \,\Gamma(1-\epsilon)} \mathcal{H}_2(\epsilon) F_{\rm LM} + 2\Re(\mathcal{I}_1(\epsilon)) F_{\rm LV}^{\rm fin} + F_{\rm LVV}^{\rm fin} + F_{\rm LV}^{\rm fin} \right\rangle, \end{split}$$

Process-dependent

Finite remainders from 2-loop and $(1-loop)^2$ amplitudes

Color-correlations inside
$$\mathcal{I}_1(\epsilon)$$
 (already encountered at NLO)

$$K = \left(\frac{67}{18} - \frac{\pi^2}{6}\right) C_A - \frac{10}{9} T_R r$$

 n_f .

Double virtual contribution

Universal structure, regulated by Catani's operator, valid for any number of external coloured partons [Catani '98] . Features a single structure with color-correlations

$$\begin{split} \left\langle F_{\rm LVV} \right\rangle &= \left(\frac{\alpha_s}{2\pi}\right)^2 \left\langle \frac{1}{2} \left(2\Re(\mathcal{I}_1(\epsilon))\right)^2 F_{\rm LM} - \frac{\beta_0}{\epsilon} 2\Re(\mathcal{I}_1(\epsilon)) F_{\rm LM} \right. \\ &+ \frac{e^{-\epsilon\gamma_{\rm E}}\Gamma(1-2\epsilon)}{\Gamma(1-\epsilon)} \left(\frac{\beta_0}{\epsilon} 2\Re(\mathcal{I}_1(2\epsilon)) F_{\rm LM} + \frac{e^{-\epsilon\gamma_{\rm E}}\Gamma(1-2\epsilon)}{\Gamma(1-\epsilon)} K 2\Re(\mathcal{I}_1(2\epsilon)) F_{\rm LM} \right. \\ &+ 2 \frac{e^{\epsilon\gamma_{\rm E}}}{4\epsilon\,\Gamma(1-\epsilon)} \mathcal{H}_2(\epsilon) F_{\rm LM} + 2\Re(\mathcal{I}_1(\epsilon)) F_{\rm LV}^{\rm fin} + F_{\rm LVV}^{\rm fin} + F_{\rm LV^2}^{\rm fin} \right\rangle, \end{split}$$

Process-dependent

However:

- different arguments
- different **powers** \rightarrow
- different **prefactors**

Finite remainders from 2-loop and $(1-loop)^2$ amplitudes

suggests a **specific patter of cancellation**.

Color-correlations inside $\mathcal{I}_1(\epsilon)$ (already encountered at NLO)

$$K = \left(\frac{67}{18} - \frac{\pi^2}{6}\right) C_A - \frac{10}{9} T_R r$$

 n_f .

Double soft

Different color structure: single-correlated (T^2) and double-correlated (T^4) [*Catani, Grazzini '99*]

$$\langle S_{45}F_{\rm LM}^{4>5}(4,5)\rangle = \langle S_{45}F_{\rm LM}^{4>5}(4,5)\rangle_{T^4} +$$

$$\begin{split} \langle S_{45}F_{\mathrm{LM}}^{4>5}(4,5)\rangle_{T^4} &= \\ &= \frac{1}{2} \Big\langle \int [dp_4] [dp_5] \Theta(E_4 - E_5) \sum_{i\neq j}^n S_{ij}(p_4) \sum_{k\neq m}^n S_{km}(p_5) \{\mathbf{T}_i \cdot \mathbf{T}_j, \mathbf{T}_k\} \\ &= \frac{[\alpha_s]^2}{2} \Big\langle \widehat{P_{\mathrm{LM}}} \Big\rangle \,, \end{split}$$

 $\langle S_{45}F_{\rm LM}^{4>5}(4,5) \rangle_{T^2}.$

Same structure as NLO with color-correlations

$$I_{1,R}(\epsilon) = -\frac{(2E_{\max}/\mu)^{-2\epsilon}}{\epsilon^2} \sum_{i\neq j}^n \eta_{ij}^{-\epsilon} K_{ij} \mathbf{T}_i \cdot \mathbf{T}_j$$

 $_{k}\!\cdot\!\mathbf{T}_{l}\}F_{\mathrm{LM}}\Big
angle$

Double soft

Different color structure: single-correlated (T^2) and double-correlated (T^4) [Catani, Grazzini '99]

$$\begin{split} \langle S_{45}F_{\rm LM}^{4>5}(4,5)\rangle_{T^2} &= (2E_{\rm max})^{-4\epsilon} \left[\frac{1}{8\pi^2}\frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)}\right]^2 \left\{\frac{1}{2\epsilon^4} + \frac{1}{\epsilon^3}\left[\frac{11}{12} - \ln(s^2)\right] \right. \\ &+ \frac{1}{\epsilon^2} \left[2{\rm Li}_2(c^2) + \ln^2(s^2) - \frac{11}{6}\ln(s^2) + \frac{11}{3}\ln 2 - \frac{\pi^2}{4} - \frac{16}{9}\right] \\ &+ \frac{1}{\epsilon} \left[6{\rm Li}_3(s^2) + 2{\rm Li}_3(c^2) + \left(2\ln(s^2) + \frac{11}{3}\right){\rm Li}_2(c^2) - \frac{2}{3}\ln^3(s^2) \right. \\ &+ \left(3\ln(c^2) + \frac{11}{6}\right)\ln^2(s^2) - \left(\frac{22}{3}\ln 2 + \frac{\pi^2}{2} - \frac{32}{9}\right)\ln(s^2) \\ &- \frac{45}{4}\zeta_3 - \frac{11}{3}\ln^2 2 - \frac{11}{36}\pi^2 - \frac{137}{18}\ln 2 + \frac{217}{54}\right] \\ &+ 4{\rm G}_{-1,0,0,1}(s^2) - 7{\rm G}_{0,1,0,1}(s^2) + \frac{22}{3}{\rm Ci}_3(2\delta) + \frac{1}{3}\tan(\delta)}{\rm Si}_2(2\delta) \\ &+ 2{\rm Li}_4(c^2) - 14{\rm Li}_4(s^2) + 4{\rm Li}_4\left(\frac{1}{1+s^2}\right) - 2{\rm Li}_4\left(\frac{1-s^2}{1+s^2}\right) \\ &+ 2{\rm Li}_4\left(\frac{s^2-1}{1+s^2}\right) + {\rm Li}_4(1-s^4) + \left[10\ln(s^2) - 4\ln(1+s^2) \right. \\ &+ \frac{11}{3}\right]{\rm Li}_3(c^2) + \left[14\ln(c^2) + 2\ln(s^2) + 4\ln(1+s^2) + \frac{22}{3}\right]{\rm Li}_3(s^2) \\ &+ 4\ln(c^2){\rm Li}_3(-s^2) + \frac{9}{2}{\rm Li}_2^2(c^2) - 4{\rm Li}_2(c^2){\rm Li}_2(-s^2) + \left[7\ln(c^2)\ln(s^2)\right] \end{split}$$

