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Take-home message 

When the complexity of the problem increases, 
look at simple, recurring structures! 
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The problem

• Phase space singularities of the real radiation


• Explicit poles from virtual contributions } Slicing 
Subtraction This talk

∫ dΦg = ∫ [ − ] dΦg + ∫ dΦg

Finite in d=4, integrable numerically 
exposes  the same  poles as 

the virtual correction 
1/ϵ
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Hard collisions at the LHC are described in terms of quark and gluon cross sections  

dσ = ∫ dx1 dx2 fi (x1) fj (x2) dσij ℱ(1 + 𝒪(
Λn

QCD

Qn )) , n ≥ 1

[Salam @ICHEP2023]
dσij = dσij, LO(1 + αs ΔQCD

ij, NLO + αew ΔEW
ij, NLO + α2

s ΔQCD
ij, NNLO + αs αew ΔQCD⊗EW

ij, NNLO + …)

Problem: extract infrared   poles in d-dimension without integrating over the resolved phase space 

                       fully differential predictions for IR-safe observables

1/ϵ



Why is NNLO so difficult?

Subtraction

∫ |ℳ |2 FJ dϕd = ∫ (|ℳ |2 FJ − K) dϕ4 + ∫ K dϕd

Common starting point, common problems:


- clear understanding of which singular configurations do actually contribute,


- Understanding how to deal with multiple radiators and overlapping 
singularities, 

- Integrate the subtraction terms in d-dimensions. 
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Many schemes are available: 

Antenna [Gehermann-De Ridder et al. 0505111] 

ColorfullNNLO  [Del Duca et al. 1603.08927] 

Nested-soft-collinear subtraction  [Caola et al. 1702.01352] 

STRIPPER subtraction  [Czakon 1005.0274] 

Analytic Sector Subtraction  [Magnea et al. 1806.09570]

Geometric IR subtraction  [Herzog 1804.07949] 

Unsubtraction  [Sborlini et al. 1608.01584] 

FDR  [Pittau, 1208.5457] 

Universal Factorisation [Sterman et al. 2008.12293] 

Despite the common problem a variety of different 
strategies have been designed.


Most of them feature a relevant degree of complexity, which 
might hide simplifications and recurring patterns. 




Nested soft-collinear subtraction at NNLO: generalities
Extension of FKS subtraction to NNLO [Caola, Melnikov, Röntsch 1702.01352]
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k1

k1 + k2 + k3

k2

k1 + k2

k3

∼
1

E1 E2 (1 − ⃗n 1 ⋅ ⃗n 2)
1

E1 E2(1 − ⃗n 1 ⋅ ⃗n 2) + E1 E3(1 − ⃗n 1 ⋅ ⃗n 3) + E2 E3(1 − ⃗n 2 ⋅ ⃗n 3)

Strongly-ordered configurations have also to be included:

1
2

3

1

2
3

1

2

3
⃗n 1 ⋅ ⃗n 2 < ⃗n 1 ⋅ ⃗n 3 ⃗n 2 ⋅ ⃗n 3 < ⃗n 1 ⋅ ⃗n 3 ⃗n 1 ⋅ ⃗n 3 < ⃗n 2 ⋅ ⃗n 3

E1 ≪ E2 , E2 ≪ E1

E1 → 0 E2 → 0 E1, E2 → 0
⃗n 1 ∥ ⃗n 2 ∥ ⃗n 3

⃗n 1 ∥ ⃗n 2

Soft limits: 
• Non-trivial structure of double-soft eikonal 

• Strongly-ordered limits to disentangle 

1 = θ(Eg5
− Eg6) + θ(Eg6

− Eg5) Eg6

Eg5

Eg6
> Eg5

Eg5
> Eg6

q(1) q̄(2)

l(3) l̄(4)

g(5)g(6)

g(6)

g(5)

g(5)

g(6) g(5)
g(6)



