A generic NLO SM framework for LHC and future collider processes $$\mathbf{RADCOR\ 2023}$$

Pia Bredt

University of Siegen

June 1, 2023

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

NLO SM precision in an automated tool

Why do we care?

- NLO QCD corrections
 - ▶ Dominant QCD background at hadron colliders, $\alpha_s \gg \alpha$ at $\mu \sim M_Z$
 - ▶ ...
- NLO EW corrections
 - $\mathcal{O}(\alpha \log^2 p_{ij}^2/M_W^2)$ EW Sudakov suppressions large
 - \rightarrow in high- p_T regions of distributions of pp processes, $\mathcal{O}(10\%)$ at the LHC
 - \rightarrow for high-energy lepton colliders, $p_{ij}^2 \sim \hat{s} \sim s$
 - $\mathcal{O}(\alpha \log s/m_l^2)$ enhancements for QED ISR at lepton colliders
 - $\mathcal{O}(\alpha \log s/E_{\gamma}^2)$ soft photon radiation at lepton colliders

▶ ...

NLO SM precision in an automated tool

Why do we care?

- NLO QCD corrections
 - ▶ Dominant QCD background at hadron colliders, $\alpha_s \gg \alpha$ at $\mu \sim M_Z$
 - ▶ ...
- NLO EW corrections
 - $\mathcal{O}(\alpha \log^2 p_{ij}^2/M_W^2)$ EW Sudakov suppressions large
 - \rightarrow in high- p_T regions of distributions of pp processes, $\mathcal{O}(10\%)$ at the LHC
 - $\rightarrow \,$ for high-energy lepton colliders, $p_{ij}^2 \sim \hat{s} \sim s$
 - $\mathcal{O}(\alpha \log s/m_l^2)$ enhancements for QED ISR at lepton colliders
 - $\mathcal{O}(\alpha \log s/E_{\gamma}^2)$ soft photon radiation at lepton colliders

▶ ...

What do we do?

• Apply universal principles of NLO SM corrections in the Monte-Carlo generator WHIZARD [EPJ C71 (2011) 1742] for both collider types and arbitrary final states

Overview

Parts:

- I) Automation of NLO SM corrections in $\mbox{WHIZARD}$
- II) Application of NLO EW corrections to multi-boson processes at a future muon collider

I) Automation of NLO SM corrections in $\tt WHIZARD$

I) WHIZARD

What is WHIZARD?

Multi-purpose event generator for cross sections and differential distributions of **arbitrary processes** at HEP experiments (LHC, Belle II, ILC/CLIC/FCC/CEPC, MuCol, ...)

Essential elements of WHIZARD

- physics models: SM, internal (hard-coded) BSM and UFO models
- phase-space integrator: VAMP (VEGAS AMPlified) [CPC 120 (1999) 13],

 $\texttt{VAMP2}_{[\text{EPJ C79 (2019) 4 344}]}$ incl. MPI parallelization

- matrix elements: tree-level ME generator O'Mega [LC-TOOL (2001) 040], interface to OLPs OpenLoops[1907.13071], RECOLA[1711.07388] and GoSam[1404.7096]
- precision methods: FKS subtr., POWHEG matching, PYTHIA-interface, lepton collider Beam features (QED ISR, Beamsstrahlung, polarization), ...

I) NLO framework in WHIZARD

(contributors: PB, B. C.-Nejad, W. Kilian, J. Reuter, V. Rothe, P. Stienemeier, C. Weiss)

 $\sigma_{\rm NLO} = \underbrace{\int d\Phi_n \mathcal{B}}_{\rm Born} + \underbrace{\int d\Phi_{n+1} \mathcal{R}}_{\rm div. \ real} + \underbrace{\int d\Phi_n \mathcal{V}}_{\rm div. \ virtual} = \text{finite}$

Need observables **exclusive** in kinematic properties!

$$\sigma_{\rm NLO} = \int d\Phi_n \mathcal{B} + \int \underbrace{d\Phi_{n+1} \left[\mathcal{R} - d\sigma_S \right]}_{\text{finite by construction}} + \underbrace{\int d\Phi_n \mathcal{V} + \int d\Phi_n d\sigma_{S,\text{int}}}_{\text{IR poles cancelled analyt.}}$$

 $^{\prime}j^{\prime}$ radiated with several different emitters

 \Rightarrow Subtract singularities related to IR splittings systematically!

Frixione-Kunszt-Signer (FKS) subtraction

Divide phase space into disjoint regions with **at most one** soft and/or collinear singularity.

