Dhimiter D. Canko

Collaboration with: C. Papadopoulos, & G. Bevilacqua.

Based on: J.Phys.Conf.Ser. 2105 (2021) 5, 012010, PoS CORFU2021 (2022) 010 & ongoing work

Institute of Nuclear and Particle Physics, NCSR "Demokritos" Nuclear and Particle Physics Department, NKUA

RADCOR 2023, Crieff, Scottland 1 June 2023

э

イロト 不得 トイヨト イヨト

Table of Contents

Introduction

- Current status @ NNLO (QCD)
- Workflow for 2-loop scattering amplitude computations
- HELAC-2LOOP for amplitude construction
 - The algorithm
 - Blob-Topology generation
 - Color-Flavor dressing
 - Skeleton construction and results
 - Numerators and numerics in 4 dimensions
- Amplitude Reduction within HELAC-2LOOP
 - Work in progress General concept
- Conclusion

э

イロン イ団 とくほとう ほんし

- Introduction

- Current status @ NNLO (QCD)

Current status @ NNLO (QCD)

• Accurate data (HL-LHC/future colliders) \rightarrow High-precision theoretical predictions!

$$d\sigma_{h_1h_2 \to X} = \sum_{a,b=q,\bar{q},g} \int_{x_1,min}^1 dx_1 \int_{x_2,min}^1 dx_2 \, \mathcal{F}_{a/h_1}(x_1,\mu^2) \mathcal{F}_{b/h_2}(x_2,\mu^2) \, \hat{\sigma}_{ab \to X}(\mu^2)$$

_____ Introduction

└─ Current status @ NNLO (QCD)

Current status @ NNLO (QCD)

• Accurate data (HL-LHC/future colliders) \rightarrow High-precision theoretical predictions!

$$d\sigma_{h_1h_2 \to X} = \sum_{a,b=q,\bar{q},g} \int_{x_1,min}^1 dx_1 \int_{x_2,min}^1 dx_2 \, \mathcal{F}_{a/h_1}(x_1,\mu^2) \mathcal{F}_{b/h_2}(x_2,\mu^2) \, \hat{\sigma}_{ab \to X}(\mu^2)$$

• Current frontier for NNLO QCD predictions \rightarrow 2 \rightarrow 3 processes (Les Houches 2021):

$$pp \rightarrow H/V + 2j, \ H/V'/j + t\bar{t}, \ V + b\bar{b}, \ VV' + j, \ tZj \ \text{with} \ V' = V, \ \gamma \ \text{and} \ V = Z, \ W$$

Introduction

└─ Current status @ NNLO (QCD)

Current status @ NNLO (QCD)

• Accurate data (HL-LHC/future colliders) → High-precision theoretical predictions!

$$d\sigma_{h_1h_2 \to X} = \sum_{a,b=q,\bar{q},g} \int_{x_1,min}^1 dx_1 \int_{x_2,min}^1 dx_2 \, \mathcal{F}_{a/h_1}(x_1,\mu^2) \mathcal{F}_{b/h_2}(x_2,\mu^2) \, \hat{\sigma}_{ab \to X}(\mu^2)$$

• Current frontier for NNLO QCD predictions $\rightarrow 2 \rightarrow 3$ processes (Les Houches 2021):

$$pp \rightarrow H/V + 2j, \ H/V'/j + t\bar{t}, \ V + b\bar{b}, \ VV' + j, \ tZj \ \text{with} \ V' = V, \gamma \ \text{and} \ V = Z, W$$

- Recent results (at Leading Color):
 - I pp $\rightarrow \gamma \gamma \gamma$ S. Kallweit, V. Sotnikov and M. Wiesemann [Phys.Lett.B 812 (2021) 136013].
 - 2 $pp \rightarrow \gamma\gamma + j$ H. Chawdhry, M. Czakon, A. Mitov and R. Poncelet [JHEP 09 (2021) 093].
 - $\fbox{}$ pp \rightarrow 3j M. Czakon, A. Mitov and R. Poncelet [Phys.Rev.Lett. 127 (2021) 15, 152001].
 - $I pp \rightarrow W(\rightarrow l\nu)b\bar{b}$ H. Hartanto, R. Poncelet, A. Popescu and Simone Zoia [Phys.Rev.D 106 (2022) 7, 074016].

Introduction

└─ Current status @ NNLO (QCD)

Current status @ NNLO (QCD)

• Accurate data (HL-LHC/future colliders) → High-precision theoretical predictions!

$$d\sigma_{h_1h_2 \to X} = \sum_{a,b=q,\bar{q},g} \int_{x_1,min}^1 dx_1 \int_{x_2,min}^1 dx_2 \, \mathcal{F}_{a/h_1}(x_1,\mu^2) \mathcal{F}_{b/h_2}(x_2,\mu^2) \, \hat{\sigma}_{ab \to X}(\mu^2)$$

• Current frontier for NNLO QCD predictions $\rightarrow 2 \rightarrow 3$ processes (Les Houches 2021):

$$pp \rightarrow H/V + 2j, \ H/V'/j + t\bar{t}, \ V + b\bar{b}, \ VV' + j, \ tZj \ \text{with} \ V' = V, \gamma \ \text{and} \ V = Z, W$$

- Recent results (at Leading Color):
 - I pp $\rightarrow \gamma \gamma \gamma$ S. Kallweit, V. Sotnikov and M. Wiesemann [Phys.Lett.B 812 (2021) 136013].
 - 2 $pp \rightarrow \gamma \gamma + j$ H. Chawdhry, M. Czakon, A. Mitov and R. Poncelet [JHEP 09 (2021) 093].
 - $\fbox{}$ pp \rightarrow 3j M. Czakon, A. Mitov and R. Poncelet [Phys.Rev.Lett. 127 (2021) 15, 152001].
 - $I pp \rightarrow W(\rightarrow l\nu)b\bar{b}$ H. Hartanto, R. Poncelet, A. Popescu and Simone Zoia [Phys.Rev.D 106 (2022) 7, 074016].

FC 2 \rightarrow 3: $pp \rightarrow \gamma\gamma + j$ S. Badger, M. Czakon, H. Hartanto, R. Moodie, T. Peraro, R. Poncelet, S. Zoia [2304.06682 [hep-ph]] Michal's talk.

Introduction

└─ Current status @ NNLO (QCD)

Current status @ NNLO (QCD)

• Accurate data (HL-LHC/future colliders) \rightarrow High-precision theoretical predictions!

$$d\sigma_{h_1h_2 \to X} = \sum_{a,b=q,\bar{q},g} \int_{x_1,min}^1 dx_1 \int_{x_2,min}^1 dx_2 \, \mathcal{F}_{a/h_1}(x_1,\mu^2) \mathcal{F}_{b/h_2}(x_2,\mu^2) \, \hat{\sigma}_{ab \to X}(\mu^2)$$

• Current frontier for NNLO QCD predictions $\rightarrow 2 \rightarrow 3$ processes (Les Houches 2021):

$$pp \rightarrow H/V + 2j, \ H/V'/j + t\bar{t}, \ V + b\bar{b}, \ VV' + j, \ tZj \ \text{with} \ V' = V, \gamma \ \text{and} \ V = Z, W$$

Recent results (at Leading Color):

I $pp \rightarrow \gamma \gamma \gamma$ S. Kallweit, V. Sotnikov and M. Wiesemann [Phys.Lett.B 812 (2021) 136013].

