Improved Antenna Subtraction at NNLO

Oscar Braun-White (he/him/his), IPPP Durham

Based on work with Nigel Glover (IPPP Durham) and Christian Preuss (ETH Zurich) in arXiv:2302.12787 - accepted into JHEP, not yet published

RADCOR, Crieff, Scotland, 01/06/23

Introduction

$$s_{i_1...i_m} = (p_{i_1} + ... + p_{i_m})^2$$

 $s_{ij} = 2p_i \cdot p_j = 2E_i E_j (1 - co)$

- Infrared divergences must cancel out at each order correction by KLN theorem
 - (Only for infrared-safe observables)

$$s_{i_1...i_m} = (p_{i_1} + ... + p_{i_m})^2$$

 $s_{ij} = 2p_i \cdot p_j = 2E_i E_j (1 - co)$

- Infrared divergences must cancel out at each order correction by KLN theorem
 - (Only for infrared-safe observables)
- R: Implicit singularities in $S_{i_1...i_m}$ when in soft/collinear limits

$$s_{i_1...i_m} = (p_{i_1} + ... + p_{i_m})^2$$

 $s_{ij} = 2p_i \cdot p_j = 2E_i E_j (1 - co)$

- Infrared divergences must cancel out at each order correction by KLN theorem
 - (Only for infrared-safe observables)
- R: Implicit singularities in $s_{i_1...i_m}$ when in soft/collinear limits
- V: Explicit singularities in dimensional regulator ϵ , where $d = 4 2\epsilon$.

$$d\hat{\sigma}^{\text{LO}} = B \approx \int d\Phi_m |\mathcal{M}_m^n|^2$$

$$d\hat{\sigma}^{\mathsf{NLO}} = R + V \approx \int d\Phi_{m+1} |\mathcal{M}_{m+1}^n|^2 + \int d\Phi_m|$$

- $d\hat{\sigma}^{\text{NNLO}} = RR + RV + VV$
- $d\hat{\sigma}^{\text{N3LO}} = RRR + RRV + RVV + VVV$

 $\mathcal{M}_m^{n+1}|^2$

$$s_{i_1...i_m} = (p_{i_1} + ... + p_{i_m})^2$$

 $s_{ij} = 2p_i \cdot p_j = 2E_i E_j (1 - co)$

- Infrared divergences must cancel out at each order correction by KLN theorem
 - (Only for infrared-safe observables)
- R: Implicit singularities in $S_{i_1...i_m}$ when in soft/collinear limits
- V: Explicit singularities in dimensional regulator ϵ , where $d = 4 2\epsilon$.

•
$$d\hat{\sigma}^{\text{LO}} = B \approx \int d\Phi_m |\mathcal{M}_m^n|^2$$
 More Legs
• $d\hat{\sigma}^{\text{NLO}} = R + V \approx \int d\Phi_{m+1} |\mathcal{M}_{m+1}^n|^2 + \int d\Phi_m |\mathcal{M}_m^{n+1}|^2$

- $d\hat{\sigma}^{\text{NNLO}} = RR + RV + VV$
- $d\hat{\sigma}^{\text{N3LO}} = RRR + RRV + RVV + VVV$

- Infrared divergences must cancel out at each order correction by KLN theorem
 - (Only for infrared-safe observables)
- R: Implicit singularities in $S_{i_1...i_m}$ when in soft/collinear limits
- V: Explicit singularities in dimensional regulator ϵ , where $d = 4 2\epsilon$.

•
$$d\hat{\sigma}^{\text{LO}} = B \approx \int d\Phi_m |\mathcal{M}_m^n|^2$$
 More Legs
• $d\hat{\sigma}^{\text{NLO}} = R + V \approx \int d\Phi_{m+1} |\mathcal{M}_{m+1}^n|^2 + \int d\Phi_m |\mathcal{M}_m^n|^2$

- $d\hat{\sigma}^{\text{NNLO}} = RR + RV + VV$
- $d\hat{\sigma}^{\text{N3LO}} = RRR + RRV + RVV + VVV$
- Subtraction or slicing scheme needed for higher order QCD calculations

- Infrared divergences must cancel out at each order correction by KLN theorem
 - (Only for infrared-safe observables)
- R: Implicit singularities in $S_{i_1...i_m}$ when in soft/collinear limits
- V: Explicit singularities in dimensional regulator ϵ , where $d = 4 2\epsilon$.

•
$$d\hat{\sigma}^{\text{LO}} = B \approx \int d\Phi_m |\mathcal{M}_m^n|^2$$
 More Legs
• $d\hat{\sigma}^{\text{NLO}} = R + V \approx \int d\Phi_{m+1} |\mathcal{M}_{m+1}^n|^2 + \int d\Phi_m |\mathcal{M}_m^n|^2$

- $d\hat{\sigma}^{\text{NNLO}} = RR + RV + VV$
- $d\hat{\sigma}^{\text{N3LO}} = RRR + RRV + RVV + VVV$
- Subtraction or slicing scheme needed for higher order QCD calculations
- NNLOJET group uses antenna functions

Need to integrate S over one unresolved particle analytically $\rightarrow \epsilon$ poles to compare integrands under $d\Phi_m$ integral.

 ϵ poles cancel and no soft/coll limits in V.