 \Rightarrow kinematical weight factors related to pairs (i, j)

RADCOR 2023

I) NLO framework in WHIZARD

(contributors: PB, B. C.-Nejad, W. Kilian, J. Reuter, V. Rothe, P. Stienemeier, C. Weiss) FKS subtraction per α_r region

$$\mathcal{R} = \sum_{\alpha_r} \mathcal{R}_{\alpha_r} = \sum_{\alpha_r} \mathcal{S}_{\alpha_r} \mathcal{R} \quad \text{for } \mathcal{I}_{\alpha_r} = (i, j) \in P_{\text{FKS}}(f_r)$$

works in conjunction with POWHEG matching scheme

$$d\sigma_{\rm NLO} = \bar{\mathcal{B}}(\Phi_n) \left(\Delta(p_{T,\min}) + \Delta(k_T(\Phi_{n+1})) \frac{\mathcal{R}(\Phi_{n+1})}{\mathcal{B}(\Phi_n)} d\Phi_{\rm rad} \right) d\Phi_n$$

using a *modified* Sudakov form factor

$$\Delta(\Phi_n, p_T) = \exp\left[-\int \frac{\mathcal{R}(\Phi_{n+1})}{\mathcal{B}(\Phi_n)} \theta\left(k_T(\Phi_{n+1}) - p_T\right) d\Phi_{\text{rad}}\right]$$

$$\Delta^{f_{\mathcal{B}}}(\Phi_n, p_T) = \prod_{\alpha_r \in \{\alpha_r | f_{\mathcal{B}}\}} \Delta^{f_{\mathcal{B}}}_{\alpha_r}(\Phi_n, p_T)$$

I) NLO framework in WHIZARD: NLO QCD

(contributors: PB, B. C.-Nejad, W. Kilian, J. Reuter, V. Rothe, P. Stienemeier, C. Weiss)

For pp and e^+e^- colliders

- Automation of fNLO simulation of cross sections and distributions
 - \rightarrow Validated for about 50 processes with MG5_aMC@NLO[1405.0301] and SHERPA[1905.09127]
- Automation of POWHEG-matched event generation for NLO QCD corrections

(thanks to Pascal Stienemeier)

 $\rightarrow~{\rm Validated~for}~pp\rightarrow e^+e^-~{\rm and}~e^+e^-\rightarrow t\bar{t}j~{\rm with}~{\rm POWHEG-BOX}_{\rm [1002.2581]}$

I) NLO framework in <code>WHIZARD</code>: NLO EW

Extension to electroweak corrections

• QED FKS subtraction terms:

$$d\sigma_{S,\text{coll}} \sim \alpha \underbrace{\hat{P}_{E \to (i,j),\text{QED}}^{\mu\nu} \mathcal{B}_{\mu\nu}^{(E)}}_{\text{pol. AP kernel \times spin-corr.}}, d\sigma_{S,\text{soft}} \sim \alpha \sum_{k,l=1}^{n} \underbrace{\frac{k_k \cdot k_l}{(\bar{k}_k \cdot \hat{k}_j)(\bar{k}_l \cdot \hat{k}_j)} \mathcal{B}_{kl}}_{\text{eikonal \times charge-corr.}}$$

- EW loop contributions (interface to OpenLoops, RECOLA, GoSam)
- EW renorm. schemes & photons entering at Born level

$\hat{Q}_{\gamma}^2 ightarrow 0$	$Q_{\gamma}^2 \sim \text{EW scale}$
on-shell photons	off-shell photons
no γ splittings	$\gamma^* o f ar{f}$
lpha(0)	$lpha _{G_{\mu}},lpha\left(M_{Z} ight)$
$\left[\frac{\delta\alpha(0)}{\alpha(0)} + \delta Z_{AA}\right]_{\text{light}} = 0$	$ \left[\frac{\delta \alpha(M_Z)}{\alpha(M_Z)} + \delta Z_{AA} \right]_{\text{light}} + \delta Z_{\gamma,\text{PDF}} $ $\rightarrow \text{finite overall photon factor } \neq 0 $

with photon virtuality Q_{γ}^2

 $\rightarrow~\alpha$ coupling constant, renormalization factors

I) NLO framework in WHIZARD: NLO EW

process	$MUNICH_{(CS)} \sigma_{NLO}^{tot}$ [fb]	WHIZARD $\sigma_{\rm NLO}^{\rm tot}$ [fb]	δ [%]	dev [%]	σ^{sig}
$pp \rightarrow$	+OpenLoops	+OpenLoops			
ZZ	$1.05729(1) \cdot 10^4$	$1.05729(11) \cdot 10^4$	-4.20	0.0001	0.01
W^+Z	$1.71505(2) \cdot 10^4$	$1.71507(2) \cdot 10^4$	-0.15	0.001	0.88
W^-Z	$1.08576(1) \cdot 10^4$	$1.08574(1) \cdot 10^4$	+0.07	0.001	0.90
W^+W^-	$7.93106(7) \cdot 10^4$	$7.93087(21) \cdot 10^4$	+4.55	0.002	0.89
ZH	$6.18523(6) \cdot 10^2$	$6.18533(6) \cdot 10^2$	-5.29	0.002	1.17
W^+H	$7.18070(7) \cdot 10^2$	$7.18072(9) \cdot 10^2$	-2.31	0.0003	0.18
W^-H	$4.59289(4) \cdot 10^2$	$4.59299(5) \cdot 10^2$	-2.15	0.002	1.62
ZZZ	$9.7429(2) \cdot 10^0$	$9.7417(11) \cdot 10^0$	-9.47	0.012	1.01
W^+W^-Z	$1.08288(2) \cdot 10^2$	$1.08293(10) \cdot 10^2$	+7.67	0.004	0.45
W^+ZZ	$2.0188(4) \cdot 10^{1}$	$2.0188(23) \cdot 10^{1}$	+1.58	0.0001	0.01
W^-ZZ	$1.09844(2)\cdot 10^{1}$	$1.09838(12) \cdot 10^{1}$	+3.09	0.006	0.51
W^+W^-W	$^{+}$ 8.7979(2) \cdot 10 ¹	$8.7991(15) \cdot 10^{1}$	+6.18	0.014	0.79
W^+W^-W	$4.9447(1) \cdot 10^{1}$	$4.9441(2) \cdot 10^{1}$	+7.13	0.013	2.52
ZZH	$1.91607(2)\cdot 10^{0}$	$1.91614(18)\cdot 10^{0}$	-8.78	0.004	0.39
W^+ZH	$2.48068(2) \cdot 10^{0}$	$2.48095(28) \cdot 10^{0}$	+1.64	0.011	0.96
$W^- ZH$	$1.34001(1) \cdot 10^{0}$	$1.34016(15) \cdot 10^{0}$	+2.51	0.011	1.02
W^+W^-H	$9.7012(2) \cdot 10^{0}$	$9.700(2) \cdot 10^{0}$	+9.83	0.014	0.75
ZHH	$2.39350(2) \cdot 10^{-1}$	$2.39337(32) \cdot 10^{-1}$	-11.06	0.005	0.41
W^+HH	$2.44794(2) \cdot 10^{-1}$	$2.44776(24) \cdot 10^{-1}$	-12.04	0.007	0.74
W^-HH	$1.33525(1) \cdot 10^{-1}$	$1.33471(19) \cdot 10^{-1}$	-11.53	0.041	2.80