$$\delta = \frac{\delta_{12}}{2}, s = \sin \frac{\delta_{12}}{2}, c = \cos \frac{\delta_{12}}{2} \qquad \text{Ci}_n(z) = \frac{\text{Li}_n(e^{iz}) + \text{Li}_n(e^{-iz})}{2}, \text{Si}_n(z) = \frac{\text{Li}_n(z)}{2}$$

Valid for arbitrary angle between the emitters

$$\begin{split} &-\ln^2(s^2) - \frac{5}{2}\pi^2 + \frac{22}{3}\ln 2 - \frac{131}{18} \bigg] \operatorname{Li}_2(c^2) + \bigg[\frac{2}{3}\pi^2 - 4\ln(c^2)\ln(s^2) \bigg] \times \\ &\operatorname{Li}_2(-s^2) + \frac{\ln^4(s^2)}{3} + \frac{\ln^4(1+s^2)}{6} - \ln^3(s^2) \bigg[\frac{4}{3}\ln(c^2) + \frac{11}{9} \bigg] \\ &+ \ln^2(s^2) \bigg[7\ln^2(c^2) + \frac{11}{3}\ln(c^2) + \frac{\pi^2}{3} + \frac{22}{3}\ln 2 - \frac{32}{9} \bigg] - \frac{\pi^2}{6}\ln^2(1+s^2) \\ &+ \zeta_3 \bigg[\frac{17}{2}\ln(s^2) - 11\ln(c^2) + \frac{7}{2}\ln(1+s^2) - \frac{21}{2}\ln 2 - \frac{99}{4} \bigg] + \ln(s^2) \times \\ &\bigg[- \frac{7\pi^2}{2}\ln(c^2) + \frac{22}{3}\ln^2 2 - \frac{11}{18}\pi^2 + \frac{137}{9}\ln 2 - \frac{208}{27} \bigg] - 12\operatorname{Li}_4\bigg(\frac{1}{2} \bigg) \\ &+ \frac{143}{720}\pi^4 - \frac{\ln^4 2}{2} + \frac{\pi^2}{2}\ln^2 2 - \frac{11}{6}\pi^2\ln 2 + \frac{125}{216}\pi^2 + \frac{22}{9}\ln^3 2 \\ &+ \frac{137}{18}\ln^2 2 + \frac{434}{27}\ln 2 - \frac{649}{81} + \mathcal{O}(\epsilon) \bigg\}, \end{split}$$

[Caola, Delto, Frellesvig, Melnikov 1807.05835]

Quite involved expression... however...

 $i_n(e^{iz}) - Li_n(e^{-iz})$ 2i

Double soft

C [C

Different color structure: single-correlated
$$(T^2)$$
 and double-correlated (T^4)
 $(2 \text{tatai,} Grazzini '99)$
 $\langle S_{45}F_{LM}^{4>5}(4,5)\rangle_{T^4} = \langle S_{45}F_{LM}^{4>5}(4,5)\rangle_{T^4} + \langle S_{45}F_{LM}^{4>5}(4,5)\rangle_{T^2}.$

 $\langle S_{45}F_{LM}^{4>5}(4,5)\rangle_{T^4} = \frac{1}{2} \langle \int [dp_4][dp_5]\Theta(E_4 - E_5) \sum_{i\neq j}^n S_{ij}(p_4) \sum_{k\neq m}^n S_{km}(p_5)\{\mathbf{T}_i \cdot \mathbf{T}_j, \mathbf{T}_k \cdot \mathbf{T}_l\} F_{LM} \rangle$

 $= \frac{[\alpha_s]^2}{2} \langle \widehat{F}_{LR}^{2,5}(4,5)\rangle_{T^2} = \langle \int [dp_4][dp_5]\Theta(E_4 - E_5) \sum_{i\neq j}^n S_{ij}(p_4, p_5) \mathbf{T}_i \cdot \mathbf{T}_j F_{LM} \rangle$

However the pole content can be expressed in a compact way related (\overline{T}^4)

 $= [\alpha_s]^2 \left(\sum_{i\neq j}^{2} \alpha_{i}(e) + (\sum_{i\neq j}^{2} \alpha_{i}(e)) \right) \langle \widehat{I}_{1,R}(2e) F_{LM} \rangle + \langle S_{45}F_{LM}^{4>5}(4,5) \rangle_{T^2} |_{fin},$

 $a_{i}(e) = 1 + (\frac{e^3}{3} - \frac{39}{6})^{i^2} + (\frac{37}{27} - \frac{137}{18} \log 2 - 22 \log^2 2 + \frac{11(6)}{7})^{i^2}$

 $a_{i}(e) = 1 + (\frac{e^3}{3} - \frac{39}{9})^{i^2} + (\frac{37}{27} - \frac{137}{18} \log 2 - 22 \log^2 2 + \frac{11(6)}{7})^{i^2}$