Nested soft-collinear subtraction at NNLO: generalities
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k1

k1 + k2 + k3

k2

k1 + k2

k3

∼
1

E1 E2 (1 − ⃗n 1 ⋅ ⃗n 2)
1

E1 E2(1 − ⃗n 1 ⋅ ⃗n 2) + E1 E3(1 − ⃗n 1 ⋅ ⃗n 3) + E2 E3(1 − ⃗n 2 ⋅ ⃗n 3)

E1 → 0 E2 → 0 E1, E2 → 0
⃗n 1 ∥ ⃗n 2 ∥ ⃗n 3

⃗n 1 ∥ ⃗n 2

Collinear limits:  
• Single, double and triple collinear limits to disentangle 

• Strongly-ordered limits to disentangle in triple collinear sectors


η6i

η5i

b c
a

d

q(1) q̄(2)

l(3) l̄(4)

g(5)g(6)

g(6)

g(5)

g(5)

g(6) g(5)
g(6)

1 = ∑
i,j

ωi5,j6

ω5i,6i = ω5i,6i (θa + θb + θc + θd)

ηab =
1 − cos ϑab
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Non-trivial structures to integrate  double-soft and triple-collinear kernels  [Caola, Delto, Frellesvig, Melnikov ’18, Delto, Melnikov ’19]  →

Strongly-ordered configurations have also to be included:

1
2

3

1

2
3

1

2

3
⃗n 1 ⋅ ⃗n 2 < ⃗n 1 ⋅ ⃗n 3 ⃗n 2 ⋅ ⃗n 3 < ⃗n 1 ⋅ ⃗n 3 ⃗n 1 ⋅ ⃗n 3 < ⃗n 2 ⋅ ⃗n 3

E1 ≪ E2 , E2 ≪ E1

Extension of FKS subtraction to NNLO [Caola, Melnikov, Röntsch 1702.01352]



Nested soft-collinear subtraction at NNLO: generalities
Example: DIS [Asteriadis, Caola, Melnikov, Röntsch ’19]
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• Extract double soft singularities first 
( ) inserting the identity


• Gluons ordered in energy -> only one single 
soft singularity. Insert the identity


• Collinear singularities: partition function 
[Frixione, Kunszt, Signer ’96] and sectoring 
[Czakon ’10,11, Czakon, Heymes ’14] to 
separate overlapping singularities.

E5 ∼ E6 → 0

[thanks to Konstantin Asteriadis 
for the nice pictures in this slide]



Application to Z+j production
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Identify potentially unresolved partons  extra partitioning:→

State of the art:
Separation of complex  processes into simpler building blockspp → N

QCD corrections to Drell-Yan 
Both initial state momenta  
[Caola, Melnikov, Röntsch ‘19] 

Higgs decay 
Both final state momenta  

[Caola, Melnikov, Röntsch ‘19] 

Deep Inelastic Scattering 
One initial and one final state momenta  

[Asteriadis, Calola, Melnikov Röntsch ‘19]  

Focus on simple processes  full control of the procedure, check against analytic results sometime possible.→

Prototype for 

NNLO
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Application to Z+j production

Subtraction terms

Fully regulated 
contribution

1

2

3

4

5
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Application to Z+j production

Subtraction terms

Fully regulated 
contribution

1

2

3

4

5

Implemented numerically  
no issues in increasing the 

number of partons

→

In principle generalisable to n-partons
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Application to Z+j production
1

2

3

4

5

Drawbacks identified with Z+j

• The bookkeeping becomes immediately 
cumbersome  large number of subtraction terms. 


• Calculating all subtraction terms separately may 
hide a number of simplifications that can occur 
before explicit evaluation.


• Writing color-correlations as Casimir operators in the 
intermediate steps facilitates the calculation, BUT 
leads to non-trivial generalisation to n-partons.

→
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Summary of the talk
1

2

3

4

5

• A subtraction scheme based of FKS was proposed.


• Singular kernels for initial- and final-state emission are known. Integration of the most complicated double-unresolved limits performed 
for arbitrary kinematics. 

• Application to simple processes worked out straightforwardly. 


• In principle, general formulas for subtraction terms and fully-resolved components for an arbitrary number of partons are available. 