- 2 $pp \rightarrow \gamma \gamma + j$ H. Chawdhry, M. Czakon, A. Mitov and R. Poncelet [JHEP 09 (2021) 093].
- $\fbox{}$ pp \rightarrow 3j M. Czakon, A. Mitov and R. Poncelet [Phys.Rev.Lett. 127 (2021) 15, 152001].
- $I pp \rightarrow W(\rightarrow l\nu)b\bar{b}$ H. Hartanto, R. Poncelet, A. Popescu and Simone Zoia [Phys.Rev.D 106 (2022) 7, 074016].

FC 2 \rightarrow 3: $pp \rightarrow \gamma\gamma + j$ S. Badger, M. Czakon, H. Hartanto, R. Moodie, T. Peraro, R. Poncelet, S. Zoia [2304.06682 [hep-ph]] Michal's talk.

• At NNLO the hard-part cross-section, $\hat{\sigma}_{ab \rightarrow X}$, receives contributions from

$$\begin{split} d\hat{\sigma}_{ab \to X}^{NNLO} &\sim \left|\mathcal{A}_{tree}\right|^{2} + \alpha_{S} \left(2\operatorname{Re}\left[\mathcal{A}_{tree}\mathcal{A}_{loop}^{*}\right] + \left|\mathcal{A}_{+1up}\right|^{2}\right) \\ &+ \alpha_{S}^{2} \left(\left|\mathcal{A}_{loop}\right|^{2} + 2\operatorname{Re}\left[\mathcal{A}_{tree}\mathcal{A}_{2-loop}^{*}\right] + \left|\mathcal{A}_{+2up}\right|^{2} + 2\operatorname{Re}\left[\mathcal{A}_{loop+1up}\mathcal{A}_{+1up}^{*}\right]\right) \end{split}$$

Final result finite using Renormalization and dimensional Regularization!

 $_$ Introduction

Current status @ NNLO (QCD)

$2 \rightarrow 3$ Scattering Amplitudes results in the last years:

Gulio's, Michał's, and Simone's talks

Introduction

└─ Current status @ NNLO (QCD)

 $2 \rightarrow 3$ Scattering Amplitudes results in the last years:

Gulio's, Michał's, and Simone's talks

- $pp \rightarrow W(\rightarrow l\nu)\gamma + j$ (LC) S. Badger, H. Hartanto, J. Kryś and S. Zoia [JHEP 05 (2022) 035].
- $pp \rightarrow H + b\bar{b}$ (LC) S. Badger, H. Hartanto, J. Kryś and S. Zoia [JHEP 11 (2021) 012].
- $u\bar{d} \rightarrow W^+ + b\bar{b}$ (LC) S. Badger, H. Hartanto and S. Zoia [Phys.Rev.Lett. 127 (2021) 1, 012001].
- W + 4 partons (LC) H. Hartanto, S. Badger, C. Brønnum-Hansen and T. Peraro [JHEP 09 (2019) 119], S. Abreu, F. Febres Cordero, H. Ita, M. Klinkert, B. Page and V. Sotnikov [JHEP 04 (2022) 042].
- **g** $g \rightarrow g \gamma \gamma$ (LC) S. Badger, C. Brønnum-Hansen, D. Chicherin, T. Gehrmann, H. Hartanto, J. Henn, M. Marcoli, R. Moodie, T. Peraro and S. Zoia [JHEP 11 (2021) 083].
- $q\bar{q} \rightarrow g\gamma\gamma$ and $qg \rightarrow q\gamma\gamma$ (LC) H. Chawdhry, M. Czakon, A. Mitov and R. Poncelet [JHEP 07 (2021) 164], B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi [JHEP 04 (2021) 201].
- **q** $\bar{q} \rightarrow \gamma \gamma \gamma$ (LC) H. Chawdhry, M. Czakon, A. Mitov and R. Poncelet [JHEP 06 (2021) 150], S. Abreu, B. Page, E. Pascual and V. Sotnikov [JHEP 01 (2021) 078].
- $pp \rightarrow 3j$ (LC) S. Abreu, F. Febres Cordero, H. Ita, B. Page, and V. Sotnikov [JHEP 07 (2021) 095].
- 5 partons (LC) S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov [JHEP 05 (2019) 084], S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov [JHEP 11 (2018) 116].
- gg → ggg (LC) S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page [Phys.Rev.Lett. 122 (2019) 8, 082002], S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng [Phys.Rev.D 97 (2018) 11, 116014], S. Badger, H. Frellesvig, Y. Zhang [JHEP 12 (2013) 045], S. Badger, C. Brønnum-Hansen, H. Hartanto and T. Peraro [JHEP 01 (2019) 186].

э

イロト 不得 トイヨト イヨト

Introduction

Current status @ NNLO (QCD)

 $2 \rightarrow 3$ Scattering Amplitudes results in the last years:

Gulio's, Michał's, and Simone's talks

- $pp \rightarrow W(\rightarrow l\nu)\gamma + j$ (LC) S. Badger, H. Hartanto, J. Kryś and S. Zoia [JHEP 05 (2022) 035].
- $pp \rightarrow H + b\bar{b}$ (LC) S. Badger, H. Hartanto, J. Kryś and S. Zoia [JHEP 11 (2021) 012].
- $u\bar{d} \rightarrow W^+ + b\bar{b}$ (LC) S. Badger, H. Hartanto and S. Zoia [Phys.Rev.Lett. 127 (2021) 1, 012001].
- W + 4 partons (LC) H. Hartanto, S. Badger, C. Brønnum-Hansen and T. Peraro [JHEP 09 (2019) 119], S. Abreu, F. Febres Cordero, H. Ita, M. Klinkert, B. Page and V. Sotnikov [JHEP 04 (2022) 042].
- **g** $gg \rightarrow g\gamma\gamma$ (LC) S. Badger, C. Brønnum-Hansen, D. Chicherin, T. Gehrmann, H. Hartanto, J. Henn, M. Marcoli, R. Moodie, T. Peraro and S. Zoia [JHEP 11 (2021) 083].
- $q\bar{q} \rightarrow g\gamma\gamma$ and $qg \rightarrow q\gamma\gamma$ (LC) H. Chawdhry, M. Czakon, A. Mitov and R. Poncelet [JHEP 07 (2021) 164], B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi [JHEP 04 (2021) 201].
- **q** $\bar{q} \rightarrow \gamma \gamma \gamma$ (LC) H. Chawdhry, M. Czakon, A. Mitov and R. Poncelet [JHEP 06 (2021) 150], S. Abreu, B. Page, E. Pascual and V. Sotnikov [JHEP 01 (2021) 078].
- $pp \rightarrow 3j$ (LC) S. Abreu, F. Febres Cordero, H. Ita, B. Page, and V. Sotnikov [JHEP 07 (2021) 095].
- 5 partons (LC) S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov [JHEP 05 (2019) 084], S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov [JHEP 11 (2018) 116].
- gg → ggg (LC) S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page [Phys.Rev.Lett. 122 (2019) 8, 082002], S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng [Phys.Rev.D 97 (2018) 11, 116014], S. Badger, H. Frellesvig, Y. Zhang [JHEP 12 (2013) 045], S. Badger, C. Brønnum-Hansen, H. Hartanto and T. Peraro [JHEP 01 (2019) 186].
- $q\bar{q}
 ightarrow \gamma\gamma\gamma$ (FC) S. Abreu, G. De Laurentis, H. Ita, M. Klinkert, B. Page, V. Sotnikov [2305.17056 [hep-ph]].
- $q\bar{q} \rightarrow gg\gamma$ and $q\bar{q} \rightarrow Q\bar{Q}\gamma$ (FC) S. Badger, M. Czakon, H. Hartanto, R. Moodie, T. Peraro, R. Poncelet, S. Zoia [2304.06682 [hep-ph]].
- $q\bar{q} \rightarrow g\gamma\gamma$ and $qg \rightarrow q\gamma\gamma$ (FC) B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi [Phys.Rev.Lett. 127 (2021) 26, 262001].

イロト イボト イヨト イヨト 二日

Apologize for missing references herein and from here on!

 \square Introduction

Workflow for 2-loop scattering amplitude computations

Workflow for 2-loop scattering amplitude computations

1) Construction of the Amplitude for the process at hand:

- Sum up Feynman graphs (QGRAF, FeynArts) P. Nogueira [J.Comp.Phys. 105 (1993) 279-289] T. Hahn [hep-ph/0012260]
- Dyson-Schwinger recursion

$$\mathcal{A}_{2-loop} = \int \frac{d^d k_1 d^d k_2}{(2\pi)^{2d} \mu^{2(d-4)}} \mathcal{A}_{2-loop} = \sum_{l \subseteq \mathcal{T}} \int \frac{d^d k_1 d^d k_2}{(2\pi)^{2d} \mu^{2(d-4)}} \frac{\mathcal{N}_l(k_1, k_2, p_1, \dots, p_{n-1}, \gamma^{\mu}, \epsilon^{\mu}, u, v)}{\prod_{\{i_1, i_2, i_3\} \in \mathcal{I}} \mathcal{D}_{i_1}(k_1) \mathcal{D}_{i_2}(k_2) \mathcal{D}_{i_3}(k_1, k_2)}$$

メロト メロト メヨト メヨト

¹S. Pozzorini, N. Schär and M. Zoller, JHEP 05 (2022) 161

- Introduction

Workflow for 2-loop scattering amplitude computations

Workflow for 2-loop scattering amplitude computations

1) Construction of the Amplitude for the process at hand:

- Sum up Feynman graphs (QGRAF, FeynArts) P. Nogueira [J.Comp.Phys. 105 (1993) 279-289] T. Hahn [hep-ph/0012260]
- Dyson-Schwinger recursion
- Hybrid approach ← HELAC-2L00P

$$\mathcal{A}_{2-loop} = \int \frac{d^d k_1 d^d k_2}{(2\pi)^{2d} \mu^{2(d-4)}} \mathcal{A}_{2-loop} = \sum_{I \subseteq \mathcal{T}} \int \frac{d^d k_1 d^d k_2}{(2\pi)^{2d} \mu^{2(d-4)}} \frac{\mathcal{N}_I(k_1, k_2, p_1, \dots, p_{n-1}, \gamma^{\mu}, \epsilon^{\mu}, u, \upsilon)}{\prod_{\{i_1, i_2, i_3\} \in I} \mathcal{D}_{i_1}(k_1) \mathcal{D}_{i_2}(k_2) \mathcal{D}_{i_3}(k_1, k_2)}$$

2) Reduction to a set of Master Integrals (or special functions (Dmitry's talk) or tensor integrals):

- Integrand Reduction (Numerical Unitarity [H. Ita, Phys.Rev.D 94 (2016) 11, 116015], OpenLoops¹)
- IBP Reduction + Finite Fields (KIRA, FIRE, Reduze, FiniteFlow, FireFly)
- Hybrid approach (AID [P. Mastrolia, T. Peraro and A. Primo, JHEP 08 (2016) 164] + IBP)

$$\mathcal{A}_{2-loop} = \sum_{i} c_i(\mathbf{s}, \varepsilon) F_i(\mathbf{s}, \varepsilon)$$

¹S. Pozzorini, N. Schär and M. Zoller, JHEP 05 (2022) 161

Introduction

Workflow for 2-loop scattering amplitude computations

Workflow for 2-loop scattering amplitude computations

1) Construction of the Amplitude for the process at hand:

- Sum up Feynman graphs (QGRAF, FeynArts) P. Nogueira [J.Comp.Phys. 105 (1993) 279-289] T. Hahn [hep-ph/0012260]
- Dyson-Schwinger recursion
- Hybrid approach ← HELAC-2L00P

$$\mathcal{A}_{2-loop} = \int \frac{d^d k_1 d^d k_2}{(2\pi)^{2d} \mu^{2(d-4)}} \mathcal{A}_{2-loop} = \sum_{I \subseteq \mathcal{T}} \int \frac{d^d k_1 d^d k_2}{(2\pi)^{2d} \mu^{2(d-4)}} \frac{\mathcal{N}_I(k_1, k_2, p_1, \dots, p_{n-1}, \gamma^{\mu}, \epsilon^{\mu}, u, \upsilon)}{\prod_{\{i_1, i_2, i_3\} \in I} \mathcal{D}_{i_1}(k_1) \mathcal{D}_{i_2}(k_2) \mathcal{D}_{i_3}(k_1, k_2)}$$

2) Reduction to a set of Master Integrals (or special functions (Dmitry's talk) or tensor integrals):

- Integrand Reduction (Numerical Unitarity [H. Ita, Phys.Rev.D 94 (2016) 11, 116015], OpenLoops¹)
- IBP Reduction + Finite Fields (KIRA, FIRE, Reduze, FiniteFlow, FireFly)
- Hybrid approach (AID [P. Mastrolia, T. Peraro and A. Primo, JHEP 08 (2016) 164] + IBP)

$$\mathcal{A}_{2-loop} = \sum_{i} c_i(\mathbf{s}, \varepsilon) F_i(\mathbf{s}, \varepsilon)$$