Different color structure: single-correlated
$$(T^2)$$
 and double-correlated (T^4)
 $\langle S_{45}F_{LM}^{4>5}(4,5)\rangle_T^4 = \langle S_{45}F_{LM}^{4>5}(4,5)\rangle_{T^4} + \langle S_{45}F_{LM}^{4>5}(4,5)\rangle_{T^2}.$

$$\langle S_{45}F_{LM}^{4>5}(4,5)\rangle_T^4 = \frac{1}{2} \langle \int [dp_4] [dp_5]\Theta(E_4 - E_5) \sum_{i \neq j}^n S_{ij}(p_4) \sum_{k \neq m}^n S_{km}(p_5) \{\mathbf{T}_i \cdot \mathbf{T}_j, \mathbf{T}_k \cdot \mathbf{T}_l\} F_{LM} \rangle$$

$$= \frac{[\alpha_s]^2}{2} \langle \widehat{F}_{LM}^{2}(4,5)\rangle_{T^2} = \langle \int [dp_4] [dp_5]\Theta(E_4 - E_5) \sum_{i \neq j}^n S_{ij}(p_4, p_5) \mathbf{T}_i \cdot \mathbf{T}_j F_{LM} \rangle$$

$$= [\alpha_s]^2 \left(\sum_{\ell=2}^{Q} c_1(\epsilon) + \left(\sum_{\ell=2}^{D} c_2(\epsilon) + \beta_0 c_3(\epsilon) \right) \right) \langle \widehat{I}_{1,R}(2\epsilon) F_{LM} \rangle + \langle S_{45}F_{LM}^{4>5}(4,5) \rangle_{T^2} |_{fin},$$

$$i(c) = i - \left(\sum_{\ell=2}^{T} \frac{137}{2} \log^2 2 2 \log^2 2 + \frac{115}{2} \right) i^2$$

$$i(c) = 1 - \sum_{\ell=2}^{n} \frac{137}{2} \log^2 2 2 \log^2 2 + \frac{115}{2} \right) i^2$$

$$i(c) = 1 - \sum_{\ell=2}^{n} \frac{137}{2} \log^2 2 2 \log^2 2 + \frac{115}{2} \right) i^2$$

$$i(c) = 1 - \sum_{\ell=2}^{n} \frac{137}{2} \log^2 2 + \log^2 2 \cdot \frac{115}{2} \right) i^2$$

$$i(c) = 1 - \sum_{\ell=2}^{n} \frac{137}{2} \log^2 2 + \log^2 2 \cdot \frac{115}{2} \right) i^2$$

$$c_1(\epsilon) = 1 + \left(\frac{\pi^2}{6} - \frac{32}{9}\right)\epsilon^2 + \left(\frac{217}{27} - \frac{137}{9}\log 2 - 22\log^2 2 + \frac{11\zeta_3}{2}\right)\epsilon^3$$

$$c_2(\epsilon) = 1 + \frac{\pi^2}{3}\epsilon^2, \qquad c_3(\epsilon) = 4\log 2 + 8\epsilon\log^2 2.$$

Soft real-virtual

Universal IR structure of RV-corrections under soft limit [Catani, Grazzini 0007142]

$$S_k F_{\text{LRV}}(1 \dots n|k) = -g_{s,b}^2 \sum_{l,m=1}^n \left\{ S_{lm}(k) F_{\text{LV}}^{(lm)} - \frac{\alpha_s}{2\pi} \frac{\beta_0}{\epsilon} S_{lm}(k) + [\alpha_s] \frac{2^{-\epsilon} \pi \Gamma(1+\epsilon) \Gamma^3(1-\epsilon)}{\epsilon \Gamma(1-2\epsilon)} \sum_{\substack{p=1\\p \neq l,m,k}}^n S_{lm}(k) \right\}$$

$$\begin{split} \mathcal{S}_{ab}(k) &= \frac{p_a \cdot p_b}{p_a \cdot k \ p_b \cdot k} \\ F_{\text{LV}}^{(lm)} &= 2 \Re \langle \mathcal{M}_0 | \mathbf{T}_i \cdot \mathbf{T}_j | \mathcal{M}_1 \rangle \\ &= \frac{\alpha(\mu)}{2\pi} 2 \Re \langle \mathcal{M}_0 | \mathbf{T}_i \cdot \mathbf{T}_j \ \mathcal{I}_1(\epsilon) | \mathcal{M}_0 \rangle + \frac{\alpha(\mu)}{2\pi} 2 \Re \langle \mathcal{M}_0 | \mathbf{T}_i \cdot \mathbf{T}_j | \mathcal{M}_{1,\text{fin}} \rangle \end{split}$$

After performing the integration over the unresolved parton phase space we get a compact expression:

$$\left\langle S_4 F_{\text{LRV}}(4) \right\rangle = \frac{\alpha_s}{2\pi} \left[\alpha_s \right] \left\langle I_{1,R}(\epsilon) \left[2 \Re \left(\mathcal{I}_1(\epsilon) \right) F_{\text{LM}} + F_{\text{LV}}^{\text{fin}} \right] \right\rangle - \left[\alpha_s \right] \frac{\alpha_s}{2\pi} \frac{\beta_0}{\epsilon} \left\langle I_{1,R}(\epsilon) F_{\text{LM}} \right\rangle - \left[\alpha_s \right]^2 C_A A_K \left\langle \widetilde{I}_{1,R}(2\epsilon) F_{\text{LM}} \right\rangle$$

Grazzini 0007142] $k) F_{\rm LM}^{(lm)} - [\alpha_s] C_A A_K 2^{-\epsilon} \left(S_{lm}(k)\right)^{1+\epsilon} F_{\rm LM}^{(lm)}$ $k) \left(S_{mp}(k)\right)^{\epsilon} F_{\rm LM}^{(lmp)} \right\},$

$$A_K = \frac{\Gamma^3(1+\epsilon)\,\Gamma^5(1-\epsilon)}{\epsilon^2\,\Gamma(1+2\epsilon)\,\Gamma^2(1-2\epsilon)}$$

$$F_{\text{LM}}^{(lmp)} \sim \left\langle \mathcal{M}^{(0)} \right| \sum_{a,b,c} f_{abc} \mathbf{T}_{l}^{a} \mathbf{T}_{m}^{b} \mathbf{T}_{p}^{c} \left| \mathcal{M}^{(0)} \right\rangle \longrightarrow \qquad \text{New color structure -> finite integration over unresolved integration over unresolved variables for 3 partons at Borely and the second structure and the$$