Cross-validation of WHIZARD and MUNICH/MATRIX orig. ref. [Kallweit et. al., 1412.5157]

LHC setup (Run II),

 $\delta \equiv (\sigma_{\rm NLO}^{\rm tot} - \sigma_{\rm LO}^{\rm tot}) / \sigma_{\rm LO}^{\rm tot}, \qquad {\rm dev} \equiv |\sigma_{\rm WHIZARD}^{\rm tot} - \sigma_{\rm MUNICH}^{\rm tot}| / \sigma_{\rm WHIZARD}^{\rm tot}$

RADCOR 2023

Pia Bredt (University of Siegen)

I) NLO framework in WHIZARD: NLO EW

Pure electroweak pp processes with off-shell vector bosons

process	α^m	MG5_aMC@NL0[1804.10017]	WHIZARD+OpenL	oops	$\sigma_{\rm NLO}^{\rm sig}$
$pp \rightarrow$		$\sigma_{ m NLO}^{ m tot}~[m pb]$	$\sigma_{ m NLO}^{ m tot}$ [pb]	δ [%]	
$e^+\nu_e$	α^2	$5.2005(8) \cdot 10^3$	$5.1994(4) \cdot 10^3$	-0.73	1.24
e^+e^-	α^2	$7.498(1) \cdot 10^2$	$7.498(1) \cdot 10^2$	-0.50	0.004
$e^+ \nu_e \mu^- \bar{\nu}_\mu$	α^4	$5.2794(9) \cdot 10^{-1}$	$5.2816(9) \cdot 10^{-1}$	+3.69	1.69
$e^+e^-\mu^+\mu^-$	α^4	$1.2083(3) \cdot 10^{-2}$	$1.2078(3) \cdot 10^{-2}$	-5.25	1.26
$He^+\nu_e$	α^3	$6.4740(17) \cdot 10^{-2}$	$6.4763(6) \cdot 10^{-2}$	-4.04	1.24
He^+e^-	α^3	$1.3699(2) \cdot 10^{-2}$	$1.3699(1) \cdot 10^{-2}$	-5.86	0.32
Hjj	α^3	$2.7058(4) \cdot 10^{0}$	$2.7056(6) \cdot 10^{0}$	-4.23	0.27
tj	α^2	$1.0540(1) \cdot 10^2$	$1.0538(1) \cdot 10^2$	-0.72	0.74

LHC setup (Run II): $\sqrt{s} = 13$ TeV $\mu_R = \mu_F = \frac{1}{2} \sum_i \sqrt{p_{T,i}^2 + m_i^2}$ EW scheme: G_{μ} CMS PDF set: LUXqed_plus_PDF4LHC15_nnlo_100 cuts from ref. [1804.10017]

I) NLO framework in WHIZARD: NLO EW and mixed Interfering correction types (NLO QCD×EW): for processes with $\mathcal{O}(\alpha_s^n)$ contributions with $n \geq 1$:

Example: $pp \to Zj$ at $\mathcal{O}(\alpha\alpha_s)$: Contributions from $q\bar{q} \to Zg\gamma$ at $\mathcal{O}(\alpha^2\alpha_s)$ \Rightarrow Need cancellations from $[\mathcal{B}(q\bar{q} \to Zg) \text{ at } \mathcal{O}(\alpha\alpha_s)] \times [\text{QED splitting}]$ and $[\mathcal{B}(q\bar{q} \to Z\gamma) \text{ at } \mathcal{O}(\alpha^2)] \times [\text{QCD splitting}]$

Pia Bredt (University of Siegen)

RADCOR 2023

I) NLO framework in $\tt WHIZARD:$ NLO EW and mixed

Cross-validation with MUNICH/MATRIX using OpenLoops for $pp \to t\bar{t}$ and $pp \to t\bar{t} + W^{\pm}/Z/H$ with complete NLO SM corrections, e. g.