3) Computation of the Master Integrals:

- Analytical (Differential Equations (Stefan's talk), SDE approach, Feynman Parametrization)
- Numerical (feyntrop (Henrik's talk), Sector Decomposition → pySecDec (Vitalii's talk), FIESTA)
- Semi-Numerical (DiffExp, SeaSyde, AMFlow (Xiao's talk), Internal reduction, DiffExp + Feynman trick)

HELAC-2LOOP for amplitude Construction

└─ The algorithm

HELAC-2LOOP for amplitude construction: The algorithm

 $n - particle, 2 - loop Amplitude \longrightarrow (n + 2) - particle, 1 - loop Amplitude$

└─ The algorithm

HELAC-2LOOP for amplitude construction: The algorithm

 $n - particle, 2 - loop Amplitude \longrightarrow (n + 2) - particle, 1 - loop Amplitude$

- 1) Definition of the process at hand: number (n) and flavor of the external particles.
- 2) DO-loop over the type of grand blob-topologies (Theta = 1, Infinity = 2, Dumbbell = 3).
- 3) D0-loop over the flavor of the n+1 and n+2 cut-particles. For each n+2 process we define the number of color-states (Color-Flow Representation $\rightarrow n_{q_1}$!) and start a D0-loop over them.
- 4) Generate all the blob-topologies (for the corresponding type) and start a DO-loop over them.
- 5) Cut the two-loop (n-particle) blob-topology and uniquely correspond it to a one-loop (n + 2-particle) blob-topology. Thetas are cut in k_3 -line while Infinities/Dumbbells in k_2 -line.
- 6) Dress with flavor/color the one-loop blob-topology and cut it → tree-level configuration with n+4 particles! The color configuration is rearranged appropriately after the second cut.
- 7) Create the currents contributing to the configuration at hand, by applying Dyson-Schwinger recursion to the blobs.
- 8) Reduce, making contractions with $\delta_{j_{n+4}}^{i_{n+3}} \delta_{j_{n+4}}^{i_{n+4}} \delta_{j_{n+2}}^{i_{n+4}}$, the n + 4 color-state to the corresponding n color-state, and identify the N_C power coming from the contractions.

9) Store the numerator information in the Skeleton and continue with the next configuration.

HELAC-2LOOP for amplitude Construction

Blob-Topology generation

Binary Representation and Blobs

• As in HELAC-1LOOP, for the external particles we use a binary representation (2^{i-1}) . E.g.:

For n = 4: $\{p_1, p_2, p_3, p_4\} \rightarrow \{1, 2, 4, 8\}.$

- HELAC-2LOOP for amplitude Construction
 - Blob-Topology generation

Binary Representation and Blobs

• As in HELAC-1LOOP, for the external particles we use a binary representation (2^{i-1}) . E.g.:

For
$$n = 4$$
: $\{p_1, p_2, p_3, p_4\} \rightarrow \{1, 2, 4, 8\}$.

• What a blob and its level are?

- HELAC-2LOOP for amplitude Construction
 - └─ Blob-Topology generation

Binary Representation and Blobs

• As in HELAC-1LOOP, for the external particles we use a binary representation (2^{i-1}) . E.g.:

For
$$n = 4$$
: $\{p_1, p_2, p_3, p_4\} \rightarrow \{1, 2, 4, 8\}$.

• What a blob and its level are?

1) As blob we define the sum of all possible tree-level sub-currents that can be constructed including the external particles that are contained in the number defining the blob.

2) The level of the blob is defined as the number of particles that consists.

イロト イヨト イヨト

- HELAC-2LOOP for amplitude Construction
 - Blob-Topology generation

Binary Representation and Blobs

• As in HELAC-1LOOP, for the external particles we use a binary representation (2^{i-1}) . E.g.:

For
$$n = 4$$
: $\{p_1, p_2, p_3, p_4\} \rightarrow \{1, 2, 4, 8\}$.

• What a blob and its level are?

1) As blob we define the sum of all possible tree-level sub-currents that can be constructed including the external particles that are contained in the number defining the blob.

2) The level of the blob is defined as the number of particles that consists.

• In the example above where we study the blob 15, its level is 4, and the total number of graphs that describes are 26:

- 3 graphs of the first type,
- 4 graphs of the second type,
- 3 graphs of the third type,

- 4 graphs of the fourth type,
- 12 graphs of the fifth type,
- 3 graphs of the sixth type.

イロト イヨト イヨト

HELAC-2LOOP for amplitude Construction

Blob-Topology generation

Two-loop blob-topologies

• At two-loop 3 grand blob-topologies exist:

• The sub-lists $(\{k_1\}, \{k_2\}, \{k_3\}, \{A\}, \{B\}, \{C\})$ represent the incoming blobs to the corresponding loop-lines (k_1, k_2, k_3) , the vertex-points (A, B) and the internal line (C).

- HELAC-2LOOP for amplitude Construction
 - └─ Blob-Topology generation

Blob-Topology generation

Creation of a fortran-based generator $\longrightarrow \texttt{GENTOOLS}$

- Generation of all possible blob-topologies: From higher to lower level blobs.
- Order on the Lengths: $L_1 \ge L_2 \ge L_3$ and $L_A \ge L_B$.
 - Remove of identical topoes using symmetries: 1) up-down (reversion), 2) loop-line swapping.

イロト イヨト イヨト

HELAC-2LOOP for amplitude Construction

Blob-Topology generation

From Two-Loop to One-Loop: The Theta-Topologies

• The red arrows in the following graphs indicate the flow of flavor:

• The orange blobs are the structure information stored for the blobs:

$$B_1(L_1+1) = 2^{n+2} + B(L_1+L_2+1) + \cdots + B(L_1+L_2+L_3) + B(L_1+L_2+L_3+L_A).$$

• $B_1(L_1 + L_2 + 2) = 2^{n+1} + B(L_1 + L_2 + L_3 + L_A + L_B).$

- The rest of the blobs B_1 and the flavors if_p are defined by B_3 and fl_5 , respectively, via the relations: • For $1 \le i \le L_1$: $B_1(i) = B(i)$, $if_p(1) = fl(1)$ and $if_p(L_1 + L_2 + 3 - i) = fl(i + 1)$.
 - For $1 \le i \le L_2 + 1$: $B_1(L_1 + 1 + i) = B(L_1 + i)$ (till L_2 no $L_2 + 1$) and $if_p(L_2 + 3 i) = fl(L_1 + 1 + i)$.