Soft real-virtual

Universal IR structure of RV-corrections under soft limit [Catani, Grazzini 0007142]

$$S_k F_{\text{LRV}}(1 \dots n|k) = -g_{s,b}^2 \sum_{l,m=1}^n \left\{ S_{lm}(k) F_{\text{LV}}^{(lm)} - \frac{\alpha_s}{2\pi} \frac{\beta_0}{\epsilon} S_{lm}(k) + [\alpha_s] \frac{2^{-\epsilon} \pi \Gamma(1+\epsilon) \Gamma^3(1-\epsilon)}{\epsilon \Gamma(1-2\epsilon)} \sum_{\substack{p=1\\p \neq l,m,k}}^n S_{lm}(k) \right\}$$

$$\begin{split} \mathcal{S}_{ab}(k) &= \frac{p_a \cdot p_b}{p_a \cdot k \ p_b \cdot k} \\ F_{\text{LV}}^{(lm)} &= 2 \Re \langle \mathcal{M}_0 | \mathbf{T}_i \cdot \mathbf{T}_j | \mathcal{M}_1 \rangle \\ &= \frac{\alpha(\mu)}{2\pi} 2 \Re \langle \mathcal{M}_0 | \mathbf{T}_i \cdot \mathbf{T}_j \mathcal{I}_1(\epsilon) | \mathcal{M}_0 \rangle + \frac{\alpha(\mu)}{2\pi} 2 \Re \langle \mathcal{M}_0 | \mathbf{T}_i \cdot \mathbf{T}_j | \mathcal{M}_{1,\text{fin}} \rangle \end{split}$$

After performing the integration over the unresolved parton phase space we get a compact expression:

$$\left\langle S_4 F_{\rm LRV}(4) \right\rangle = \frac{\alpha_s}{2\pi} \left[\alpha_s \right] \left\langle I_{1,R}(\epsilon) \left[2 \Re \left(\mathcal{I}_1(\epsilon) \right) F_{\rm LM} + F_{\rm LV}^{\rm fin} \right] \right\rangle - \left[\alpha_s \right] \frac{\alpha_s}{2\pi} \frac{\beta_0}{\epsilon} \left\langle I_{1,R}(\epsilon) F_{\rm LM} \right\rangle - \left[\alpha_s \right]^2 C_A A_K \left\langle \widetilde{I}_{1,R}(2\epsilon) F_{\rm LM} \right\rangle$$

$k) F_{\rm LM}^{(lm)} - [\alpha_s] C_A A_K 2^{-\epsilon} \left(\mathcal{S}_{lm}(k) \right)^{1+\epsilon} F_{\rm LM}^{(lm)}$ $(k) \left(\mathcal{S}_{mp}(k) \right)^{\epsilon} F_{\mathrm{LM}}^{(lmp)}$

$$A_K = \frac{\Gamma^3(1+\epsilon)\,\Gamma^5(1-\epsilon)}{\epsilon^2\,\Gamma(1+2\epsilon)\,\Gamma^2(1-2\epsilon)}$$

$$F_{\text{LM}}^{(lmp)} \sim \left\langle \mathcal{M}^{(0)} \right| \sum_{a,b,c} f_{abc} \mathbf{T}_{l}^{a} \mathbf{T}_{m}^{b} \mathbf{T}_{p}^{c} \left| \mathcal{M}^{(0)} \right\rangle \longrightarrow \qquad \text{New color structure -> finited integration over unresolved integration over unresolved variables for 3 partons at Bord$$

Structures and color coefficients already encountered in **double-virtual** and double-soft.

A pattern begins to arise...

Hard-collinear real-virtual and single soft RR

For $q\bar{q} \rightarrow V + ggg$ the integrated contribution reads

Single soft: different subtraction terms combined \rightarrow careful with the limits order

$$\begin{split} \sum_{i=1}^{3} \left\langle (I - S_{4})C_{4i} \left[\left\langle S_{5} \Delta^{(45)} F_{\text{LM}}^{4>5}(4,5) \right\rangle \right] + S_{5} \left(I - S_{4} \right) C_{4i} \Delta^{(45)} F_{\text{LM}}^{5>4}(4,5) \right\rangle = \\ + \left[\alpha_{s} \right]^{2} \sum_{k=1}^{2} \left\langle I_{1R}(\epsilon) P_{qq}^{\text{gen}}(z) \otimes F_{\text{LM}}^{(k)}(z) \right\rangle + \left[\alpha_{s} \right]^{2} \left\langle I_{1R}(\epsilon) I_{C}(\epsilon) F_{\text{LM}} \right\rangle \\ + \frac{\left[\alpha_{s} \right]^{2}}{\epsilon^{2}} N_{s} C_{A} \left[\sum_{k=1}^{2} \left\langle \left(\frac{2E_{k}}{\mu} \right)^{-2\epsilon} \tilde{P}_{qq}^{\text{gen}}(z) \otimes F_{\text{LM}}^{(k)}(z) \right\rangle + \sum_{k=1}^{3} \left\langle \left(\frac{2E_{k}}{\mu} \right)^{-2\epsilon} \hat{\Gamma}^{(k) \text{ e.o.}} F_{\text{LM}} \right\rangle \right] \end{split}$$

Status so far

$\langle F_{ m LVV} angle$	$igg = rac{1}{2} \Big[2 \Re(\mathcal{I}_1(\epsilon)) \Big]^2$	$rac{eta_0}{\epsilon}2 \$$
$\langle S_{45}F_{ m LM}^{4>5}(4,5) angle$	${1\over 2}I^2_{1,R}(\epsilon)$	
$ig\langle S_4F_{ m LRV}(4)ig angle$	$I_{1,R}(\epsilon) 2 \Re ig(\mathcal{I}_1(\epsilon) ig)$	$\frac{\beta_0}{\epsilon}I_2$
$\left\langle (I-S_4)C_{4i}\Delta^{(4)}F_{ m LV}(4) ight angle$	$I_C(\epsilon) 2 \Re ig(ar{\mathcal{I}}_1(\epsilon) ig)$	$-rac{eta_0}{\epsilon}I$
$\left\langle (I - S_4) C_{4i} \left[\left\langle S_5 \Delta^{(45)} F_{\rm LM}^{4>5}(4,5) \right\rangle \right] + S_5 \left(I - S_4 \right) C_{4i} \Delta^{(45)} F_{\rm LM}^{5>4}(4,5) \right\rangle$	$I_{1R}(\epsilon) I_C(\epsilon)$	
A t	erm $I_C^2(\epsilon)$ needed to	recor $I_1(\epsilon) + I_{1,I}$ but with
reco →	estruct $(I_1 + I_{1,R} + I_C)^2$ ook at double-collinear	

$$K = \left(\frac{67}{18} - \frac{\pi^2}{6}\right) C_A - \frac{10}{9}T_A$$

 $\Gamma_R n_f$.