		$\sigma^{ m tot}$	$\sigma^{ m sig} \;/\; dev$	
$pp \to t\bar{t}W^+$	$\alpha_s^n \alpha^m$	$\texttt{MUNICH}_{(CS)}$	WHIZARD	$\texttt{MUNICH}_{(CS)}\text{-}\texttt{WHIZARD}$
LO_{21}	$\alpha_s^2 \alpha$	$2.411403(1) \cdot 10^2$	$2.4114(1) \cdot 10^2$	0.72~/~0.003%
LO_{12}	$\alpha_s \alpha^2$	0.000	0.000	$0.00 \ / \ 0.000\%$
LO_{03}	α^3	$2.31909(1)\cdot 10^{0}$	$2.3193(1)\cdot 10^{0}$	1.76~/~0.009%
δNLO_{31}	$\alpha_s^3 \alpha$	$1.18993(2) \cdot 10^2$	$1.1905(5) \cdot 10^2$	1.06~/~0.048%
δNLO_{22}	$\alpha_s^2 \alpha^2$	$-1.09511(9) \cdot 10^{1}$	$-1.0947(3) \cdot 10^{1}$	1.13~/~0.035%
δNLO_{13}	$\alpha_s \alpha^3$	$2.93251(3)\cdot 10^{1}$	$2.9334(8)\cdot 10^{1}$	1.14~/~0.030%
$\delta \mathrm{NLO}_{04}$	$lpha^4$	$5.759(3) \cdot 10^{-2}$	$5.756(4) \cdot 10^{-2}$	0.58~/~0.049%

Non-negligible and even enhanced EW effects for α_s subleading contributions at NLO!

 $(pp \rightarrow b\bar{b}X \text{ in validation progress})$

I) NLO framework in $\tt WHIZARD:$ NLO EW and mixed

Comparison with MG5_aMC@NLO for $pp \to e^+\nu_e j$ and $pp \to e^+e^- j$ at NLO EW

process	$\alpha_s^n \alpha^m$	MG5_aM	CONLO	WHIZ	ARD+OpenLoop	S	$\sigma^{ m sig}$
$pp \to Xj$	_	$\sigma_{ m LO}^{ m tot}~[{ m pb}]$	$\sigma_{ m NLO}^{ m tot}$ [pb]	$\sigma_{ m LO}^{ m tot}~[{ m pb}]$	$\sigma_{ m NLO}^{ m tot}$ [pb]	δ [%]	$\rm LO/NLO$
$e^+\nu_e j$	$\alpha_s \alpha^2$	914.81(6)	904.75(8)	914.74(7)	904.59(7)	-1.11	0.8/1.5
e^+e^-j	$\alpha_s \alpha^2$	150.59(1)	149.09(2)	150.59(1)	149.08(2)	-1.00	0.05/0.4

LHC-setup (Run II), cuts with photon recombination and jet clustering

II) Application of NLO EW corrections to multi-boson processes at a future muon collider

large IS mass:

- large scales (multi-TeV)
- \rightarrow high new physics discovery potential: Scanning for BSM theories related to $(g-2)_{\mu}$

large IS mass:

- large scales (multi-TeV)
- → high new physics discovery potential: Scanning for BSM theories related to $(g-2)_{\mu}$
 - reduced Bremsstrahlung; 'leading log. term beyond NLO' $\sim (\alpha/\pi)^2 \log^2(Q^2/m^2) \sim 0.1\%$ sufficiently small
- \rightarrow fixed $\mathcal{O}(\alpha)$ expansion viable

large IS mass:

- large scales (multi-TeV)
- → high new physics discovery potential: Scanning for BSM theories related to $(g-2)_{\mu}$
 - reduced Bremsstrahlung; 'leading log. term beyond NLO' $\sim (\alpha/\pi)^2 \log^2(Q^2/m^2) \sim 0.1\%$ sufficiently small
- \rightarrow fixed $\mathcal{O}(\alpha)$ expansion viable
- ⇒ Fixed-order massive approximation for $\mu^+\mu^- \to V^n H^m$ with $V \in \{W^{\pm}Z\}$ and $n + m \leq 4$ at NLO EW