HELAC-2LOOP for amplitude Construction

Blob-Topology generation

From Two-Loop to One-Loop: The Infinity-Topologies

• The orange blobs are the structure information stored for the blob:

- $B_1(L_1+1) = 2^{n+1} + 2^{n+2} + B(L_1+1) + \dots + B(L_1+L_2).$
- The rest of the blobs B_1 and the flavors if_p are defined by B_5 and fl_5 , respectively, via the relations:
 - For $1 \le i \le L_1$: $B_1(i) = B(i)$, $if_p(1) = fl(1) = 35$ (gluon) and $if_p(L_1 + 2 i) = fl(i + 1)$.

HELAC-2LOOP for amplitude Construction

Blob-Topology generation

From Two-Loop to One-Loop: The Dumbbell-Topologies

• The grey arrows indicate to which propagator the pointing flavor corresponds.

• The orange blobs are the structure information stored for the blob:

- $B_1(L_1+1) = 2^{n+1} + 2^{n+2} + B(L_1+1) + \dots + B(L_1+L_2+L_C) + B(L_1+L_2+L_C+L_A) + B(L_1+L_2+L_C+L_A+L_B).$
- The rest of the blobs B_1 and the flavors if_p are defined by Bs and fls, respectively, via the relations:

• For $1 \leq i \leq L_1$: $B_1(i) = B(i)$, $if_p(1) = fl(1)$ (gluon) and $if_p(L_1 + 2 - i) = fl(i + 1)$.

└─ Color-Flavor dressing

Color-Flavor dressing

QCD particles on the loop + Color-Flow representation!

• We dress with flavor and color the loop-particles of the one-loop blob topology using suitable subroutines that apply the following procedures for the dressing:

Flavor Dressing:

- Identification of blob-flavors
- Assign flavor to the first propagator.
- QCD Feynman rules in vertices.

Color Dressing:

 Assign color and anti-color indices to the first propagator.

イロト 不得 トイヨト イヨト

Track the color flow at each vertex.

• We also dress with flavor the loop particles of the cut loop-line (the orange one in the graphs of the previous slides).

• After the second cut, we define the flavor and color of the new extra particles and we rearrange the color of the n + 4 particle configuration by tracking the flow of color in the one-loop topology.

In this way we obtain a unique configuration with specific $\{\mbox{color}\}$ and flavor for each loop particle!

HELAC-2LOOP for amplitude Construction

Skeleton construction and results

Construction: gluonic $\{\{1,2\},\{12\},\{\},\{\}\}\$ with $\delta^{i_1}_{j_4}\delta^{i_2}_{j_1}\delta^{i_3}_{j_2}\delta^{i_4}_{j_3}\delta^{i_5}_{j_5}\delta^{i_6}_{j_5}$

HELAC-2LOOP for amplitude Construction

└─ Skeleton construction and results

Results: gluonic {{1,2}, {12}, {}, {}, {}, {}} with $\delta^{i_1}_{j_1}\delta^{i_2}_{j_2}\delta^{i_3}_{j_3}$

INFO	NUI	1		52	of			20	8			7						
INFO	==:		====	=====	===	====		====	====									
NFO	4	80	35	9	1	1	16	35	5	64	35	7	0	0	0	0	1	2
NFO	4	12	35	10	1	1	4	35	3	8	35	4	0	0	0	0	1	1
NFO	4	92	35	11	1	2	12	35	10	80	35	9	0	0	0	0	1	1
NFO	5	92	35	11	2	2	4	35	3	8	35	4	80	35	9	0	1	5
NFO	4	124	35	12	1	1	32	35	6	92	35	11	0	0	0	0	1	2
NFO	4	126	35	13	1	1	2	35	2	124	35	12	0	0	0	0	1	1
NFO	4	254	35	14	1	1	128	35	8	126	35	13	0	0	0	0	1	2
NFO	6	1	12	1	2	12	35	35	35	35	35	35	0	0	0	0	99	9

	$(2)^{L_1}(3)^{L_2}(5)^{L_3}(7)^{L_A}(11)^{L_B}$, Theta
$ID = \langle$	$(2)^{L_1}(3)^{L_2}$,	Infinity
	$(2)^{L_1}(3)^{L_2}(5)^{L_C}(7)^{L_A}(11)^{L_B}$, Dumbbell

イロト イヨト イヨト

HELAC-2LOOP for amplitude Construction

└─ Numerators and numerics in 4 dimensions

Numerators and numerics in 4 dimensions

Process	#	Loop-Flavors	Color	Size	Crea. Time	Num/s
$gg \rightarrow gg$	2	$\{g, c, \overline{c}\}$	Lead.	8.9 MB	15.017s	4560
$gg \rightarrow gg$	2	$\{g, q, \overline{q}, c, \overline{c}\}$	Full	110.6 MB	6m 54.574s	89392
$gg \rightarrow q\bar{q}$	2	$\{g, q, \overline{q}, c, \overline{c}\}$	Full	16.1 MB	3m 14.509s	13856
$gg \rightarrow ggg$	2	$\{g, c, \overline{c}\}$	Lead.	300.0 MB	21m 42.609s	81480
$gg \rightarrow gg$	1	$\{g, q, \overline{q}, c, \overline{c}\}$	Full	537.8 kB	2.386s	768
$gg \rightarrow ggg$	1	$\{g, q, \overline{q}, c, \overline{c}\}$	Full	15.1 MB	8m 53.349s	11496
$gg \rightarrow gggg$	1	$\{g, c, \overline{c}\}$	Lead.	394.0 MB	104m 14.95s	19680

- L HELAC-2LOOP for amplitude Construction
 - └─ Numerators and numerics in 4 dimensions

Numerators and numerics in 4 dimensions

Process	#	Loop-Flavors	Color	Size	Crea. Time	Num/s
$gg \rightarrow gg$	2	$\{g, c, \overline{c}\}$	Lead.	8.9 MB	15.017s	4560
$gg \rightarrow gg$	2	$\{g, q, \overline{q}, c, \overline{c}\}$	Full	110.6 MB	6m 54.574s	89392
gg ightarrow q ar q	2	$\{g, q, \overline{q}, c, \overline{c}\}$	Full	16.1 MB	3m 14.509s	13856
$gg \rightarrow ggg$	2	$\{g, c, \overline{c}\}$	Lead.	300.0 MB	21m 42.609s	81480
$gg \rightarrow gg$	1	$\{g, q, \overline{q}, c, \overline{c}\}$	Full	537.8 kB	2.386s	768
gg ightarrow ggg	1	$\{g, q, \overline{q}, c, \overline{c}\}$	Full	15.1 MB	8m 53.349s	11496
$gg \rightarrow gggg$	1	$\{g, c, \overline{c}\}$	Lead.	394.0 MB	104m 14.95s	19680

Comments on the skeletons:

- \blacksquare *n* increase, leading color to full color \longrightarrow complexity increase
- Zimings a bit large Skeleton constructed only once per process!
- ☑ Comparable (in terms of complexity) 1-loop and 2-loop processes → 2-loop construction faster!