Hard-collinear real-virtual and single soft RR

Manipulations required to reconstruct recurring structures and match, for instance, PDFs-like corrections

$$\begin{aligned} \frac{1}{2} \left\langle \sum_{i,j} (I - S_4) \left(I - S_5 \right) C_{4i} C_{5j} \, \Delta^{(45)} F_{\text{LM}}(4,5) \right\rangle &= \left\langle \frac{1}{2} [\alpha_s]^2 \left(I_C(\epsilon) \right)^2 F_{\text{LM}} + \sum_{k=1}^2 G^{(k)}(z) F_{\text{LM}}^{(k)}(z) + G^{(3)} F_{\text{LM}} \right. \\ &+ \frac{1}{2} \left[\alpha_s \right]^2 \sum_{k=1}^2 \left[P_{qq}^{\text{gen}} \otimes P_{qq}^{\text{gen}}(z) \right]_{\text{pdf}} F_{\text{LM}}^{(k)}(z) + [\alpha_s]^2 \sum_{k=1}^2 P_{qq}^{\text{gen}} \otimes I_C(z,\epsilon) F_{\text{LM}}^{(k)}(z) \\ &+ [\alpha_s]^2 P_{qq}^{\text{gen}}(z_1) \otimes F_{\text{LM}}(z_1, z_2) \otimes P_{qq}^{\text{gen}}(z_2) \right\rangle \end{aligned}$$

Cancellation of the double-color-correlated contributions

$$\frac{1}{2} \left\langle \left(\frac{\alpha_s}{2\pi} 2 \Re \left(\mathcal{I}_1(\epsilon) \right) + [\alpha_s] I_{1,R}(\epsilon) + [\alpha_s] I_C(\epsilon) \right)^2 F_{\text{LM}} \right\rangle = \frac{1}{2} [\alpha_s]^2 \left\langle I_{1,T}^2(\epsilon) F_{\text{LM}} \right\rangle$$

 $\longrightarrow \text{ finite}$

Same combination encountered at NLO: finite, and easy to be computed.

Conclusions

- 1. Subtraction schemes are necessary ingredients to obtain precise theoretical predictions.
- 2. Nested-soft collinear subtraction provides an efficient method to deal with n-parton processes:
 - I. combine different subtraction terms to get rid of color-correlations (and boosted contributions),
 - II. reduce the subtraction terms to few, recurring structures.
- 3. Pole cancellation proven analytically for the case-study $q\bar{q} \rightarrow V + ggg$.

Finite remainders in agreement with the "old-fashion approach"

Work in progress

- 1. Generalisation to $q\bar{q} \rightarrow V + ng$
- 2. Generalisation to arbitrary final- and initial-state partons.

$$-\frac{\alpha_{s}}{2\pi}\frac{\beta_{0}}{\epsilon}\left\langle\left[\left[\alpha_{s}\right]I_{1,R}(\epsilon)+\frac{\alpha_{s}}{2\pi}2\Re\left(\mathcal{I}_{1}(\epsilon)\right)+I_{C}(\epsilon)\right]F_{\mathrm{LM}}\right\rangle\right.$$

$$+\left(\frac{\alpha_{s}}{2\pi}\right)^{2}\frac{\beta_{0}}{\epsilon}c_{\epsilon}\left\langle2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]^{2}\frac{\beta_{0}}{\epsilon}c_{2}(\epsilon)\left\langle\widetilde{I}_{1,R}(2\epsilon)F_{\mathrm{LM}}\right\rangle\right]+\left[\alpha_{s}\right]^{2}\beta_{0}c_{3}(\epsilon)\left\langle\widetilde{I}_{1,R}(2\epsilon)F_{\mathrm{LM}}\right\rangle$$

$$+\left\langle\left[-\left[\alpha_{s}\right]^{2}C_{A}A_{K}\widetilde{I}_{1,R}(2\epsilon)+\left[\alpha_{s}\right]^{2}\frac{C_{A}}{\epsilon^{2}}c_{1}(\epsilon)\widetilde{I}_{1,R}(2\epsilon)+\left(\frac{\alpha_{s}}{2\pi}\right)^{2}c_{\epsilon}K2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)\right]F_{\mathrm{LM}}\right\rangle$$

$$\frac{\alpha_{s}}{2\pi}\left[\alpha_{s}\right]\frac{\beta_{0}}{\epsilon}\left\langle I_{1,T}(2\epsilon)F_{\mathrm{LM}}\right\rangle-\frac{\alpha_{s}}{2\pi}\left[\alpha_{s}\right]\frac{\beta_{0}}{\epsilon}\left\langle I_{C}(2\epsilon)F_{\mathrm{LM}}\right\rangle+\Sigma_{T_{i}\cdot T_{j},\mathrm{fin}}^{(1)}$$