$\mu^+\mu^- \rightarrow X, \sqrt{s} = 3 \text{ TeV}$	$\sigma_{\sf LO}^{\sf incl}$ [fb]	$\delta_{\sf EW}$ [%]	δ_{ISR} [%]
W^+W^-	$4.6591(2) \cdot 10^2$	+4.0(2)	+13.82(4)
ZZ	$2.5988(1)\cdot 10^{1}$	+2.19(6)	+15.71(4)
HZ	$1.3719(1) \cdot 10^{0}$	-1.51(4)	+30.24(3)
W^+W^-Z	$3.330(2) \cdot 10^{1}$	-22.9(2)	+2.90(9)
W^+W^-H	$1.1253(5) \cdot 10^{0}$	-20.5(2)	+7.10(8)
ZZZ	$3.598(2) \cdot 10^{-1}$	-25.5(3)	+5.24(8)
HZZ	$8.199(4) \cdot 10^{-2}$	-19.6(3)	+8.39(8)
HHZ	$3.277(1) \cdot 10^{-2}$	-25.2(1)	+7.58(7)
$W^{+}W^{-}W^{+}W^{-}$	$1.484(1) \cdot 10^{0}$	-33.1(4)	-1.3(1)
W^+W^-ZZ	$1.209(1) \cdot 10^{0}$	-42.2(6)	-1.8(1)
W^+W^-HZ	$8.754(8) \cdot 10^{-2}$	-30.9(5)	-0.1(1)
W^+W^-HH	$1.058(1) \cdot 10^{-2}$	-38.1(4)	+1.7(1)
ZZZZ	$3.114(2) \cdot 10^{-3}$	-42.2(2)	+0.8(1)
HZZZ	$2.693(2) \cdot 10^{-3}$	-34.4(2)	+1.4(1)
HHZZ	$9.828(7) \cdot 10^{-4}$	-36.5(2)	+2.2(1)
HHHZ	$1.568(1) \cdot 10^{-4}$	-25.7(2)	+5.7(1)

WHIZARD+RECOLA, G_{μ} scheme, $m_{\mu} = 0.1056...$ GeV

with $\delta_{\rm EW} = \sigma_{\rm NLO}^{\rm incl} / \sigma_{\rm LO}^{\rm incl} - 1$ and $\delta_{\rm ISR} = \sigma_{\rm LO,LL-ISR}^{\rm incl} / \sigma_{\rm LO}^{\rm incl} - 1$

WHIZARD+RECOLA, G_{μ} scheme, $m_{\mu} = 0.1056...$ GeV

$\mu^+\mu^- o X, \sqrt{s} = 3 \text{ TeV}$	$\sigma_{\sf LO}^{\sf incl}$ [fb]	δ_{EW} [%]	δ_{ISR} [%]
	$4.6591(2) \cdot 10^2$	+4.0(2)	+13.82(4)
$\Lambda_{ m EW,Sud} \sim -rac{lpha}{8\pi} \sum_{k} \sum_{l} I^{a}(k) I^{ar{a}}(l) \log l$	$\log^2 \frac{(p_k + p_l)^2}{M^2} =$	\Rightarrow virtual 1	$\mathcal{V} = 1100000000000000000000000000000000000$
$\delta \pi k, l \neq k a = \overline{\gamma, Z}, W$	^{IVI}W		+2.90(9)
777	2 509(2) 10-1		+7.10(8)
	$3.598(2) \cdot 10^{-2}$	-25.5(3)	+5.24(8)
HZZ	$8.199(4) \cdot 10^{-2}$	-19.6(3)	+8.39(8)
HHZ	$3.277(1) \cdot 10^{-2}$	-25.2(1)	+7.58(7)
$W^+W^-W^+W^-$	$1.484(1) \cdot 10^{0}$	-33.1(4)	-1.3(1)
W^+W^-ZZ	$1.209(1) \cdot 10^{0}$	-42.2(6)	-1.8(1)
W^+W^-HZ	$8.754(8) \cdot 10^{-2}$	-30.9(5)	-0.1(1)
W^+W^-HH	$1.058(1) \cdot 10^{-2}$	-38.1(4)	+1.7(1)
ZZZZ	$3.114(2) \cdot 10^{-3}$	-42.2(2)	+0.8(1)
HZZZ	$2.693(2) \cdot 10^{-3}$	-34.4(2)	+1.4(1)
HHZZ	$9.828(7) \cdot 10^{-4}$	-36.5(2)	+2.2(1)
HHHZ	$1.568(1) \cdot 10^{-4}$	-25.7(2)	+5.7(1)

with $\delta_{\rm EW} = \sigma_{\rm NLO}^{\rm incl} / \sigma_{\rm LO}^{\rm incl} - 1$ and $\delta_{\rm ISR} = \sigma_{\rm LO,LL-ISR}^{\rm incl} / \sigma_{\rm LO}^{\rm incl} - 1$