• This can be done because we know how to deal with multiple radiators [partitioning, energy ordering]


• However, for non-trivial processes (e.g. V+j) several difficulties arise: partitioning, energy ordering and Casimir operators obscure 
simplifications that are suggested by the simple structure of Catani’s operator.


• This suggests that we may need to take some steps back.



Lesson from NLO: qq̄ → V + ng (+gk)
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Virtual corrections: color-correlations, elastic terms

Soft real: color-correlations, elastic terms



Lesson from NLO: qq̄ → V + ng (+gk)
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Virtual corrections: color-correlations, elastic terms

Soft real: color-correlations, elastic terms

Hard-collinear IS: no color-correlations, boosted and elastic terms

Hard-collinear FS: no color-correlations, elastic terms Define a collinear operator 

PDFs renormalisation: no color-correlations, boosted terms 
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where the subtraction for the real contribution is done iteratively starting with the soft singularities, we get

Lesson from NLO: qq̄ → V + ng (+gk)
Combining everything together 
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where the subtraction for the real contribution is done iteratively starting with the soft singularities, we get

Lesson from NLO: qq̄ → V + ng (+gk)
Combining everything together 

manifestly finite

Simple interplay between  and [V + Si R + (I − Si)Cij R]elastic [(1 − Si)Cij R]boost
+ PDFs

⟹ FINITE



Lesson from NLO

17

Simple interplay between  and  should arise also at NNLO.[V + Si R + (I − Si)Cij R]elastic [(1 − Si)Cij R]boost
+ PDFs

What we are going to see

• Starting from IR poles of double-virtual, we want to find subtraction terms that can “complete” it:


• identify structures similar to those encountered at NLO,


• get rid of color-correlations and reduce the rest to a sum over external-leg contributions.


• Elementary, my dear Watson! 

• Well… yes and no: 


• Clearly the poles have to cancel, thus a relations between different contributions must exist.

• However, finding such relations is not easy because of partitioning and energy ordering, that 

are crucial to fully define the singular configurations. 



Double virtual contribution
Universal structure, regulated by Catani’s operator, valid for any number of external 
coloured partons [Catani ’98] . Features a single structure with color-correlations
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Color-correlations inside 


(already encountered at NLO)

Finite remainders from 2-loop 
and (1-loop)  amplitudes2

Process-dependent

αs

αew

αs αs

q

q̄ l+

l−

q

q̄

q̄

q

l−

l−

l+

l+

...

...



Double virtual contribution

   suggests a specific patter of cancellation. →

However:


- different arguments 

- different powers  

- different prefactors
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Color-correlations inside 


(already encountered at NLO)

Finite remainders from 2-loop 
and (1-loop)  amplitudes2

Process-dependent

αs

αew

αs αs

q

q̄ l+

l−

q

q̄

q̄

q

l−

l−

l+

l+

...

...

Universal structure, regulated by Catani’s operator, valid for any number of external 
coloured partons [Catani ’98] . Features a single structure with color-correlations



Double soft
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Different color structure: single-correlated ( ) and double-correlated ( ) 
[Catani, Grazzini ’99]

T2 T4

Same structure as NLO with color-correlations 

...

ki

kj

ki kj

...

+ +

ki

kj

...

+

ki

kj

...

k5

k4

k5 k5k4
k4



Double soft

δ =
δ12

2
, s = sin

δ12

2
, c = cos

δ12

2 Cin(z) =
Lin(eiz) + Lin(e−iz)

2
, Sin(z) =

Lin(eiz) − Lin(e−iz)
2i

[Caola, Delto, Frellesvig, Melnikov 1807.05835] 

Quite involved expression… however…
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Valid for arbitrary angle between the emitters

Different color structure: single-correlated ( ) and double-correlated ( ) 
[Catani, Grazzini ’99]

T2 T4



Double soft

However the pole content can be expressed in a compact way
Another structure with color-correlations, 

but different wrt NLO

Different 
structures, 
but clearly 

related 
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Same structure as NLO with color-correlations 

...

ki

kj

ki kj

...

+ +

ki

kj

...