Antenna Subtraction

Started by Glover, Gehrmann and Gehrmann-De Ridder ~ 2005 NNLOJET

Subtraction Term at NLO - X_3^0 Two hard radiators, one unresolved particle

- Contains limits associated with one particle unresolved

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

• Maps momentum of $3 \rightarrow 2$, where _____ is soft or collinear with either of

Subtraction Term at NLO - X_3^0 Sum over one particle unresolved at a time

Different X_3^0 expressions depending on particle types of $\{i, j, k\}$ Subtracts against colour-ordered sub-amplitudes

$$d\Phi_{m+1} = d\Phi_m \cdot d\Phi_{X_{ijk}}$$

 $d\hat{\sigma}_{S}^{NLO} \approx \sum d\Phi_{m+1} \sum X_{3}^{0}(i^{h}, j, k^{h}) |\mathcal{M}_{m}|^{2} J_{m}^{(m)}$

Antennae at NNLO X_3^0 - Single unresolved limits of No ϵ poles.

X_{4}^{0} - Double and single unresolved limits of No ϵ poles.

 X_3^1 - Single unresolved limits of Poles up to e^{-2} from loop O.

$$d\hat{\sigma}^{NNLO} = \int_{d\Phi_m} VV + \int_{d\Phi_{m+1}} S_{RV}$$
$$+ \int_{d\Phi_{m+1}} (RV - S_{RV})$$
$$+ \int_{d\Phi_{m+2}} (RR - S_{RR}) + \int_{d\Phi_{m+2}} S_{RR}$$

$$d\hat{\sigma}^{NNLO} = \int_{d\Phi_m} VV + \int_{d\Phi_{m+1}} S_{RV}$$
$$+ \int_{d\Phi_{m+1}} (RV - S_{RV})$$
$$+ \int_{d\Phi_{m+2}} (RR - S_{RR}) + \int_{d\Phi_{m+2}} S_{RR}$$

Use X_4^0, X_3^1, X_3^0 factorised onto matrix elements to build S_{RR} and S_{RV} .

$$d\hat{\sigma}^{NNLO} = \int_{d\Phi_m} VV + \int_{d\Phi_{m+1}} S_{RV}$$
$$+ \int_{d\Phi_{m+1}} (RV - S_{RV})$$
$$+ \int_{d\Phi_{m+2}} (RR - S_{RR}) + \int_{d\Phi_{m+2}} S_{RR}$$

Use X_4^0, X_3^1, X_3^0 factorised onto matrix elements to build S_{RR} and S_{RV} .

Integration of parts of S_{RR} over 1 or 2 unresolved particles and S_{RV} over 1 \rightarrow Cancels ϵ poles in VV and RV

$$d\hat{\sigma}^{NNLO} = \int_{d\Phi_m} VV + \int_{d\Phi_{m+1}} S_{RV}$$
$$+ \int_{d\Phi_{m+1}} (RV - S_{RV})$$
$$+ \int_{d\Phi_{m+2}} (RR - S_{RR}) + \int_{d\Phi_{m+2}} S_{RR}$$

Use X_4^0, X_3^1, X_3^0 factorised onto matrix elements to build S_{RR} and S_{RV} .

Integration of parts of S_{RR} over 1 or 2 unresolved particles and S_{RV} over 1 \rightarrow Cancels ϵ poles in VV and RV

See Matteo's talk for a more detailed discussion...

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

• No identified two hard particles ("radiators") for some X_4^0

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

- No identified two hard particles ("radiators") for some X_A^0
- This makes subtraction terms significantly more complex than summing over pairs of unresolved particles, works differently to NLO and more process dependent

- No identified two hard particles ("radiators") for some X_4^0
- This makes subtraction terms significantly more complex than summing over pairs of unresolved particles, works differently to NLO and more process dependent
- Also antenna momentum mapping requires clear hard radiators

- No identified two hard particles ("radiators") for some X_4^0
- This makes subtraction terms significantly more complex than summing over pairs of unresolved particles, works differently to NLO and more process dependent
- Also antenna momentum mapping requires clear hard radiators
- Current sub-antennae are over-complex and cannot be integrated individually

- No identified two hard particles ("radiators") for some X_4^0
- This makes subtraction terms significantly more complex than summing over pairs of unresolved particles, works differently to NLO and more process dependent
- Also antenna momentum mapping requires clear hard radiators
- Current sub-antennae are over-complex and cannot be integrated individually
- X_4^0 sometimes have spurious infrared limits

Improved Antennae

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

• Each antenna function has exactly two hard radiators

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

- Each antenna function has exactly two hard radiators
- Each antenna function captures all single- and double-soft limits of its unresolved particles

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

- Each antenna function has exactly two hard radiators
- Each antenna function captures all single- and double-soft limits of its unresolved particles
- (multi-)Collinear and soft-collinear limits are decomposed over "neighbouring" antennae

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

- Each antenna function has exactly two hard radiators
- Each antenna function captures all single- and double-soft limits of its unresolved particles
- (multi-)Collinear and soft-collinear limits are decomposed over "neighbouring" antennae
- Antenna functions do not contain any spurious (unphysical) limits

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

- Each antenna function has exactly two hard radiators
- Each antenna function captures all single- and double-soft limits of its unresolved particles
- (multi-)Collinear and soft-collinear limits are decomposed over "neighbouring" antennae
- Antenna functions do not contain any spurious (unphysical) limits
- Antenna functions only contain singular factors corresponding to physical propagators

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

- Each antenna function has exactly two hard radiators
- Each antenna function captures all single- and double-soft limits of its unresolved particles
- (multi-)Collinear and soft-collinear limits are decomposed over "neighbouring" antennae
- Antenna functions do not contain any spurious (unphysical) limits
- Antenna functions only contain singular factors corresponding to physical propagators
- Antenna functions obey physical symmetry relations (such as line reversal).