No singular, color-correlated contributions

$$rac{eta_0}{\epsilon} \, [lpha_s] I_{1,T}(\epsilon)$$

$$-\frac{\alpha_{s}}{2\pi}\frac{\beta_{0}}{\epsilon}\left\langle\left[\left[\alpha_{s}\right]I_{1,R}(\epsilon)+\frac{\alpha_{s}}{2\pi}2\Re\left(\mathcal{I}_{1}(\epsilon)\right)+I_{C}(\epsilon)\right]F_{\mathrm{LM}}\right\rangle\right.\\+\left(\frac{\alpha_{s}}{2\pi}\right)^{2}\frac{\beta_{0}}{\epsilon}c_{\epsilon}\left\langle2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]^{2}\frac{\beta_{0}}{\epsilon}c_{2}(\epsilon)\left\langle\widetilde{I}_{1,R}(2\epsilon)F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]^{2}\beta_{0}c_{3}(\epsilon)\left(\widetilde{I}_{1,R}(2\epsilon)F_{\mathrm{LM}}\right)\\+\left\langle\left[-\left[\alpha_{s}\right]^{2}C_{A}A_{K}\left(\widetilde{I}_{1,R}(2\epsilon)\right)+\left[\alpha_{s}\right]^{2}\frac{C_{A}}{\epsilon^{2}}c_{1}(\epsilon)\left(\widetilde{I}_{1,R}(2\epsilon)\right)+\left(\frac{\alpha_{s}}{2\pi}\right)^{2}c_{\epsilon}K2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)\right]F_{\mathrm{LM}}\right\rangle\right.\\\left.\frac{\alpha_{s}}{2\pi}\left[\alpha_{s}\right]\left\langle c_{\epsilon}KI_{1,T}(2\epsilon)F_{\mathrm{LM}}\right\rangle-\frac{\alpha_{s}}{2\pi}\left[\alpha_{s}\right]\left\langle c_{\epsilon}KI_{1,R}(2\epsilon)F_{\mathrm{LM}}\right\rangle-\frac{\alpha_{s}}{2\pi}\left[\alpha_{s}\right]\left\langle c_{\epsilon}KI_{C}(2\epsilon)F_{\mathrm{LM}}\right\rangle\right]$$

$$\frac{1}{2} + [\alpha_{s}]^{2} \frac{\beta_{0}}{\epsilon} c_{2}(\epsilon) \left\langle \widetilde{I}_{1,R}(2\epsilon) F_{\mathrm{LM}} \right\rangle + [\alpha_{s}]^{2} \beta_{0} c_{3}(\epsilon) \left\langle \widetilde{I}_{1,R}(2\epsilon) F_{\mathrm{LM}} \right\rangle$$

$$s_{s}^{2} \frac{C_{A}}{\epsilon^{2}} c_{1}(\epsilon) \left\langle \widetilde{I}_{1,R}(2\epsilon) \right\rangle + \left(\frac{\alpha_{s}}{2\pi} \right)^{2} c_{\epsilon} K 2 \Re \left(\mathcal{I}_{1}(2\epsilon) \right) \right] F_{\mathrm{LM}}$$

$$s_{s}^{2} \frac{\alpha_{s}}{\epsilon^{2}} [\alpha_{s}] \left\langle c_{\epsilon} K I_{1,T}(2\epsilon) F_{\mathrm{LM}} \right\rangle - \frac{\alpha_{s}}{2\pi} [\alpha_{s}] \left\langle c_{\epsilon} K (I_{1,R}(2\epsilon)) F_{\mathrm{LM}} \right\rangle - \frac{\alpha_{s}}{2\pi} [\alpha_{s}] \left\langle c_{\epsilon} K I_{C}(2\epsilon) F_{\mathrm{LM}} \right\rangle$$

TINITE

Singular and color-correlated

color-uncorrelated

$$-\frac{\alpha_{s}}{2\pi}\frac{\beta_{0}}{\epsilon}\left\langle \left[\left[\alpha_{s}\right]I_{1,R}(\epsilon)+\frac{\alpha_{s}}{2\pi}2\Re\left(\mathcal{I}_{1}(\epsilon)\right)+I_{C}(\epsilon)\right]F_{\mathrm{LM}}\right\rangle \right.$$

$$\left.+\left(\frac{\alpha_{s}}{2\pi}\right)^{2}\frac{\beta_{0}}{\epsilon}c_{\epsilon}\left\langle 2\Re(\mathcal{I}_{1}(2\epsilon))F_{\mathrm{LM}}\right\rangle +\left[\alpha_{s}\right]^{2}\frac{\beta_{0}}{\epsilon}c_{2}(\epsilon)\left\langle \tilde{I}_{1,R}(2\epsilon)F_{\mathrm{LM}}\right\rangle +\left[\alpha_{s}\right]^{2}\beta_{0}c_{3}(\epsilon)\left\langle \tilde{I}_{1,R}(2\epsilon)F_{\mathrm{LM}}\right\rangle \right.$$

$$\left.+\left\langle \left[-\left[\alpha_{s}\right]^{2}C_{A}A_{K}\tilde{I}_{1,R}(2\epsilon)+\left[\alpha_{s}\right]^{2}\frac{C_{A}}{\epsilon^{2}}c_{1}(\epsilon)\tilde{I}_{1,R}(2\epsilon)+\left(\frac{\alpha_{s}}{2\pi}\right)^{2}c_{\epsilon}K2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)\right]F_{\mathrm{LM}}\right\rangle \right.$$

$$\left.+\left\langle \left[-\left[\alpha_{s}\right]^{2}C_{A}A_{K}\tilde{I}_{1,R}(2\epsilon)+\left[\alpha_{s}\right]^{2}\frac{C_{A}}{\epsilon^{2}}c_{1}(\epsilon)\tilde{I}_{1,R}(2\epsilon)+\left(\frac{\alpha_{s}}{2\pi}\right)^{2}c_{\epsilon}K2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)\right]F_{\mathrm{LM}}\right\rangle \right.$$

$$\left.-C_{A}A_{K}+\frac{C_{A}}{\epsilon^{2}}c_{1}\quad\text{finite}\right.$$

$$\left.$$

Peculiar dependence in the color-correlations, that fits perfectly a contribution from triple-collinear sectors $\Theta^{(b)}$

$$\left\langle \sum_{i \in \mathrm{TC}} (I - S_{45}) C_{45} \Theta^{(b)} (F_{\mathrm{LM}} - 2S_5 F_{\mathrm{LM}}^{4>5}) \omega_{4i5i} \Delta^{(45)} \right\rangle \longrightarrow -4[\alpha_s]^2 C_A 2^{-2\epsilon} \delta_g(\epsilon) \left\langle I_{1,R}(2\epsilon) F_{\mathrm{LM}} \right\rangle + \Sigma_{T_i \cdot T_j, \,\mathrm{fin}}^{(2)} \propto -\frac{C_A (C_A + 2C_F)}{\epsilon^2} \left(-\frac{131}{72} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{131}{72} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac{11}{6} \log 2 \right) + \frac{11}{6} \log 2 \left(-\frac{11}{12} + \frac{\pi^2}{6} + \frac$$