WHIZARD+RECOLA, G_{μ} scheme, $m_{\mu} = 0.1056...$ GeV

$\mu^+\mu^- o X, \sqrt{s}=3 \; {\sf TeV}$	$\sigma_{\sf LO}^{\sf incl}$ [fb]	δ_{EW} [%]	δ_{ISR} [%]
W^+W^-	$4.6591(2) \cdot 10^2$	+4.0(2)	+13.82(4)
$\Lambda_{\rm EW,Sud} \sim -\frac{\alpha}{8\pi} \sum_{k,l \neq k} \sum_{a=\gamma,Z,W} I^a(k) I^{\bar{a}}(l) \log I_{\bar{a}}(l) \log I_{\bar{a}}(l) \log I_{\bar{a}}(l) \log I_{\bar{a}}(l)$	$\log^2 \frac{(p_k + p_l)^2}{M_W^2} =$	\Rightarrow virtual $$	$\mathcal{V} = \frac{\begin{array}{c} +15.71(4) \\ +30.24(3) \\ +2.90(9) \end{array}}{\begin{array}{c} \end{array}}$
777	$3508(2)$, 10^{-1}	-25 5(2)	+7.10(8) +5.24(8)
HZZ	$8.199(4) \cdot 10^{-2}$	-23.5(3) -19.6(3)	+3.24(8) +8.39(8)
HHZ	$3.277(1) \cdot 10^{-2}$	-25.2(1)	+7.58(7)
$W^+W^-W^+W^-$	$1.484(1) \cdot 10^{0}$	-33.1(4)	-1.3(1)
W^+W^-ZZ	$1.209(1) \cdot 10^{0}$	-42.2(6)	-1.8(1)
W^+W^-HZ	$8.754(8) \cdot 10^{-2}$		$\Gamma \Gamma^{\mathrm{LL}(1)} \sim \frac{\alpha}{\log} \frac{s}{s} \rightarrow \mathrm{real} \mathcal{P}$
W^+W^-HH	$1.058(1) \cdot 10^{-2}$		$\Gamma \Gamma_{\mu/\mu}^{-1} \sim \frac{1}{2\pi} \log \frac{1}{m^2} \Rightarrow \operatorname{real} \mathcal{K}$
ZZZZ	$3.114(2) \cdot 10^{-3}$		µ
HZZZ	$2.693(2) \cdot 10^{-3}$	-34.4(2)	+1.4(1)
HHZZ	$9.828(7) \cdot 10^{-4}$	-36.5(2)	+2.2(1)
HHHZ	$1.568(1) \cdot 10^{-4}$	-25.7(2)	+5.7(1)

with $\delta_{\rm EW} = \sigma_{\rm NLO}^{\rm incl} / \sigma_{\rm LO}^{\rm incl} - 1$ and $\delta_{\rm ISR} = \sigma_{\rm LO,LL-ISR}^{\rm incl} / \sigma_{\rm LO}^{\rm incl} - 1$

$\mu^+\mu^- \to X$	$\sqrt{s} = 10$ T	ГeV	$\sqrt{s} = 14$	ГeV	
	$\sigma_{\sf LO}^{\sf incl}$ [fb]	$\delta_{\sf EW}$ [%]	$\sigma_{\sf LO}^{\sf incl}$ [fb]	δ_{EW} [%]	- Suppression due to
W^+W^-	$5.8820(2) \cdot 10^{1}$	+3.9(2)	$3.2423(1) \cdot 10^{1}$	+3.6(2)	- Suppression due to
ZZ	$3.2730(4) \cdot 10^{0}$	+3.9(1)	$1.80357(9) \cdot 10^{0}$	+3.8(2)	EW Sudakov logarithms
HZ	$1.22929(8) \cdot 10^{-1}$	-14.12(7)	$6.2702(4) \cdot 10^{-2}$	-18.7(1)	at high energies
W^+W^-Z	$9.609(5)\cdot10^0$	-39.0(2)	$6.369(3) \cdot 10^{0}$	-45.0(4)	pronounced for
W^+W^-H	$2.1263(9) \cdot 10^{-1}$	-38.4(5)	$1.2846(6) \cdot 10^{-1}$	-43.3(9)	(di) Higgsstrahlung!
ZZZ	$8.565(4) \cdot 10^{-2}$	-38.5(9)	$5.475(3) \cdot 10^{-2}$	-44.2(6)	(di-)mggsstramung:
HZZ	$1.4631(6) \cdot 10^{-2}$	-34.9(4)	$8.754(4) \cdot 10^{-3}$	-39.7(4)	
HHZ	$6.083(2) \cdot 10^{-3}$	-51.6(5)	$3.668(1) \cdot 10^{-3}$	-59.4(3)	

II) Multi-boson processes at a muon collider at NLO EW [PB, W. Kilian, J. Reuter, P. Stienemeier; JHEP 12 (2022)] Fixed order differential distributions: $d\sigma(\mu^+\mu^- \to HZ)/d\cos\theta_H$

'NLO-cuts': phase-space cut on hard photons occuring at NLO: $E_{\gamma} < 0.7\sqrt{s}$

RADCOR 2023

II) Multi-boson processes at a muon collider at NLO EW [PB, W. Kilian, J. Reuter, P. Stienemeier; JHEP 12 (2022)] Fixed order differential distributions: $d\sigma(\mu^+\mu^- \to HZ)/d\cos\theta_H$

'NLO-cuts': phase-space cut on hard photons occuring at NLO: $E_{\gamma} < 0.7\sqrt{s}$

Pia Bredt (University of Siegen)

RADCOR 2023

II) Multi-boson processes at a muon collider at NLO EW [PB, W. Kilian, J. Reuter, P. Stienemeier; JHEP 12 (2022)] NLL EW $\mu^+\mu^- \rightarrow HZ$ Sudakov factor: $\rightarrow \Lambda_{\text{est}}^{\text{unpol}}(\theta_H = 90^\circ)$ (black dashed line)

- Λ_λ^κ: Sudakov factors for muon chiralities κ = L, R and Z polarisations λ = T, L
- $\Lambda_{\text{est}}^{\text{unpol}}$: estimated unpolarised correction factor at $\theta_H = 90^\circ$

June 1, 2023

21/22

• $\Lambda^{\text{unpol}}_{\text{est,c}}$: $\Lambda^{\text{unpol}}_{\text{est}}$ without angular dependent terms