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

- Limits required organised from most singular to least
 P[↓]_i projects the argument into the limit L_i
- P_i^{\uparrow} projects the argument back to the full mparticle phase space

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

- - L_2 \vdots L_N

- P_i^{\downarrow} projects the argument into the limit L_i
- P_i^{\uparrow} projects the argument back to the full mparticle phase space

Limits required organised from most singular to least
P_i^{\uparrow} projects the argument into the limit L_i
P_i^{\uparrow} restores kinematics expressed solely in terms of physical propagators – physical propagators known integrals.

- P_i^{\uparrow} projects the argument back to the full mparticle phase space

Limits required organised from most singular to least
P_i^{\downarrow} projects the argument into the limit L_i
P_i^{\downarrow} projects the argument into the limit L_i
P_i^{\uparrow} restores kinematics expressed solely in terms of physical propagators – physical propagators known integrals.

 $\begin{aligned} X_{m,1}^{0} &= P_{1}^{\uparrow}L_{1} \\ X_{m,2}^{0} &= X_{m,1}^{0} + P_{2}^{\uparrow}(L_{2} - P_{2}^{\downarrow}X_{m,1}^{0}) \end{aligned}$ $X_{m,N}^{0} = X_{m,N-1}^{0} + P_{N}^{\uparrow}(L_{N} - P_{N}^{\downarrow}X_{m,N-1}^{0})$

Flowchart

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

Synthetic Antennae - $X_3^0(i^h, j, k^h)$ $X_3^0(i^h, j, k^h) = \operatorname{Ssoft}(i^h, j, k^h) + \operatorname{Scol}(i^h, j; k^h) + \operatorname{Scol}(k^h, j; i^h)$

 $L_{1} = \text{Soft } j$ $L_{2} = \text{Collinear } (i^{h}, j)$ $L_{3} = \text{Collinear } (k^{h}, j)$

Synthetic Antennae - $X_3^0(i^h, j, k^h)$ $X_3^0(i^h, j, k^h) = \operatorname{Ssoft}(i^h, j, k^h) + \operatorname{Scol}(i^h, j; k^h) + \operatorname{Scol}(k^h, j; i^h)$

Ssoft(i^h , j, k^h) = Soft $j = \frac{2s_{ik}}{s_{ij}s_{jk}}$ (if j is a gluon)

 $L_{1} = \text{Soft } j$ $L_{2} = \text{Collinear } (i^{h}, j)$ $L_{3} = \text{Collinear } (k^{h}, j)$

Synthetic Antennae - $X_3^0(i^h, j, k^h)$ $X_3^0(i^h, j, k^h) = \operatorname{Ssoft}(i^h, j, k^h) + \operatorname{Scol}(i^h, j; k^h) + \operatorname{Scol}(k^h, j; i^h)$

 $Ssoft(i^{h}, j, k^{h}) = Soft j = \frac{2s_{ik}}{s_{ij}s_{jk}} \text{ (if j is a gluon)}$ $Scol(i^{h}, j; k^{h}) = C_{ij}^{\uparrow}[Collinear (i^{h}, j) - C_{ij}^{\downarrow}Ssoft(i^{h}, j, k^{h})]$

 $L_1 = \text{Soft } j$ $L_2 = \text{Collinear } (i^h, j)$ $L_3 = \text{Collinear}(k^h, j)$

Synthetic Antennae - $X_3^0(i^h, j, k^h)$ $X_3^0(i^h, j, k^h) = \operatorname{Ssoft}(i^h, j, k^h) + \operatorname{Scol}(i^h, j; k^h) + \operatorname{Scol}(k^h, j; i^h)$

 $Ssoft(i^h, j, k^h) = Soft j = \frac{2s_{ik}}{s_{ik}}$ (if j is a gluon) $S_{ii}S_{ik}$ $Scol(i^{h}, j; k^{h}) = C_{ii}^{\uparrow}[Collinear(i^{h}, j) - C_{ii}^{\downarrow}Ssoft(i^{h}, j, k^{h})]$ $\mathsf{Scol}(k^h, j; i^h) = C^{\uparrow}_{ki}[\mathsf{Collinear}(k^h, j) - C^{\downarrow}_{ki}\{\mathsf{Ssoft}(i^h, j, k^h) + \mathsf{Scol}(i^h, j; k^h)\}]$

$$L_{1} = \text{Soft } j$$
$$L_{2} = \text{Collinear } (i^{h}, j)$$
$$L_{3} = \text{Collinear } (k^{h}, j)$$

Synthetic Antennae - $X_3^0(i^h, j, k^h)$ $X_3^0(i^h, j, k^h) = \operatorname{Ssoft}(i^h, j, k^h) + \operatorname{Scol}(i^h, j; k^h) + \operatorname{Scol}(k^h, j; i^h)$

Ssoft(i^h , j, k^h) = Soft $j = \frac{2s_{ik}}{s_i s_j}$ (if j is a gluon) $S_{ii}S_{ik}$ $Scol(i^{h}, j; k^{h}) = C_{ii}^{\uparrow}[Collinear(i^{h}, j) - C_{ii}^{\downarrow}Ssoft(i^{h}, j, k^{h})]$ $\mathsf{Scol}(k^h, j; i^h) = C_{ki}^{\uparrow}[\mathsf{Collinear}\ (k^h, j) - C_{ki}^{\downarrow}\{\mathsf{Ssoft}(i^h, j, k^h) + \mathsf{Scol}(i^h, j; k^h)\}]$ = C_{ki}^{\uparrow} [Collinear $(k^h, j) - C_{ki}^{\downarrow}$ Ssoft (i^h, j, k^h)]

$$L_{1} = \text{Soft } j$$
$$L_{2} = \text{Collinear } (i^{h}, j)$$
$$L_{3} = \text{Collinear } (k^{h}, j)$$