- HELAC-2LOOP for amplitude Construction
 - └─ Numerators and numerics in 4 dimensions

Numerators and numerics in 4 dimensions

Process	#	Loop-Flavors	Color	Size	Crea. Time	Num/s
$gg \rightarrow gg$	2	$\{g, c, \overline{c}\}$	Lead.	8.9 MB	15.017s	4560
$gg \rightarrow gg$	2	$\{g, q, \overline{q}, c, \overline{c}\}$	Full	110.6 MB	6m 54.574s	89392
gg ightarrow q ar q	2	$\{g, q, \overline{q}, c, \overline{c}\}$	Full	16.1 MB	3m 14.509s	13856
$gg \rightarrow ggg$	2	$\{g, c, \overline{c}\}$	Lead.	300.0 MB	21m 42.609s	81480
$gg \rightarrow gg$	1	$\{g, q, \overline{q}, c, \overline{c}\}$	Full	537.8 kB	2.386s	768
gg ightarrow ggg	1	$\{g,q,\bar{q},c,\bar{c}\}$	Full	15.1 MB	8m 53.349s	11496
$gg \rightarrow gggg$	1	$\{g, c, \overline{c}\}$	Lead.	394.0 MB	104m 14.95s	19680

Comments on the skeletons:

- *n* increase, leading color to full color complexity increase

- Comparable (in terms of complexity) 1-loop and 2-loop processes 2-loop construction faster!

Some numerical results for numerators with gluons as external and loop particles $(h = -- \rightarrow --)^2$:

- $\boxed{N_{\{\{1,2\},\{12\},\{\},\{\},\{\},\{\}\}}} = 17052219.315419123 + 64639250.888367772i.$
- \mathbb{Z} $N_{\{1,2\},\{4,8\},\{\},\{\},\{\}\}} = -12231870819598.090 + 5124375444085.5430i.$
- \mathbb{S} $N_{\{1,2\},\{4\},\{8\},\{\},\{\}\}} = -1268111397619.5310 + 195312105699.88257i.$
- $\mathbb{N}_{\{2,1\},\{8\},\{\},\{4\},\{\}\}} = -49731029299.352333 + 15599344.440385548i.$
- Perfect agreement in cross-checks with FeynArts + FeynCalc + FORM!

Amplitude Reduction within HELAC-2LOOP

└─ Work in progress - General Concept

Amplitude Reduction: Work in progress – General Concept

• In general, a 2-loop *n*-particle amplitude integrand depends on $n_2 = 11$ loop scalar products

 $1)k_{i} \cdot k_{j} \to \#_{1} = 3, \quad 2)k_{i} \cdot p_{j} \to \#_{2} = \min[4, n-1] \times 2, \quad 3)k_{i} \cdot \eta_{j} \to \#_{3} = 8 - \#_{2}, \quad \text{with} \quad \eta_{i} \perp p_{j}.$

• For a topology *I* with n_i propagators, n_i scalar products can be expressed as linear combinations of them (reducible scalar products) $\rightarrow n_{ir} = 11 - n_i$ irreducible scalar products $\rightarrow \{\bar{z}_1, \ldots, \bar{z}_{n_ir}\}$.

• The loop momenta can be decomposed into a 4-dimensional (\bar{k}_i) and an ε -dimensional part (k_i^*)

$$k_i = \bar{k}_i + k_i^* \quad \text{with} \quad k_i \cdot k_j = \bar{k}_i \cdot \bar{k}_j + \mu_{ij}, \quad \text{and} \quad \mu_{ij} = k_i^* \cdot k_j^*. \tag{3.1}$$

Amplitude Reduction within HELAC-2LOOP

└─ Work in progress - General Concept

Amplitude Reduction: Work in progress - General Concept

• In general, a 2-loop *n*-particle amplitude integrand depends on $n_2 = 11$ loop scalar products

 $1)k_{i} \cdot k_{j} \to \#_{1} = 3, \quad 2)k_{i} \cdot p_{j} \to \#_{2} = \min[4, n-1] \times 2, \quad 3)k_{i} \cdot \eta_{j} \to \#_{3} = 8 - \#_{2}, \quad \text{with} \quad \eta_{i} \perp p_{j}.$

• For a topology *I* with n_l propagators, n_l scalar products can be expressed as linear combinations of them (reducible scalar products) $\rightarrow n_{ir} = 11 - n_l$ irreducible scalar products $\rightarrow \{\overline{z}_1, \ldots, \overline{z}_{n_{ir}}\}$.

• The loop momenta can be decomposed into a 4-dimensional (\bar{k}_i) and an ε -dimensional part (k_i^*)

$$k_i = \overline{k}_i + k_i^*$$
 with $k_i \cdot k_j = \overline{k}_i \cdot \overline{k}_j + \mu_{ij}$, and $\mu_{ij} = k_i^* \cdot k_j^*$. (3.1)

· For each numerator configuration we make the following ansatz

$$N_{l} = \sum_{m=1}^{n_{l}} \left(\sum_{\mathbf{i}_{m}} \mathbf{q}_{m} \prod_{i \notin \mathbf{i}_{m}} D_{i} \right) \quad \text{with} \quad \mathbf{i}_{m} = \{i_{1}, \cdots, i_{m-1}, i_{m}\},$$
(3.2)

where the coefficients c_{im} have the following form

$$\mathbf{q}_{\mathbf{m}} = \sum_{j=1} \tilde{\mathbf{z}}_{\mathbf{m}}^{(j)}(\vec{s}, d) \left(\bar{\mathbf{z}}_{1}^{(\mathbf{i}_{\mathbf{m}})} \right)^{\alpha_{1}^{(j)}} \cdots \left(\bar{\mathbf{z}}_{n_{ir}}^{(\mathbf{i}_{\mathbf{m}})} \right)^{\alpha_{n_{ir}}^{(j)}}$$
(3.3)

イロト 不得 とくきとくきとう

with the exponents $\alpha_i^{(j)}$ to be restricted by power counting.

Amplitude Reduction within HELAC-2LOOP

└─ Work in progress - General Concept

- In (3.3) the monomials not containing η_j integrate to Feyman integrals \xrightarrow{IBP} master integrals.
- All the monomials in (3.2) containing at least one η_j to an odd power vanish after integration.