Useful relations:

$$\begin{split} I_{1,R}(\epsilon) &= -\frac{(2E_{\max}/\mu)^{-2\epsilon}}{\epsilon^2} \sum_{i\neq j}^n \eta_{ij}^{-\epsilon} K_{ij} \mathbf{T}_i \cdot \mathbf{T}_j \,, \\ K_{ij} &= \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} \eta_{ij}^{1+\epsilon} \,_2F_1(1,1,1-\epsilon,1-\eta_{ij}) \\ &= \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} \,_2F_1(-\epsilon,-\epsilon,1-\epsilon,1-\eta_{ij}) \end{split}$$
$$\tilde{I}_{1,R}(2\epsilon) &= -\frac{(2E_{\max}/\mu)^{-4\epsilon}}{(2\epsilon)^2} \sum_{i\neq j}^n \eta_{ij}^{-2\epsilon} \widetilde{K}_{ij} \mathbf{T}_i \cdot \mathbf{T}_j \\ \tilde{K}_{ij} &= \frac{\Gamma^2(1-2\epsilon)}{\Gamma(1-4\epsilon)} \eta_{ij}^{1+3\epsilon} \,_2F_1(1+\epsilon,1+\epsilon,1-\epsilon,1-\eta_{ij}) \\ &= \frac{\Gamma^2(1-2\epsilon)}{\Gamma(1-4\epsilon)} \,_2F_1(-2\epsilon,-2\epsilon;1-\epsilon,1-\eta_{ij}) \,. \end{split}$$

$$\widetilde{K}_{ij}(\epsilon) = K_{ij}(2\epsilon) \left[\frac{{}_2F_1(-2\epsilon, -2\epsilon; 1-\epsilon, 1-\eta_{ij})}{{}_2F_1(-2\epsilon, -2\epsilon, 1-2\epsilon, 1-\eta_{ij})} \right] = K_{ij}(2\epsilon) \left[1 + \mathcal{O}(\epsilon^3) \right]$$

 $\tilde{I}_{1,R}(2\epsilon) = I_{1,R}(2\epsilon) + \mathcal{O}(\epsilon)$

Useful definitions:

$$\hat{\Gamma}_{q} = \frac{1}{\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \left(\frac{2E_{1}}{\mu}\right)^{-2\epsilon} \left[\gamma_{q} + \frac{C_{F}}{\epsilon} (1-e^{-2\epsilon L_{1}})\right] F_{\text{LM}}(1\dots N) \sim \frac{1}{\epsilon} (\gamma_{q} + 2C_{F} L_{1}) + \mathcal{O}(\epsilon^{0})$$

$$\hat{\Gamma}_{g} = \frac{1}{\epsilon} C_{A} \left(\frac{2E_{n}}{\mu}\right)^{-2\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \left[\gamma_{z,g \to gg}^{22} + \frac{1}{\epsilon} (1-e^{-2\epsilon L_{n}})\right] \qquad \gamma_{z,g \to gg}^{22} \sim \frac{11}{6} + \frac{1}{9} \left(67 - 6\pi^{2}\right) \epsilon + \dots$$

$$\hat{\Gamma}_{g}(2\epsilon) = \frac{1}{2\epsilon} C_{A} \left(\frac{2E_{n}}{\mu}\right)^{-4\epsilon} \frac{\Gamma^{2}(1-2\epsilon)}{\Gamma(1-4\epsilon)} \left[\gamma_{z,g \to gg}^{44} + \frac{1}{2\epsilon} (1-e^{-4\epsilon L_{n}})\right]$$

$$\begin{split} \hat{\Gamma}_{q} &= \frac{1}{\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \Big(\frac{2E_{1}}{\mu}\Big)^{-2\epsilon} \Big[\gamma_{q} + \frac{C_{F}}{\epsilon} (1-e^{-2\epsilon L_{1}})\Big] F_{\mathrm{LM}}(1\dots N) \sim \frac{1}{\epsilon} (\gamma_{q} + 2C_{F} L_{1}) + \mathcal{O}(\epsilon^{0}) \\ \hat{\Gamma}_{g} &= \frac{1}{\epsilon} C_{A} \Big(\frac{2E_{n}}{\mu}\Big)^{-2\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \Bigg[\gamma_{z,g \to gg}^{22} + \frac{1}{\epsilon} (1-e^{-2\epsilon L_{n}})\Bigg] \qquad \gamma_{z,g \to gg}^{22} \sim \frac{11}{6} + \frac{1}{9} \left(67 - 6\pi^{2}\right) \epsilon + \dots \\ \hat{\Gamma}_{g}(2\epsilon) &= \frac{1}{2\epsilon} C_{A} \Big(\frac{2E_{n}}{\mu}\Big)^{-4\epsilon} \frac{\Gamma^{2}(1-2\epsilon)}{\Gamma(1-4\epsilon)} \Bigg[\gamma_{z,g \to gg}^{44} + \frac{1}{2\epsilon} (1-e^{-4\epsilon L_{n}})\Bigg] \end{split}$$

$$\begin{split} \hat{\Gamma}_{q} &= \frac{1}{\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \Big(\frac{2E_{1}}{\mu}\Big)^{-2\epsilon} \Big[\gamma_{q} + \frac{C_{F}}{\epsilon} (1-e^{-2\epsilon L_{1}})\Big] F_{\mathrm{LM}}(1\dots N) \sim \frac{1}{\epsilon} (\gamma_{q} + 2C_{F} L_{1}) + \mathcal{O}(\epsilon^{0}) \\ \hat{\Gamma}_{g} &= \frac{1}{\epsilon} C_{A} \Big(\frac{2E_{n}}{\mu}\Big)^{-2\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \Bigg[\gamma_{z,g \to gg}^{22} + \frac{1}{\epsilon} (1-e^{-2\epsilon L_{n}})\Bigg] \qquad \gamma_{z,g \to gg}^{22} \sim \frac{11}{6} + \frac{1}{9} \left(67 - 6\pi^{2}\right) \epsilon + \dots \\ \hat{\Gamma}_{g}(2\epsilon) &= \frac{1}{2\epsilon} C_{A} \Big(\frac{2E_{n}}{\mu}\Big)^{-4\epsilon} \frac{\Gamma^{2}(1-2\epsilon)}{\Gamma(1-4\epsilon)} \Bigg[\gamma_{z,g \to gg}^{44} + \frac{1}{2\epsilon} (1-e^{-4\epsilon L_{n}})\Bigg] \end{split}$$