Example - $A_3^0(i_q^h, j_g, k_{\bar{q}}^h)$ $A_{3}^{0}(i_{q}^{h}, j_{g}, k_{\bar{q}}^{h}) = \frac{2s_{ik}}{s_{ii}s_{ik}}$

This differs from the old antenna derive

$$+ \frac{(1-\epsilon)s_{jk}}{s_{ijk}s_{ij}} + \frac{(1-\epsilon)s_{ij}}{s_{ijk}s_{jk}}$$

d directly from $|\mathcal{M}|^2$ for $\gamma^* \to qg\bar{q}$ at \mathcal{O}

Example - $A_3^0(i_q^h, j_g, k_{\bar{q}}^h)$

$$\begin{aligned} \left(A_{3}^{0}(i_{q}^{h}, j_{g}, k_{\bar{q}}^{h}) &= \frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{(1 - \epsilon)s_{jk}}{s_{ijk}s_{ij}} + \frac{(1 - \epsilon)s_{ij}}{s_{ijk}s_{jk}} \right) \end{aligned}$$

This differs from the old antenna derived directly from $|\mathcal{M}|^{2}$ for $\gamma^{*} \to qg\bar{q}$ at \mathcal{O}
Integrating over antenna phase space:

$$\mathcal{A}_{3}^{0}(s_{ijk}) &= \left(s_{ijk}\right)^{-\epsilon} \left[\frac{1}{\epsilon^{2}} + \frac{3}{2\epsilon} + \frac{19}{4} - \frac{7\pi^{2}}{12} + \left(\frac{113}{8} - \frac{7\pi^{2}}{8} - \frac{25\zeta_{3}}{3}\right) + \left(\frac{675}{16} - \frac{133\pi^{2}}{48} - \frac{71\pi^{4}}{1440} - \frac{25\zeta_{3}}{2}\right)\epsilon^{2} + \mathcal{O}(\epsilon^{3}) \right] \end{aligned}$$

Example - $F_3^0(i_g^h, j_g, k_g^h)$

This differs from the old antenna derived directly from $|\mathcal{M}|^2$ for Higgs boson decay, for which any of the three gluons can be soft. Here only *j* can be soft.

Example -
$$F_{3}^{0}(i_{g}^{h}, j_{g}, k_{g}^{h})$$

 $F_{3}^{0}(i_{g}^{h}, j_{g}, k_{g}^{h}) = \frac{2s}{s_{ij}}$

This differs from the old antenna derived directly from $|\mathcal{M}|^2$ for Higgs boson decay, for which any of the three gluons can be soft. Here only j can be soft. Integrating over antenna phase space:

$$\mathcal{F}_{3}^{0}(s_{ijk}) = \left(s_{ijk}\right)^{-\epsilon} \left[\frac{1}{\epsilon^{2}} + \frac{11}{6\epsilon} + \frac{65}{12} - \frac{7\pi^{2}}{12} + \left(\frac{129}{8} - \frac{77\pi^{2}}{72} - \frac{25\zeta_{3}}{3} + \left(\frac{771}{16} - \frac{455\pi^{2}}{144} - \frac{71\pi^{4}}{1440} - \frac{275\zeta_{3}}{18}\right)\epsilon^{2} + \mathcal{O}(\epsilon^{3})\right]$$

Example -
$$F_{3}^{0}(i_{g}^{h}, j_{g}, k_{g}^{h})$$

 $F_{3}^{0}(i_{g}^{h}, j_{g}, k_{g}^{h}) = \frac{2s}{s_{ij}}$

 $P_{gg}(i^h,j)$ Here $L_2 = \text{Collinear}(i^h, j) =$ Sij

where
$$P_{gg}(i^h, j) + P_{gg}(j^h, i) \equiv P_{gg}(x_j)$$

L_3 similar

Synthetic Antennae - $X_{4}^{0}(i^{h}, j, k, l^{h})$ Same algorithm, more limits

 $X_4^0(i^h, j, k, l^h) = Dsoft(i^h, j, k, l^h)$ $+Tcol(i^{h}, j, k; l^{h}) + Tcol(l^{h}, k, j; i^{h})$ $+Dcol(i^{h}, j; k, l^{h})$ $+Ssoft(i^{h}, j, k; l^{h}) + Ssoft(j, k, l^{h}; i^{h})$ $+Scol(i^{h}, j; k, l^{h}) + Scol(j, k; i^{l}, l^{h}) + Scol(l^{h}, k; j, i^{h})$

Slightly different structure for sub-leading colour antennae

Synthetic Antennae - $X_4^0(i^h, j, k, l^h)$ Same algorithm, more limits

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

For $Tcol(i^h, j, k; l^h)$, need $P_{abc \rightarrow A}(i^h, j, k)$ for all $\{a, b, c\}$ QCD particle types.

Synthetic Antennae - $X_{A}^{0}(i^{h}, j, k, l^{h})$ Same algorithm, more limits

Most $P_{abc \rightarrow A}(i, j, k)$ have a hard particle by default, except $P_{q\bar{q}a\rightarrow g}(i,j,k)$ and $P_{ggg\rightarrow g}(i,j,k)$

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

For $Tcol(i^h, j, k; l^h)$, need $P_{abc \rightarrow A}(i^h, j, k)$ for all $\{a, b, c\}$ QCD particle types.

