

RADCOR 2023

Muon-electron scattering at NNLO with McMule

Marco Rocco

Paul Scherrer Institut

 $1^{\rm st}$ June 2023

Based on 2212.06481

[Broggio, Engel, Ferroglia, Mandal, Mastrolia, Ronca, Rocco, Signer, Torres Bobadilla, Ulrich, Zoller]

M. Rocco, 01.06.23 - p.1/15

g-2

- historical discrepancy: dispersive vs experiment
- lattice predictions: recent progress
- recent discrepancy: theory* vs theory

• use unitarity and analyticity of the SM

$$a_{\mu}^{\mathrm{HLO}} \propto rac{lpha}{\pi} \int_{4m_{\pi}^2}^{\infty} rac{\mathrm{d}s}{s} K(s) R_{\gamma}^{\mathrm{had}}$$

- measure $e^+e^- \rightarrow \text{hadrons}$ for s > 0
- (use pQCD for $s \to \infty$)
- realise there are big uncertainties

use space-like data at low energies!

[Y. Ulrich]

- collide muons against electrons
- measure scattering angles: θ_e and θ_μ
- reconstruct $\Delta \alpha^{\rm had}(x < 0)$
- apply the space-like dispersive formula

$$a_{\mu}^{\rm HLO} \propto \frac{\alpha}{\pi} \int_{0}^{1} {\rm d}x \, (1\!-\!x) \, \Delta \alpha^{\rm had}(x$$

- realise the signal is $\mathcal{O}(10^{-3})$
 - \Rightarrow study background

M. Rocco, 01.06.23 - p.4/15

M. Rocco, 01.06.23 - p.5/15

- *photonic* and *fermionic* corrections
- photonic are split into three parts at NNLO:

$$d\sigma^{(2)} = \int d\Phi_n \,\mathcal{M}_n^{(2)} + \int d\Phi_{n+1} \,\mathcal{M}_{n+1}^{(1)} + \int d\Phi_{n+2} \,\mathcal{M}_{n+2}^{(0)}$$

• for each part identify gauge-invariant subsets based on lepton charges (q for electron, Q for muon)

 $(\mathsf{FKS}^{\ell} + \mathsf{DIMREG}) \text{ vs (slicing } + m_{\gamma})$

 $e\,\mu
ightarrow e\,\mu\,\gamma$ @ NLO with $\xi_c=\omega_s=10^{-\{6,5,4\}}$ (Mesmer as in [Carloni et al. 20])

M. Rocco, 01.06.23 - p.8/15

 $\mu e \rightarrow \mu e \quad @ \text{ NNLO}$

• kinematical setup mimics MUonE:

$$E_{\mu,i} = 160 \,\text{GeV}$$
 $E_{e,f} > 1 \,\text{GeV}$ $\theta_{\mu,f} > 0.3 \,\text{mrad}$

- results for different kinematical scenarios and any IR safe observable
- no mass is neglected

M. Rocco, 01.06.23 - p.10/15

M. Rocco, 01.06.23 - p.10/15

M. Rocco, 01.06.23 - p.10/15

how to handle hard radiation?

• elasticity veto!
$$\rightarrow 0.9 < \frac{\theta_{\mu,f}}{\theta_{\mu,f}^{el}} < 1.1$$
 (S2)

• . . .

M. Rocco, 01.06.23 - p.11/15

M. Rocco, 01.06.23 - p.12/15

M. Rocco, 01.06.23 - p.12/15

M. Rocco, 01.06.23 - p.14/15

- NNLO with different external masses [2212.06481]
- precision now $\mathcal{O}(10^{-3/-4})\text{, would like to reach }\mathcal{O}(10^{-5})$
- we have started thinking about $\rm N^3LO$ dominant corrections \rightarrow we will think more @ STRONG 2020 Theory Workstop in Zurich 5/9 June
- resummation (analytic & parton shower)

M. Rocco, 01.06.23 - p.16/15

M. Rocco, 01.06.23 - p.17/15

total cross sections

	$\sigma/\mu{ m b}$		$\delta K^{(i)}/\%$	
	S1	S2	S1	S2
σ_0	106.44356	106.44356		
$\sigma_1 \left\{ \begin{smallmatrix} - \\ + \end{smallmatrix} ight\}$	106.99038(3)	102.86304(3)	0.51372(3)	-3.36377(3)
	107.41847(3)	103.18338(3)	0.91589(3)	-3.06283(3)
$\sigma_e^{(2)}$	0.00090	0.06595	0.00084	0.06411
$\sigma^{(2)}_{e\mu} \left\{ { \atop + }^- \right.$	0.00097(1)	0.01926	0.00091(1)	0.01872
	0.00328(1)	-0.01768	0.00305(1)	-0.01713
$\sigma_{\mu}^{(2)}$	-0.00005	0.00002	-0.00005	0.00002
$\sigma^{(2)}_{\rm lep} \left\{ {-\atop +} \right.$	-0.01195	-0.06568	-0.01117	-0.06385
	-0.00424	-0.05959	-0.00395	-0.05775
$\sigma^{(2)}_{\rm had} \Big\{^+$	-0.00045	-0.00104	-0.00042	-0.00101
	-0.00004	-0.00068	-0.00004	-0.00066
$\sigma_2 \left\{ \begin{smallmatrix} - \\ + \end{smallmatrix} \right\}$	106.97977(3)	102.88154(3)	-0.00992(4)	0.01799(4)
	107.41832(3)	103.19386(3)	-0.00013(4)	-0.01016(4)

M. Rocco, 01.06.23 - p.18/15

M. Rocco, 01.06.23 - p.19/15

M. Rocco, 01.06.23 - p.20/15