$$P_{qq}^{\mathrm{gen}}(z) = -\frac{1}{\epsilon} \hat{P}_{qq}^{\mathrm{AP},0}(z) + P_{\mathrm{fin},\mathrm{qq}}'(z)$$

$$G^{(1)}(z) F_{\rm LM}^{(1)} = \frac{1}{2} [\alpha_s]^2 \left[-P_{qq}^{\rm gen} \otimes \Gamma_q^{(1)}(z) F_{\rm LM}^{(1)}(1_q, 2_{\bar{q}}; 3_g | z) + \Gamma_q^{(1)} P_{qq}^{\rm gen} \otimes F_{\rm LM}^{(1)}(1_q, 2_{\bar{q}}; 3_g | z) \right]$$

$$G^{(3)}(L_3) = \frac{1}{2} \frac{[\alpha_s]^2}{\epsilon^2} C_A^2 \left(\frac{2E_3}{\mu}\right)^{-4\epsilon} \left(\frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)}\right)^2 \left(\gamma_{z,g\to gg}^{22} + \frac{1}{\epsilon}\right) \left(\gamma_{z,g\to gg}^{42} - \gamma_{z,g\to gg}^{22}\right)$$

1. Clear understanding of which singular configurations do actually contribute

Do non-commutative limits actually contribute?

collinear limits order -> redundant configurations were included

Gauge invariant amplitudes are free of entangled singularities thanks to color coherence: soft parton does not resolve angles of the collinear partons

[Czakon 1005.0274]

2. Get to the point where the problem is well defined

a) Identify the overlapping singularities b) Regulate them

Soft and collinear modes do not intertwine: soft subtraction can be done globally. Collinear singularities have still to be regulated. Strongly ordered configurations have to be properly taken into account.

Phase space partitions

Efficient way to simplify the problem: introduce **partition functions** (following FKS philosophy):

- Unitary partition
- Select a minimum number of singularities in each sector
- Do not affect the analytic integration of the counterterms

Definition of partition functions benefits from remarkable degree of **freedom**: different approaches can be implemented

Examples: Nested soft-collinear subtraction $q\bar{q} \rightarrow Z \rightarrow e^-e^+gg$ [Caola, Melnikov, Röntsch 1702.01352]

$$1 = \omega^{51,61} + \omega^{52,62} + \omega^{51,62} + \omega^{52,61}$$
$$\omega^{51,61} = \frac{\rho_{25}\rho_{26}}{(1 + \frac{\rho_{15}}{2} + \frac{\rho_{16}}{2})}$$

Phase space partitions

Efficient way to simplify the problem: introduce **partition functions** (following FKS philosophy):

- Unitary partition
- Select a minimum number of singularities in each sector
- Do not affect the analytic integration of the counterterms

Definition of partition functions benefits from remarkable degree of **freedom**: different approaches can be implemented

Examples: Nested soft-collinear subtraction $q\bar{q} \rightarrow Z \rightarrow e^-e^+gg$ [Caola, Melnikov, Röntsch 1702.01352]

Advantages:

- 1. Simple definition
- 2. Structure of collinear singularities fully defined
- 3. Same strategy holds for NNLO mixed QCDxEW processes
- 4. Minimum number of sector

Disadvantages:

- -> angles defined in a given reference frame
- 2. Theta function

1. Partition based on angular ordering -> Lorentz invariance not preserved

3. Solve the PS integrals

The problem is now well defined:

A. Singular kernels and their nested limits have to be subtracted from the double real correction to get integrable object

$$\int d\Phi_{n+2} RR_{n+2} = \int d\Phi_{n+2} \left[RR_{n+2} - K_{n+2} \right] + \int d\Phi_{n+2} K_{n+2} \qquad \qquad K_{n+2} \supset C_{ij}, \ C_{kl}, \ S_i, \ S_{ij}, \ S_{$$

B. Counterterms have to be integrated over the unresolved phase space

$$I = \int PS_{unres.} \otimes Li$$

The 'Limit' component is universal and known. The phase space is well defined. Constraints may vary depending on the scheme.

Several kinematic structures have to be integrated **analytically** over a 6-dim PS.

Different approximations and techniques can be applied: the results assume different form depending on the adopted strategy

Two main structure are the most complicated ones and affect most of the physical processes:

- Double soft
- Triple collinear

$imit \otimes Constraints$

Kernels integration

Examples: Nested soft-collinear subtraction $q\bar{q} \rightarrow Z \rightarrow e^- e^+ g g$ [Caola, Delto, Frellesvig, Melnikov 1807.05835, Delto, Melnikov 1901.05213]

Two soft parton (5,6) and two hard massless radiator (1,2): arbitrary relative angle between the three-momenta of the radiators

$$I_{12}^{(gg)(56)} = \frac{(1-\epsilon)(s_{51}s_{62} + s_{52}s_{61}) - 2s_{56}s_{12}}{s_{56}^2(s_{51} + s_{61})(s_{52} + s_{62})} + s_{12} \frac{s_{51}s_{62} + s_{52}s_{61} - s_{56}s_{12}}{s_{56}s_{51}s_{62}s_{52}s_{61}} \left[1 - \frac{1}{2} \frac{s_{51}s_{62} + s_{52}s_{61}}{(s_{51} + s_{61})(s_{52} + s_{62})}\right]$$

$$I_{S_{56}}^{(gg)} = \int [dk_5] [dk_6] \,\theta(E_{\text{max}} - E_5) \,\theta(E_5 - E_6) \,I_{12}^{(gg)(56)}(k_1, k_2, k_5, k_6) \qquad [df_i] = \frac{d^d k_i}{(2\pi)^d} (2\pi) \,\delta_+(k_i^2)$$

$$E_5 = E_{\max} \xi \qquad E_6 = E_{\max} \xi z \qquad 0 <$$

after defining integral families, integration-by-part identities. Differential equations w.r.t. the ratio of energies of emitted gluons at fixed angle. Boundary conditions for z=0, and arbitrary angle

 $< \xi < 1, 0 < z < 1$

Reverse unitarity: map phase space integrals onto loop integrals [Anastasiou, Melnikov 0207004]