Summary

I) Automated computation of NLO SM corrections in $\tt WHIZARD$

- $\rightarrow~$ POWHEG-matching automated for QCD corrections
- $\rightarrow~$ At the LHC precision frontier for EW corrections
- $\rightarrow\,$ Automated fixed-order EW corrections to lepton collider processes
- II) Application of this framework to muon collider physics
- $\rightarrow\,$ EW corrections highly significant for multi-TeV scales and high boson multiplicities Outlook:
 - NLO EW cross sections with QED NLL PDFs for lepton collisions
 - SMEFT@NLO with WHIZARD+GoSam (in collab. with G. Heinrich and M. Höfer)

Back-Up

- **1** FKS subtraction scheme
- 2 Applied LHC phase-space cuts
- 3 Coupling power counting algorithm
- I Fixed-order masive approximation for lepton collisions at NLO EW
- **(5)** Electron/photon PDFs for lepton collisions
- 6 Complex-mass scheme at NLO
- \bigcirc NLL EW $\mu^+\mu^- \to HZ$ Sudakov factor
- 8 WHIZARD features

FKS parametrisation:

For $2 \to n$ processes: integrands parametrised by Φ_n for $\mathcal{B}, \mathcal{V}, d\sigma_{S,\text{int}}$ and $\Phi_{n+1} = (\Phi_n, \Phi_{\text{rad}})$ for $\mathcal{R}, d\sigma_S$

FKS variables:
$$\Phi_{\rm rad} \to \{\xi, y, \phi\}$$

$$d\Phi_{n+1} = d\Phi_{\rm rad} d\Phi_n = \underbrace{\mathcal{J}(\xi, y, \phi)}_{\rm Jacobian} d\xi dy d\phi d\Phi_n$$

with $\xi \equiv 2E_{\rm rad}/\sqrt{s}$, $y \equiv \cos\theta_{ij}$ and ϕ : angle difference in transversal plane

collinear limit: $y \to 1$ soft limit: $\xi \to 0$

${\ensuremath{\operatorname{IR}}}$ cancellation:

• Define:

$$\mathcal{R}_{(i,j)} = \mathcal{S}_{(i,j)}\mathcal{R}$$

with $S_{(i,j)}$ depending on the kinematics of (i, j), $\sum_{i,j} S_{(i,j)} = 1$ and $\lim_{y\to 1} S_{(i,j)} = 1$, $\lim_{\xi\to 0} S_{(i,j)} = S_{(i,j)}^{\text{soft}}$ Subtraction:

$$\tilde{\mathcal{R}}(\xi,y) \equiv (1-y)\xi^2 \mathcal{R}(\xi,y)$$

$$\frac{\hat{\tilde{\mathcal{R}}}_{(i,j)}(\xi,y)}{\xi^2(1-y)} = \frac{1}{\xi^2(1-y)} \left(\tilde{\mathcal{R}}_{(i,j)}(\xi,y) - \underbrace{\tilde{\mathcal{R}}_{(i,j)}(0,y)}_{\text{soft}} - \underbrace{\tilde{\mathcal{R}}_{(i,j)}(\xi,1)}_{\text{collinear}} + \underbrace{\tilde{\mathcal{R}}_{(i,j)}(0,1)}_{\text{soft-collinear}} \right)$$

Subtraction "events" get Born phase-space configuration
 ⇒ Mind IR-safe observables for event generation!

$$\lim_{p_i \parallel p_j} O_{n+1}(p_1, \dots, p_i, \dots, p_j, \dots, p_{n+1}) = O_n(p_1, \dots, p_{ij}, \dots, p_n)$$
$$\lim_{p_i \to 0} O_{n+1}(p_1, \dots, p_j, \dots, p_{n+1}) = O_n(p_1, \dots, p_{j-1}, p_{j+1}, \dots, p_n)$$

Pia Bredt (University of Siegen)

Subtraction terms: For split, partons $\overline{\mathcal{I}}_i \to \mathcal{I}_i \mathcal{I}_j$ and $k_i^2 = 0$ for emitting parton \mathcal{I}_i after splitting

 \bullet collinear limit: unreg. polarised splitting functions \times spin-correlated ${\rm ME}^2$

$$\lim_{y \to 1} \tilde{\mathcal{R}}_{(i,j)}(\xi, y) \simeq \tilde{\mathcal{R}}_{(i,j)}(\xi, 1) = \lim_{y \to 1} \frac{8\pi\alpha_s(1-y)\xi^2}{\bar{k}_i^2} \hat{P}_{\bar{\mathcal{I}}_i \to \mathcal{I}_i \mathcal{I}_j, \text{QCD}}^{\mu\nu}(z, k_\perp) \mathcal{B}_{\mu\nu}^{(i)}$$