Synthetic Antennae - $X_{A}^{0}(i^{h}, j, k, l^{h})$ Same algorithm, more limits

Most $P_{abc \rightarrow A}(i, j, k)$ have a hard particle by default, except $P_{q\bar{q}a\rightarrow g}(i,j,k)$ and $P_{ggg\rightarrow g}(i,j,k)$

This work done in JHEP09(2022)059, arXiv: 2204.10755. O. Braun-White and N. Glover, Decomposition of triple collinear splitting functions

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

For $Tcol(i^h, j, k; l^h)$, need $P_{abc \rightarrow A}(i^h, j, k)$ for all $\{a, b, c\}$ QCD particle types.

Example - $A_4^0(1_q^h, 2_g, 3_g, 4_{\bar{q}}^h)$ Built using double unresolved limits, single unresolved limits and A_3^0

 $\mathbf{S}_{23}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{TC}_{123}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{TC}_{234}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{DC}_{1234}^{\downarrow}A_4^0(1^h, 2, 3, 4^h)$ $\mathbf{S}_{2}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{S}_{3}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{C}_{12}^{\downarrow}A_4^0(1^h,2,3,4^h)$ $\mathbf{C}_{23}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{C}_{34}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{SC}_{2;34}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{SC}_{3;12}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$

$$\begin{aligned}) &= S_{gg}(1^{h}, 2, 3, 4^{h}) \\) &= P_{qgg}(1^{h}, 2, 3) \\) &= P_{qgg}(4^{h}, 3, 2) \\) &= P_{qg}(1^{h}, 2)P_{qg}(4^{h}, 3) \\) &= \frac{2s_{13}}{s_{12}s_{23}}A_{3}^{0}(1, 3, 4) \\) &= \frac{2s_{24}}{s_{23}s_{34}}A_{3}^{0}(1, 2, 4) \\) &= P_{qg}(1^{h}, 2)A_{3}^{0}([1+2], 3, 4) \\) &= P_{qg}(2, 3)A_{3}^{0}(1, [2+3], 4) \\) &= P_{qg}(4^{h}, 3)A_{3}^{0}(1, 2, [3+4]) \\) &= \frac{2s_{134}}{s_{12}s_{234}}P_{qg}(4^{h}, 3) \\) &= \frac{2s_{124}}{s_{123}s_{34}}P_{qg}(1^{h}, 2) \end{aligned}$$

Example - $A_4^0(1_q^h, 2_g, 3_g, 4_{\bar{q}}^h)$ Built using double unresolved limits, single unresolved limits and A_3^0

 $\mathbf{S}_{23}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{TC}_{123}^{\downarrow}A_4^0(1^h, 2, 3, 4^h)$ $\mathbf{TC}_{234}^{\downarrow}A_4^0(1^h, 2, 3, 4^h)$ $\mathbf{DC}_{1234}^{\downarrow}A_4^0(1^h, 2, 3, 4^h)$ $\mathbf{S}_{2}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{S}_{3}^{\downarrow}A_{4}^{0}(1^{h}, 2, 3, 4^{h})$ $\mathbf{C}_{12}^{\downarrow}A_4^0(1^h,2,3,4^h)$ $\mathbf{C}_{23}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{C}_{34}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{SC}_{2;34}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{SC}_{3;12}^{\downarrow}A_{4}^{0}(1^{h},2,3,4^{h})$

$$\begin{aligned} F_{2}(1) &= S_{gg}(1^{h}, 2, 3, 4^{h}) \\ F_{2}(1) &= P_{qgg}(1^{h}, 2, 3) \\ F_{2}(1) &= P_{qgg}(4^{h}, 3, 2) \\ F_{2}(1) &= P_{qg}(1^{h}, 2)P_{qg}(4^{h}, 3) \\ F_{2}(1) &= \frac{2s_{13}}{s_{12}s_{23}}A_{3}^{0}(1, 3, 4) \\ F_{2}(1) &= \frac{2s_{24}}{s_{23}s_{34}}A_{3}^{0}(1, 2, 4) \\ F_{2}(1) &= P_{qg}(1^{h}, 2)A_{3}^{0}(1, 2, 4) \\ F_{2}(1) &= P_{qg}(1^{h}, 3)A_{3}^{0}(1, 2, [3 + 4]) \\ F_{2}(1) &= \frac{2s_{134}}{s_{12}s_{234}}P_{qg}(4^{h}, 3) \\ F_{2}(1) &= \frac{2s_{124}}{s_{123}s_{34}}P_{qg}(1^{h}, 2) \end{aligned}$$

Example - $A_4^0(i_q^h, j_g, k_g, l_{\bar{q}}^h)$

Expression too long to write here but integrated antenna matches $\mathscr{A}_4^{0,\mathsf{OLD}}$

Example - $A_4^0(i_q^h, j_g, k_g, l_{\bar{q}}^h)$

$$\mathcal{A}_{4}^{0}(s_{ijkl}) = \left(s_{ijkl}\right)^{-\epsilon} \left[\frac{3}{4\epsilon^{4}} + \frac{65}{24\epsilon^{3}} + \frac{1}{\epsilon^{2}} \left(\frac{217}{18} - \frac{13\pi^{2}}{12}\right) + \frac{1}{\epsilon} \left(\frac{43223}{864} - \frac{589\pi^{2}}{144} - \frac{71\zeta_{3}}{4}\right) + \mathcal{O}(\epsilon^{0})\right]$$

Expression too long to write here but integrated antenna matches $\mathscr{A}^{0,\mathsf{OLD}}_{\scriptscriptstyle A}$

Old A_3^0 used as input here. Using new A_3^0 would change $\mathcal{O}(\epsilon^{-1})$ terms but algorithm is focus here.