+

ki

kj

...

k5

k4

k5 k5k4
k4

Different color structure: single-correlated ( ) and double-correlated ( ) 
[Catani, Grazzini ’99]

T2 T4



Soft real-virtual

After performing the integration over the unresolved parton phase space we get a compact expression:

New color structure -> finite after 
integration over unresolved PS,


Vanishes for 3 partons at Born-level
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Universal IR structure of RV-corrections under soft limit [Catani, Grazzini 0007142]
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Soft real-virtual

Structures and color coefficients 
already encountered in double-virtual 
and double-soft. 


A pattern begins to arise…
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Universal IR structure of RV-corrections under soft limit [Catani, Grazzini 0007142]
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integration over unresolved PS,


Vanishes for 3 partons at Born-level

SkFLRV(1 . . . n|k) = � g
2

s,b

nX

l,m=1

⇢
Slm(k)F (lm)

LV
� ↵s

2⇡

�0

✏
Slm(k)F (lm)

LM
� [↵s]CAAK 2�✏

⇣
Slm(k)

⌘1+✏
F

(lm)

LM

+ [↵s]
2�✏

⇡�(1 + ✏)�3(1� ✏)

✏�(1� 2✏)

nX

p=1

p 6=l,m,k

Slm(k)
⇣
Smp(k)

⌘✏
F

(lmp)
LM

�
,

(13.69)

Sab(k) =
pa · pb

pa · k pb · k
(13.70)

– 84 –

SkFLRV(1 . . . n|k) = � g
2

s,b

nX

l,m=1

⇢
Slm(k)F (lm)

LV
� ↵s

2⇡

�0

✏
Slm(k)F (lm)

LM
� [↵s]CAAK 2�✏

⇣
Slm(k)

⌘1+✏
F

(lm)

LM

+ [↵s]
2�✏

⇡�(1 + ✏)�3(1� ✏)

✏�(1� 2✏)

nX

p=1

p 6=l,m,k

Slm(k)
⇣
Smp(k)

⌘✏
F

(lmp)
LM

�
,

(13.69)

Sab(k) =
pa · pb

pa · k pb · k
(13.70)

– 84 –

After performing the integration over the unresolved parton phase space we get a compact expression:

k



Hard-collinear real-virtual and single soft RR

One-loop splitting functions, 
known analytically
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Also in this case the IR structure is know in full generality [Kosower ‘99, Bern, Del Duca et al. ‘99]. 
For  the integrated contribution readsqq̄ → V + ggg

Same structure as NLO

Single soft: different subtraction terms combined  careful with the limits order→



Status so far
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A term  needed to 
reconstruct 


 look at double-collinear 

I2
C(ϵ)

(I1 + I1,R + IC)2

→

reconstruct 
 

but with extra 
I1(ϵ) + I1,R(ϵ) + IC(ϵ)

1/ϵ

Clear interplay   


non-transparent 
cancellation

→ CA, 2ϵ

Suggest 
 

but with extra 
I1(2ϵ) + I1,R(2ϵ) + IC(2ϵ)

1/ϵ



Hard-collinear real-virtual and single soft RR
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Manipulations required to reconstruct recurring structures and match, for instance, PDFs-like corrections 

Cancellation of the double-color-correlated contributions

Same combination encountered at NLO: 
finite, and easy to be computed.



Conclusions
1. Subtraction schemes are necessary ingredients to obtain precise theoretical predictions.


2. Nested-soft collinear subtraction provides an efficient method to deal with n-parton processes:


I. combine different subtraction terms to get rid of color-correlations (and boosted contributions),


II. reduce the subtraction terms to few, recurring structures.


3. Pole cancellation proven analytically for the case-study .qq̄ → V + ggg

Thank you!
28

Work in progress

1. Generalisation to 


2. Generalisation to arbitrary final- and initial-state partons. 

qq̄ → V + ng

Finite remainders in agreement with the “old-fashion approach”



Backup
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Cancellation of single-color-correlated contributions
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No singular, color-correlated contributions



Cancellation of single-color-correlated contributions
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finite
color-uncorrelatedSingular and color-correlated