• The monomials consisting even powers of η_j can be turned into terms that vanish after integration using traceless completions [H. Ita, Phys. Rev. D 94, no. 11, 116015 (2016)]

$$1) (k_{i} \cdot \eta_{j})^{2} \longrightarrow (k_{i} \cdot \eta_{j})^{2} - \frac{\mu_{ii}}{d - 4}$$

$$2) (k_{i_{1}} \cdot \eta_{j})^{2} (k_{i_{2}} \cdot \eta_{j})^{2} \longrightarrow (k_{i_{1}} \cdot \eta_{j})^{2} (k_{i_{2}} \cdot \eta_{j})^{2} - \frac{(k_{i_{1}} \cdot \eta_{j})^{2} \mu_{i_{2}i_{2}} + (k_{i_{2}} \cdot \eta_{j})^{2} \mu_{i_{1}i_{1}} + 4(k_{i_{1}} \cdot \eta_{j})(k_{i_{2}} \cdot \eta_{j}) \mu_{i_{1}i_{2}}}{2(d - 4)}$$

Amplitude Reduction within HELAC-2LOOP

Work in progress – General Concept

- In (3.3) the monomials not containing η_j integrate to Feyman integrals \xrightarrow{IBP} master integrals.
- All the monomials in (3.2) containing at least one η_j to an odd power vanish after integration.
- The monomials consisting even powers of η_j can be turned into terms that vanish after integration using traceless completions [H. Ita, Phys. Rev. D 94, no. 11, 116015 (2016)]

$$1) (k_{i} \cdot \eta_{j})^{2} \longrightarrow (k_{i} \cdot \eta_{j})^{2} - \frac{\mu_{ii}}{d - 4}$$

$$2) (k_{i_{1}} \cdot \eta_{j})^{2} (k_{i_{2}} \cdot \eta_{j})^{2} \longrightarrow (k_{i_{1}} \cdot \eta_{j})^{2} (k_{i_{2}} \cdot \eta_{j})^{2} - \frac{(k_{i_{1}} \cdot \eta_{j})^{2} \mu_{i_{2}i_{2}} + (k_{i_{2}} \cdot \eta_{j})^{2} \mu_{i_{1}i_{1}} + 4(k_{i_{1}} \cdot \eta_{j})(k_{i_{2}} \cdot \eta_{j}) \mu_{i_{1}i_{2}}}{2(d - 4)}$$

Following the one-loop paradigm, a possible path within the <code>HELAC-framework</code> for the amplitude reduction could be :

- Determine the 4-dimensional part of the coefficients $\tilde{c}_{im}^{(j)}(\vec{s}, d)$ of Eq. (3.3) using values for the loop-momenta obtained from the cut equations $D_{i_1} = \cdots = D_{i_m} = 0$ in an OPP-like approach [G. Ossola, C. G. Papadopoulos, R. Pittau, Nucl.Phys.B 763 (2007)].
- 2 Determine the ε-dimensional part using two-loop rational terms. The ones of UV origin have been studied in [J. Lang, S. Pozzorini, H. Zhang, M. Zoller, JHEP 05 (2020) 077, JHEP 10 (2020) 016, JHEP 01 (2022) 105].
- IBP reduce the resulted Feynman integrals to master integrals.

イロト 不得 トイヨト イヨト

Amplitude Reduction within HELAC-2LOOP

Work in progress – General Concept

- In (3.3) the monomials not containing η_i integrate to Feyman integrals \xrightarrow{IBP} master integrals.
- All the monomials in (3.2) containing at least one η_j to an odd power vanish after integration.
- The monomials consisting even powers of η_j can be turned into terms that vanish after integration using traceless completions [H. Ita, Phys. Rev. D 94, no. 11, 116015 (2016)]

$$1) (k_{i} \cdot \eta_{j})^{2} \longrightarrow (k_{i} \cdot \eta_{j})^{2} - \frac{\mu_{ii}}{d - 4}$$

$$2) (k_{i_{1}} \cdot \eta_{j})^{2} (k_{i_{2}} \cdot \eta_{j})^{2} \longrightarrow (k_{i_{1}} \cdot \eta_{j})^{2} (k_{i_{2}} \cdot \eta_{j})^{2} - \frac{(k_{i_{1}} \cdot \eta_{j})^{2} \mu_{i_{2}i_{2}} + (k_{i_{2}} \cdot \eta_{j})^{2} \mu_{i_{1}i_{1}} + 4(k_{i_{1}} \cdot \eta_{j})(k_{i_{2}} \cdot \eta_{j}) \mu_{i_{1}i_{2}}}{2(d - 4)}$$

Following the one-loop paradigm, a possible path within the <code>HELAC-framework</code> for the amplitude reduction could be :

- Determine the 4-dimensional part of the coefficients $\tilde{c}_{im}^{(j)}(\vec{s}, d)$ of Eq. (3.3) using values for the loop-momenta obtained from the cut equations $D_{i_1} = \cdots = D_{i_m} = 0$ in an OPP-like approach [G. Ossola, C. G. Papadopoulos, R. Pittau, Nucl.Phys.B 763 (2007)].
- 2 Determine the ε-dimensional part using two-loop rational terms. The ones of UV origin have been studied in [J. Lang, S. Pozzorini, H. Zhang, M. Zoller, JHEP 05 (2020) 077, JHEP 10 (2020) 016, JHEP 01 (2022) 105].
- IBP reduce the resulted Feynman integrals to master integrals.

Main Bottlnecks:

■ IBP reduction for two-loop 5-point Feynman integrals could be a time-consuming task.

イロト 不得 トイヨト イヨト

Rational terms of IR origin?

Amplitude Reduction within HELAC-2LOOP

Work in progress – General Concept

- In (3.3) the monomials not containing η_i integrate to Feyman integrals \xrightarrow{IBP} master integrals.
- All the monomials in (3.2) containing at least one η_j to an odd power vanish after integration.
- The monomials consisting even powers of η_j can be turned into terms that vanish after integration using traceless completions [H. Ita, Phys. Rev. D 94, no. 11, 116015 (2016)]

$$1) (k_{i} \cdot \eta_{j})^{2} \longrightarrow (k_{i} \cdot \eta_{j})^{2} - \frac{\mu_{ii}}{d - 4}$$

$$2) (k_{i_{1}} \cdot \eta_{j})^{2} (k_{i_{2}} \cdot \eta_{j})^{2} \longrightarrow (k_{i_{1}} \cdot \eta_{j})^{2} (k_{i_{2}} \cdot \eta_{j})^{2} - \frac{(k_{i_{1}} \cdot \eta_{j})^{2} \mu_{i_{2}i_{2}} + (k_{i_{2}} \cdot \eta_{j})^{2} \mu_{i_{1}i_{1}} + 4(k_{i_{1}} \cdot \eta_{j})(k_{i_{2}} \cdot \eta_{j}) \mu_{i_{1}i_{2}}}{2(d - 4)}$$

Following the one-loop paradigm, a possible path within the <code>HELAC-framework</code> for the amplitude reduction could be :

- Determine the 4-dimensional part of the coefficients $\tilde{c}_{im}^{(j)}(\vec{s}, d)$ of Eq. (3.3) using values for the loop-momenta obtained from the cut equations $D_{i_1} = \cdots = D_{i_m} = 0$ in an OPP-like approach [G. Ossola, C. G. Papadopoulos, R. Pittau, Nucl.Phys.B 763 (2007)].
- 2 Determine the ε-dimensional part using two-loop rational terms. The ones of UV origin have been studied in [J. Lang, S. Pozzorini, H. Zhang, M. Zoller, JHEP 05 (2020) 077, JHEP 10 (2020) 016, JHEP 01 (2022) 105].
- IBP reduce the resulted Feynman integrals to master integrals.