Example - $A_4^0(i_q^h, j_g, k_g, l_{\bar{q}}^h)$

Numerical tests of A_4^0 against $A_4^{0,OLD}$ in all relevant singular limits. For three different values of scaling

parameter x, the relative disagreement of the ratio $R = A_4^0 / A_4^{0,OLD}$ is shown on the logarithmic axis.

Examples - $F_4^0(i_g^h, j_g, k_g, l_g^h)$ and $\tilde{F}_4^0(i_g^h, j_g, k_g, l_g^h)$

Old F_4^0 antenna had any pair soft, split into permutations of the new F_4^0 and ${ ilde F}_4^0$

Examples - $F_4^0(i_g^h, j_g, k_g, l_g^h)$ and $\tilde{F}_4^0(i_g^h, j_g, k_g, l_g^h)$

Old F_4^0 antenna had any pair soft, split into permutations of the new F_4^0 and \tilde{F}_4^0

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

 $F_{A}^{0,OLD} \sim F_{4}^{0}(i^{h}, j, k, l^{h}) + 3$ cyclic permutations $+ F_{4}^{0}(i^{h}, j, l, k^{h}) + F_{4}^{0}(l^{h}, i, k, j^{h})$

Examples - $F_4^0(i_g^h, j_g, k_g, l_g^h)$ and $\tilde{F}_4^0(i_g^h, j_g, k_g, l_g^h)$ Old F_4^0 antenna had any pair soft, split into permutations of the new F_4^0 and \tilde{F}_4^0 $F_{A}^{0,OLD} \sim F_{4}^{0}(i^{h}, j, k, l^{h}) + 3$ cyclic permutations $+ \tilde{F}_{4}^{0}(i^{h}, j, l, k^{h}) + \tilde{F}_{4}^{0}(l^{h}, i, k, j^{h})$

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

Uses double unresolved limits, single unresolved limits and $F_3^0(i_{\rho}^h, j_{\rho}, k_{\rho}^h)$

Examples -
$$F_4^0(i_g^h, j_g, k_g, l_g^h)$$
 and $\tilde{F}_4^0(i_g^h, j_g, k_g, l_g^h)$
Old F_4^0 antenna had any pair soft, split into permutations of the new F_4^0 and $\tilde{F}_4^{0,OLD} \sim F_4^0(i^h, j, k, l^h) + 3$ cyclic permutations $+ \tilde{F}_4^0(i^h, j, l, k^h) + \tilde{F}_4^0(l^h, i, k^h)$
Uses double unresolved limits, single unresolved limits and $F_3^0(i_g^h, j_g, k_g^h)$
 $\mathscr{F}_{4}^0(s_{ijkl}) = \left(s_{ijkl}\right)^{-\epsilon} \left[\frac{3}{4\epsilon^4} + \frac{77}{24\epsilon^3} + \frac{1}{\epsilon^2}\left(\frac{559}{36} - \frac{13\pi^2}{12}\right) + \frac{1}{\epsilon}\left(\frac{59249}{864} - \frac{671\pi^2}{144} - \frac{69\zeta_3}{4}\right) + \mathcal{O}(\epsilon^0)$
 $\tilde{\mathscr{F}}_{4}^0(s_{ijkl}) = \left(s_{ijkl}\right)^{-\epsilon} \left[\frac{1}{\epsilon^4} + \frac{11}{3\epsilon^3} + \frac{1}{\epsilon^2}\left(\frac{313}{18} - \frac{3\pi^2}{2}\right) + \frac{1}{\epsilon}\left(\frac{34571}{432} - \frac{11\pi^2}{2} - \frac{86\zeta_3}{3}\right) + \mathcal{O}(\epsilon^0)$

Oscar Braun-White, RADCOR, Crieff, Scotland, 01/06/23

Old f_3^0 sub-antenna used as input here. Using new F_3^0 would change $\mathcal{O}(\epsilon^{-2})$ terms but algorithm is focus here.

All X_A^0 complete for NNLO QCD

Quark-antiquark

 $qggar{q}$ $q\gamma\gammaar{q}$ $q \bar{Q} Q \bar{q}$ $q \bar{q} q \bar{q}$ Quark-gluon

qggg

 $q \bar{Q} Q g$ $qgar{Q}Q$ $q \bar{Q} g Q$ Gluon-gluon

gggg

 $g \bar{Q} Q g$ $ggar{Q}Q$ g ar Q g Q $ar{q}qar{Q}Q$

 $X_4^0(i_q^h, j_g, k_g, l_{\bar{q}}^h) \quad A_4^0(i^h, j, k, l^h)$ $\widetilde{X}_4^0(i_q^{\hat{h}}, j_\gamma, k_\gamma, l_{\bar{q}}^{\hat{h}}) \quad \widetilde{A}_4^0(i^h, j, k, l^h)$ $X_4^0(i_q^h, j_{\bar{Q}}, k_Q, l_{\bar{q}}^h) \quad B_4^0(i^h, j, k, l^h)$ $X_4^0(i_q^h, j_{\bar{q}}, k_q, l_{\bar{a}}^h) = C_4^0(i^h, j, k, l^h)$

 $X_4^0(i_q^h, j_g, k_g, l_g^h) \quad D_4^0(i^h, j, k, l^h)$ $\widetilde{X}_4^0(i_a^{\hat{h}}, j_g, k_g, l_g^{\check{h}}) \quad \widetilde{D}_4^0(i^h, j, k, l^h)$ $X_4^0(i_q^h, j_{\bar{Q}}, k_Q, l_q^h) \quad E_4^0(i^h, j, k, l^h)$ $X_4^0(i_q^h, j_g, k_{\bar{Q}}, l_Q^h) \quad \overline{E}_4^0(i^h, j, k, l^h)$ $X_4^0(i_q^h, j_{\bar{Q}}, k_g, l_Q^h) \quad \widetilde{E}_4^0(i^h, j, k, l^h)$