Cancellation of single-color-correlated contributions
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finite
color-uncorrelatedSingular and color-correlated

finite

⟶

⟶
finite⏞



 color-uncorrelated1/ϵ

 color-uncorrelated1/ϵ2

∝
CA(CA + 2CF)

ϵ2 ( −
131
72

+
π2

6
+

11
6

log 2) +
1
ϵ

[color − correlations]

Cancellation of single-color-correlated contributions
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∝ −
CA(CA + 2CF)

ϵ2 ( −
131
72

+
π2

6
+

11
6

log 2) + 𝒪(ϵ−1)

Peculiar dependence in the color-correlations, that fits perfectly a contribution from triple-collinear sectors Θ(b)



Useful relations:
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Useful definitions:
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1. Clear understanding of which singular configurations do actually contribute

k1

k1 + k2 + k3

k2

k1 + k2

k3

∼
1

(k1 + k2)2

1
(k1 + k2 + k3)2

=
1

2k1 ⋅ k2

1
2k1 ⋅ k2 + 2k1 ⋅ k3 + 2k2 ⋅ k3

⟺ k1 → 0 and k2 ∥ k3

Entangled soft-collinear limits of diagrams can not be treated in a process-independent way.

Do non-commutative limits actually contribute?

Gauge invariant amplitudes are free of entangled singularities 
thanks to color coherence: soft parton does not resolve angles of the 
collinear partons

Soft-collinear limits can be described by taking the known soft and collinear limits sequentially 

STRIPPER was implemented taking into account all the possible choices of soft and 
collinear limits order -> redundant configurations were included 

36

[Czakon 1005.0274] 



2. Get to the point where the problem is well defined 

a) Identify the overlapping singularities 

b) Regulate them

k1

k1 + k2 + k3

k2

k1 + k2

k3

∼
1

E1 E2 (1 − ⃗n 1 ⋅ ⃗n 2)
1

E1E2(1 − ⃗n 1 ⋅ ⃗n 2) + E1E3(1 − ⃗n 1 ⋅ ⃗n 3) + E2E3(1 − ⃗n 2 ⋅ ⃗n 3)

 Soft origin
E1 → 0 E2 → 0 E1, E2 → 0

Collinear origin
⃗n 1 ∥ ⃗n 2 ⃗n 1 ∥ ⃗n 2 ∥ ⃗n 3

Soft and collinear modes do not intertwine: soft subtraction can be done globally. Collinear singularities have still to be regulated.

Strongly ordered configurations have to be properly taken into account.  

Includes strongly 
ordered configurations

1
2

3

1

2
3

1

2

3

⃗n 1 ⋅ ⃗n 2 < ⃗n 1 ⋅ ⃗n 3 ⃗n 2 ⋅ ⃗n 3 < ⃗n 1 ⋅ ⃗n 3 ⃗n 1 ⋅ ⃗n 3 < ⃗n 2 ⋅ ⃗n 3

E1 ≪ E2 , E2 ≪ E1
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Phase space partitions
Efficient way to simplify the problem: introduce partition functions (following FKS philosophy):

• Unitary partition 

• Select a minimum number of singularities in each sector 

• Do not affect the analytic integration of the counterterms 

Definition of partition functions benefits from remarkable degree of freedom: different approaches can be implemented

η61

η51

b c
a

d

q(1) q̄(2)

l(3) l̄(4)

g(5)g(6)

g(6)

g(5)

g(5)

g(6) g(5)
g(6)

q(1) q̄(2)

l(3) l̄(4)

g(5)g(6)

g(6)

g(5)

g(5)

g(6) g(5)
g(6)

1 = ω51,61 + ω52,62 + ω51,62 + ω52,61

Examples: Nested soft-collinear subtraction  [Caola, Melnikov, Röntsch 1702.01352]qq̄ → Z → e−e+ g g

ω52,62 =
ρ15 ρ16

d5 d6
(1 +

ρ25

d5621
+

ρ26

d5612
)