Main Bottlnecks:

■ IBP reduction for two-loop 5-point Feynman integrals could be a time-consuming task.

イロト 不得 トイヨト イヨト

Rational terms of IR origin?

Conclusion

Results

• Implementation of an algorithm for the construction of two-loop integrand numerators using a hybrid Dyson-Schwinger recursion!

• Validation of the results for numerators including gluons, ghosts and quarks on the loop, with the packages QGRAF, FeynArts, FeynCalc, and FORM!

Next milestones for HELAC-2LOOP

- Development of the part of HELAC-2LOOP for the determination of the 4-dimensional part of the coefficients of the ansatz in Eqs. (3.2) (3.3).
- Implementation to the current framework of the two-loop rational terms.
- Incorporation of IBP reductions to master integrals of the integrals resulted from the ansatz in Eqs. (3.2) (3.3) and the traceless completions, from IBP packages like FIRE, KIRA.
- \bullet Computation of master integrals and creation of a library for efficient calculations / or use of the pentagon functions library!

イロト 不得 トイヨト イヨト

 \square Acknowledgments

Thank you!

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the 2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers (Project Number: 2674).

Color connection representation

• In the color connection representation, the gluons are represented by a pair of color/anti-color indices (i, j) and the quarks (anti-quarks) by a single color (i, 0) (anti-color (0, j)) index, with $i, j \in (1, ..., N_C)$. All the other particles that do not carry color have (0, 0).

• The amplitude takes the following form

$$\mathcal{M}_{j_1,j_2,\ldots,j_k}^{i_1,i_2,\ldots,i_k} = \sum_{\sigma} \delta_{i\sigma_1,j_1} \delta_{i\sigma_2,j_2} \ldots \delta_{i\sigma_k,j_k} A_{\sigma}$$

with $k = n_g + n_q$ and the sum is running over all the permutations (equal to k!). The color-stripped amplitudes, A_{σ} , are calculated using properly defined Feynman rules [A. Cafarella, C. G. Papadopoulos and M. Worek, Comput. Phys. Commun. 180 (2009), 1941-1955].

 \bullet The total color factor is a product of δ 's, and thus the color summed squared amplitude takes the form

$$\sum_{\{i\},\{j\}} \left| \mathcal{M}_{j_1,j_2,\ldots,j_k}^{i_1,i_2,\ldots,i_k} \right|^2 = \sum_{\sigma,\sigma'} \mathcal{A}_{\sigma'}^* \mathcal{C}_{\sigma',\sigma} \mathcal{A}_{\sigma}$$

where the color matrix $C_{\sigma',\sigma}$ is given by

$$C_{\sigma',\sigma} = \sum_{\{i\},\{j\}} \delta_{i_{\sigma'_1},j_1} \delta_{i_{\sigma'_2},j_2} \dots \delta_{i_{\sigma'_k},j_k} \delta_{i_{\sigma_1},j_1} \delta_{i_{\sigma_2},j_2} \dots \delta_{i_{\sigma_k},j_k} = N_C^{m(\sigma',\sigma)}$$

with $m(\sigma',\sigma)$ counting the number of common cycles of the 2 permutations.

Two-loop color-flow dressing \rightarrow identical configurations for HELAC

This is not any more the case after cutting in k_3 -line:

22/20

Blob-Topology Symmetries

• Theta-Topology symmetries³:

$$\begin{split} \{\{k_1\}, \{k_2\}, \{k_3\}, \{A\}, \{B\}\} &= \{R[\{k_1\}], R[\{k_2\}], R[\{k_3\}], \{B\}, \{A\}\} = \{\{k_1\}, \{k_3\}, \{k_2\}, \{A\}, \{B\}\} \\ &= \{R[\{k_1\}], R[\{k_3\}], R[\{k_2\}], \{B\}, \{A\}\} = \{\{k_2\}, \{k_1\}, \{k_3\}, \{A\}, \{B\}\} \\ &= \{R[\{k_2\}], R[\{k_1\}], R[\{k_3\}], \{B\}, \{A\}\} = \{\{k_2\}, \{k_3\}, \{A\}, \{B\}\} \\ &= \{R[\{k_2\}], R[\{k_3\}], R[\{k_1\}], \{B\}, \{A\}\} = \{\{k_3\}, \{k_1\}, \{A\}, \{B\}\} \\ &= \{R[\{k_3\}], R[\{k_1\}], R[\{k_2\}], \{B\}, \{A\}\} = \{\{k_3\}, \{k_2\}, \{A\}, \{B\}\} \\ &= \{R[\{k_3\}], R[\{k_1\}], R[\{k_2\}], \{B\}, \{A\}\} = \{\{k_3\}, \{k_2\}, \{A\}, \{B\}\} \\ &= \{R[\{k_3\}], R[\{k_2\}], R[\{k_1\}], \{B\}, \{A\}\} = \{\{k_3\}, \{k_2\}, \{A\}, \{B\}\} \\ &= \{R[\{k_3\}], R[\{k_2\}], R[\{k_1\}], \{B\}, \{A\}\} \end{split}$$

• Infinity-Topology symmetries:

$$\{\{k_1\}, \{k_2\}\} = \{\{k_2\}, \{k_1\}\} = \{R[\{k_1\}], \{k_2\}\} = \{\{k_1\}, R[\{k_2\}]\} = \{R[\{k_1\}], R[\{k_2\}]\}$$

= $\{R[\{k_2\}], \{k_1\}\} = \{\{k_2\}, R[\{k_1\}]\} = \{R[\{k_2\}], R[\{k_1\}]\}$

• Dumbbell-Topology symmetries:

$$\{\{k_1\}, \{k_2\}, \{C\}, \{A\}, \{B\}\} = \{R[\{k_1\}], \{k_2\}, \{C\}, \{A\}, \{B\}\} = \{\{k_1\}, R[\{k_2\}], \{C\}, \{A\}, \{B\}\} \\ = \{R[\{k_1\}], R[\{k_2\}], \{C\}, \{A\}, \{B\}\} = \{\{k_2\}, \{k_1\}, R[\{C\}], \{B\}, \{A\}\} \\ = \{R[\{k_2\}], \{k_1\}, R[\{C\}], \{B\}, \{A\}\} = \{\{k_2\}, R[\{k_1\}], R[\{C\}], \{B\}, \{A\}\} \\ = \{R[\{k_2\}], R[\{k_1\}], R[\{C\}], \{B\}, \{A\}\}$$

³We use the notation $R[\{k_i\}] := Reverse[\{k_i\}].$