 $X_4^0(i_g^h, j_g, k_g, l_g^h) = F_4^0(i^h, j, k, l^h)$ $\widetilde{X}_4^0(i_g^h, j_g, k_g, l_g^h) \quad \widetilde{F}_4^0(i^h, j, k, l^h)$ $X_4^0(i_g^h, j_{\bar{Q}}, k_Q, \bar{l}_q^h) \quad G_4^0(i^h, j, k, l^h)$ $X_4^0(i_g^h, j_g, k_{\bar{Q}}, l_Q^h) \quad \overline{G}_4^0(i^h, j, k, l^h)$ $\widetilde{X}_4^0(i_g^h, j_{\bar{Q}}, k_g, l_Q^h) \quad \widetilde{G}_4^0(i^h, j, k, l^h)$ $X_4^0(i^h_{\bar{q}}, j_q, k_{\bar{Q}}, l^h_Q) \quad H_4^0(i^h, j, k, l^h)$

All X_4^0 complete for NNLO QCD

Quark-antiquark

 $qgg\bar{q}$ $q\gamma\gammaar{q}$ $q \bar{Q} Q \bar{q}$ $q \bar{q} q \bar{q}$ Quark-gluon

qggg

 $q \bar{Q} Q g$ $qgar{Q}Q$ $q \bar{Q} g Q$ Gluon-gluon

gggg

 $g \bar{Q} Q g$ $ggar{Q}Q$ $gar{Q}gQ$ $ar{q}qar{Q}Q$

 $X_4^0(i_q^h, j_g, k_g, l_{\bar{q}}^h) = A_4^0(i^h, j, k, l^h)$ $\widetilde{X}_4^0(i_q^h, j_\gamma, k_\gamma, l_{\overline{q}}^h) = \widetilde{A}_4^0(i^h, j, k, l^h)$ $X_4^0(i_q^h, j_{\bar{Q}}, k_Q, l_{\bar{q}}^h) \quad B_4^0(i^h, j, k, l^h)$ $X_4^0(i_q^h, j_{\bar{q}}, k_q, l_{\bar{q}}^h) = C_4^0(i^h, j, k, l^h)$

 $X_4^0(i_q^h, j_g, k_g, l_g^h) \quad D_4^0(i^h, j, k, l^h)$ $\widetilde{X}_4^0(i_q^h, j_g, k_g, l_g^h) \quad \widetilde{D}_4^0(i^h, j, k, l^h) \quad \bullet$ $\begin{array}{ll} X^{0}_{4}(i^{h}_{q},j_{\bar{Q}},k_{Q},l^{h}_{g}) & E^{0}_{4}(i^{h},j,k,l^{h}) \\ X^{0}_{4}(i^{h}_{q},j_{g},k_{\bar{Q}},l^{h}_{Q}) & \overline{E}^{0}_{4}(i^{h},j,k,l^{h}) \end{array}$ $\widetilde{X}_4^0(i_q^h, j_{\bar{Q}}, k_g, l_Q^h) \quad \widetilde{E}_4^0(i^h, j, k, l^h)$

 $X_4^0(i_g^h, j_g, k_g, l_g^h) = F_4^0(i^h, j, k, l^h)$ $\widetilde{X}_4^0(i_g^{\check{h}}, j_g, k_g, l_g^{\check{h}}) \quad \widetilde{F}_4^0(i^h, j, k, l^h)$ $X^0_4(i^h_g, j_{ar{Q}}, k_Q, ar{l}^h_g) \quad G^0_4(i^h, j, k, l^h)$ $X_4^0(i_g^h, j_g, k_{\bar{Q}}, l_Q^h)$ $\widetilde{X}^0_4(i^h_g, j_{ar{Q}}, k_g, l^h_Q) \quad \widetilde{G}^0_4(i^h, j, k, l^h)$ $X_4^0(i_{\bar{q}}^h, j_q, k_{\bar{Q}}, l_Q^h) \quad H_4^0(i^h, j, k, l^h)$

 $\overline{G}_4^0(i^h,j,k,l^h)$

Conclusions and Outlook

Conclusions and Outlook

- General algorithm for creating more convenient idealised antennae
- Complete for all X_3^0 and X_4^0 , meeting all design principles
- Should support construction of simplified NNLO subtraction terms, with no over-subtraction
- Extendable algorithm to X_3^1
 - Requires additional manipulation of explicit ϵ poles and hypergeometric functions
- Extendable algorithm to X_5^0 for future streamlined N3LO antenna subtraction scheme
 - Requires decomposition of quadruple collinear splitting functions into $P_{abcd \rightarrow A}(i^h, j, k, l)$ and similar for one-loop triple collinear splitting functions.
 - Create lists of required limits for X_5^0 out of these and new X_4^0 and new X_3^0 .

Thank you very much! Questions?