ω51,61 =
ρ25 ρ26

d5 d6
(1 +

ρ15

d5621
+

ρ16

d5612
) ω51,62 =

ρ25 ρ16 ρ56

d5 d6 d5612

ω52,61 =
ρ15 ρ26 ρ56

d5 d6 d5621

1 = θ(η61 <
η51

2 ) + θ( η51

2
< η61 < η51) + θ(η51 <

η61

2 ) + θ( η61

2
< η51 < η61)

ρab = 1 − cos ϑab , ηab = ρab/2

q(1) q̄(2)

l(3) l̄(4)

g(5)g(6)

g(6)

g(5)

g(5)

g(6) g(5)
g(6)

q(1) q̄(2)

l(3) l̄(4)

g(5)g(6)

g(6)

g(5)

g(5)

g(6) g(5)
g(6)

di=5,6 = ρ1i + ρ2i = 2

d5621 = ρ56 + ρ52 + ρ61

d5612 = ρ56 + ρ51 + ρ62

= θ(a) + θ(b) + θ(c) + θ(d)
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Phase space partitions

Definition of partition functions benefits from remarkable degree of freedom: different approaches can be implemented

Disadvantages: 

1. Partition based on angular ordering -> Lorentz invariance not preserved 

-> angles defined in a given reference frame 

2. Theta function 

Advantages: 

1. Simple definition 

2. Structure of collinear singularities fully defined

3. Same strategy holds for NNLO mixed QCDxEW processes 

4. Minimum number of sector

q(1) q̄(2)

l(3) l̄(4)

g(5)g(6)

g(6)

g(5)

g(5)

g(6) g(5)
g(6)

Efficient way to simplify the problem: introduce partition functions (following FKS philosophy):

• Unitary partition 

• Select a minimum number of singularities in each sector 

• Do not affect the analytic integration of the counterterms 

Examples: Nested soft-collinear subtraction  [Caola, Melnikov, Röntsch 1702.01352]qq̄ → Z → e−e+ g g
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3. Solve the PS integrals 

The problem is now well defined:

A. Singular kernels and their nested limits have to be subtracted from the double real correction to get integrable object


B. Counterterms have to be integrated over the unresolved phase space 

∫ dΦn+2 RRn+2 = ∫ dΦn+2 [RRn+2 − Kn+2] + ∫ dΦn+2 Kn+2 Kn+2 ⊃ Cij, Ckl, Si, Sij, Cijk

I = ∫ PSunres. ⊗ Limit ⊗ Constraints

Several kinematic structures have to be integrated analytically over a 6-dim PS. 

Different approximations and techniques can be applied: the results assume different form depending on the adopted strategy  

Two main structure are the most complicated ones and affect most of the physical processes:

- Double soft 
- Triple collinear 

The ‘Limit’ component is universal and known. The phase space is well defined. Constraints may vary depending on the scheme.
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Kernels integration

Examples: Nested soft-collinear subtraction  [Caola, Delto, Frellesvig, Melnikov 1807.05835, Delto, Melnikov 1901.05213]qq̄ → Z → e−e+ g g

I(gg)
S56

= ∫ [dk5] [dk6] θ(Emax − E5) θ(E5 − E6) I(gg)(56)
12 (k1, k2, k5, k6)

Two soft parton (5,6) and two hard massless radiator (1,2): arbitrary relative angle between the three-momenta of the radiators

E5 = Emax ξ E6 = Emax ξ z

I(gg)(56)
12 =

(1 − ϵ)(s51s62 + s52s61) − 2s56s12

s2
56(s51 + s61)(s52 + s62)

+ s12
s51s62 + s52s61 − s56s12

s56s51s62s52s61
[1 −

1
2

s51s62 + s52s61

(s51 + s61)(s52 + s62) ]

0 < ξ < 1 , 0 < z < 1

Reverse unitarity: map phase space integrals onto loop integrals [Anastasiou, Melnikov 0207004] 

after defining integral families, integration-by-part identities. Differential equations w.r.t. the ratio of energies of emitted gluons at fixed angle.


 Boundary conditions for z=0, and arbitrary angle 


[ dfi ] =
ddki

(2π)d
(2π) δ+(k2

i )
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