Oscar Braun-White (he/him/his), IPPP Durham

Based on work with Nigel Glover (IPPP Durham) and Christian Preuss (ETH Zurich) in arXiv:2302.12787

Backup - F_4^0

 $\mathbf{S}_{23}^{\downarrow}F_4^0(1^h,2,3,4^h)$ $\mathbf{TC}_{123}^{\downarrow}F_4^0(1^h, 2, 3, 4^h)$ $\mathbf{TC}_{234}^{\downarrow}F_4^0(1^h, 2, 3, 4^h)$ $\mathbf{DC}_{1234}^{\downarrow}F_4^0(1^h, 2, 3, 4^h)$ $\mathbf{S}_{2}^{\downarrow}F_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{S}_{3}^{\downarrow}F_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{C}_{12}^{\downarrow}F_4^0(1^h,2,3,4^h)$ $\mathbf{C}_{23}^{\downarrow}F_4^0(1^h,2,3,4^h)$ $\mathbf{C}_{34}^{\downarrow}F_4^0(1^h,2,3,4^h)$ $\mathbf{SC}_{2:34}^{\downarrow}F_4^0(1^h, 2, 3, 4^h)$ $\mathbf{SC}_{3;12}^{\downarrow}F_4^0(1^h,2,3,4^h)$

$$) = S_{gg}(1^{h}, 2, 3, 4^{h})$$

$$) = P_{ggg}(1^{h}, 2, 3)$$

$$) = P_{ggg}(4^{h}, 3, 2)$$

$$) = P_{gg}(1^{h}, 2)P_{gg}(4^{h}, 3)$$

$$) = \frac{2s_{13}}{s_{12}s_{23}}F_{3}^{0}(1, 3, 4)$$

$$) = \frac{2s_{24}}{s_{23}s_{34}}F_{3}^{0}(1, 2, 4)$$

$$) = P_{gg}(1^{h}, 2)F_{3}^{0}([1+2], 3, 4)$$

$$) = P_{gg}(2, 3)F_{3}^{0}(1, [2+3], 4)$$

$$) = P_{gg}(4^{h}, 3)F_{3}^{0}(1, 2, [3+4])$$

$$) = \frac{2s_{134}}{s_{12}s_{234}}P_{gg}(4^{h}, 3)$$

$$) = \frac{2s_{124}}{s_{123}s_{34}}P_{gg}(1^{h}, 2)$$

Backup - \tilde{F}_{4}^{0}

 ${f S}_{23}^{\downarrow}\widetilde{F}_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{TC}_{123}^{\downarrow}\widetilde{F}_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{TC}_{234}^{\downarrow}\widetilde{F}_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{DC}_{1234}^{\downarrow}\widetilde{F}_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{DC}_{1324}^{\downarrow}\widetilde{F}_{4}^{0}(1^{h},2,3,4^{h})$ ${f S}_{2}^{\downarrow}\widetilde{F}_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{S}_{3}^{\downarrow}\widetilde{F}_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{C}_{12}^{\downarrow}\widetilde{F}_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{C}_{13}^{\downarrow}\widetilde{F}_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{C}_{24}^{\downarrow}\widetilde{F}_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{C}_{34}^{\downarrow}\widetilde{F}_4^0(1^h,2,3,4^h)$ $\mathbf{SC}_{2;34}^{\downarrow}\widetilde{F}_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{SC}_{3:24}^{\downarrow}\widetilde{F}_{4}^{0}(1^{h},2,3,4^{h})$ $\mathbf{SC}_{3;12}^{\downarrow}\widetilde{F}_4^0(1^h,2,3,4^h)$ $\mathbf{SC}_{2;13}^{\downarrow}\widetilde{F}_4^0(1^h,2,3,4^h)$

$$\begin{split}) &= S_{\gamma\gamma}(1^{h},2,3,4^{h}) \\) &= P_{ggg}(2,1^{h},3) \\) &= P_{ggg}(3,4^{h},2) \\) &= P_{gg}(1^{h},2)P_{gg}(4^{h},3) \\) &= P_{gg}(1^{h},3)P_{gg}(4^{h},2) \\) &= \frac{2s_{14}}{s_{12}s_{24}}F_{3}^{0}(1,3,4) \\) &= \frac{2s_{14}}{s_{13}s_{34}}F_{3}^{0}(1,2,4) \\) &= P_{gg}(1^{h},2)F_{3}^{0}([1+2],3,4) \\) &= P_{gg}(1^{h},3)F_{3}^{0}([1+3],2,4) \\) &= P_{gg}(4^{h},2)F_{3}^{0}(1,3,[2+4]) \\) &= P_{gg}(4^{h},3)F_{3}^{0}(1,2,[3+4]) \\) &= \frac{2s_{134}}{s_{12}s_{234}}P_{gg}(4^{h},3) \\) &= \frac{2s_{124}}{s_{13}s_{234}}P_{gg}(4^{h},2) \\) &= \frac{2s_{124}}{s_{34}s_{123}}P_{gg}(1^{h},2) \\) &= \frac{2s_{134}}{s_{24}s_{123}}P_{gg}(1^{h},3) \end{split}$$

Cross Section σ_{AB}

$$A \qquad x_a P_A$$

$$f_{a|A}(x_a)$$

$$\sigma_{AB} = \sum_{ab} \int_0^1 \mathrm{d}x_a \int_0^1 \mathrm{d}x_b f_{a|A}$$

parton distribution functions (non-perturbative, universal)

Partonic Cross Section $d\hat{\sigma}$ $d\hat{\sigma} = \left(\frac{\alpha_s}{2\pi}\right)^m d\hat{\sigma}^{\text{LO}} + \left(\frac{\alpha_s}{2\pi}\right)^{m+1} d\hat{\sigma}^{\text{NLO}} + \left(\frac{\alpha_s}{2\pi}\right)^{m+1} d\hat{\sigma}^$

 Theoretical predictions of QCD observables need to match experimental precision.

$$\left(\frac{\alpha_s}{2\pi}\right)^{m+2} d\hat{\sigma}^{\text{NNLO}} + \left(\frac{\alpha_s}{2\pi}\right)^{m+3} d\hat{\sigma}^{\text{N3LO}} + \mathcal{O}(\alpha_s^{m+4})$$