For $\bar{\mathcal{I}}_i = g$, $\mathcal{B}_{\mu\nu}^{(i)} = N_B \sum_{\{m\}, s_i, s'_i} \mathcal{M}_n(\{m\}, s_i) \mathcal{M}_n^{\dagger}(\{m\}, s'_i) (\epsilon_{s_i})^*_{\mu} (\epsilon_{s'_i})_{\nu}$

with $\{m\}$ colour, spins of Born conf. and s_i the spin of emitting gluon

 \bullet soft limit: eikonal \times color- or charge-correlated Born $\rm ME^2$

$$\lim_{\xi \to 0} \tilde{\mathcal{R}}_{(i,j)}(\xi, y) \simeq \tilde{\mathcal{R}}_{(i,j)}(0, y) = 4\pi \alpha_s (1-y) \sum_{k,l=1}^n \frac{\bar{k}_k \cdot \bar{k}_l}{(\bar{k}_k \cdot \hat{k}_j)(\bar{k}_l \cdot \hat{k}_j)} \mathcal{B}_{kl}$$

$$|\mathcal{B}_{kl} = -|\mathcal{M}_{kl}^n|^2 = \langle \mathcal{M}^n | \mathbf{T}_k \cdot \mathbf{T}_l | \mathcal{M}^n
angle$$

with $\mathcal{I}_j = g$ the radiated parton and \mathbf{T}_k the colour charge operator

 $\text{QCD} \to \text{QED:} \{ \underline{g}, \underline{\alpha}_{s}, \hat{P}^{\mu\nu}_{\bar{\mathcal{I}}_{i} \to \mathcal{I}_{i}\mathcal{I}_{j}, \mathbf{QCD}}, \mathbf{T}_{k} \} \longrightarrow \{ \gamma, \alpha, \hat{P}^{\mu\nu}_{\bar{\mathcal{I}}_{i} \to \mathcal{I}_{i}\mathcal{I}_{j}, \mathbf{QED}}, \mathbf{Q}_{k} \}$

Regularisation by integrated subtraction terms:

From dimensional regularisation with $d = 4 - 2\varepsilon$ and expansions in ε

$$\begin{split} \xi^{-1-2\varepsilon} &= -\frac{1}{2\varepsilon}\delta(\xi) + \left(\frac{1}{\xi}\right)_{+} - 2\varepsilon\left(\frac{\log\xi}{\xi}\right)_{+} = -\frac{1}{2\varepsilon}\delta(\xi) + \mathcal{P}_{+}(\xi) \text{ and} \\ (1-y)^{-1-\varepsilon} &= -\frac{2^{-\varepsilon}}{\varepsilon}\delta(1-y) + \left(\frac{1}{1-y}\right)_{+} - \varepsilon\left(\frac{\log(1-y)}{1-y}\right)_{+} \text{ we get} \\ &\int d\Phi_{\mathrm{rad}}\mathcal{R} = \int d\Phi_{\mathrm{rad}}(\xi, y) \frac{\tilde{\mathcal{R}}(\xi, y)}{\xi^{2}(1-y)} \\ &= \frac{s^{1-\varepsilon}}{(4\pi)^{3-2\varepsilon}} \int d\Omega^{(2-2\varepsilon)} \int_{-1}^{1} dy (1-y)^{-1-\varepsilon} \int_{0}^{\xi_{\mathrm{max}}} d\xi \xi^{-1-2\varepsilon} \tilde{\mathcal{R}}(\xi, y) \\ &= \underbrace{\frac{I_{\mathrm{soft-coll}}^{(2)}}{\varepsilon^{2}} + \frac{I_{\mathrm{soft}}^{(1)}}{\varepsilon} + H_{\mathrm{soft}}^{(0)}}_{(1)} + \underbrace{\frac{I_{\mathrm{coll}}^{(1)}}{\varepsilon}}_{(2)} + \int \frac{d\Phi_{\mathrm{rad}}\hat{\mathcal{R}}}{(3)} + \mathcal{O}(\varepsilon) \end{split}$$

with plus-distributions $\int_{-1}^{1} dy \left(\frac{g(y)}{1-y}\right)_{+} f(y) = \int_{-1}^{1} dy g(y) \frac{f(y) - f(1)}{1-y}$

1 soft (and soft-collinear) limit: $\sim -\frac{1}{2\varepsilon} \int dy (1-y)^{-1-\varepsilon} \int d\xi \delta(\xi) \tilde{\mathcal{R}}(\xi, y)$

(2) collinear limit: $\sim -\frac{2^{-\varepsilon}}{\varepsilon} \int d\xi \mathcal{P}_+(\xi) \int dy \delta(1-y) \tilde{\mathcal{R}}(\xi,y)$

3 subtracted Real:
$$d\phi dy d\xi \frac{\mathcal{J}(\xi, y, \phi)}{\xi} \left(\frac{1}{\xi}\right)_+ \left(\frac{1}{1-y}\right)_+ \tilde{\mathcal{R}}(\xi, y)$$

Applied LHC phase-space cuts

$$\Delta R_{ij} = \sqrt{(\Delta \phi_{ij})^2 + (\Delta \eta_{ij})^2}$$

Photons appearing at NLO EW are recombined with charged massless fermions if they fulfil

$$\Delta R_{f^{\pm}\gamma} \le R_0$$

Here $R_0 = 0.1$ is used.

For processes with jets the anti- k_T clustering algorithm with jet radius R = 0.4 is applied. Phase-space cut expressions acting on dressed fermions and clustered jets follow the conditions

- $p_{T,l^{\pm}} > 10$ GeV and $|\eta_{l^{\pm}}| < 2.5$ on charged dressed leptons
- $\Delta R_{l+l-} > 0.4$ and $M_{l+l-} > 30$ GeV on pairs of charged dressed leptons with same flavour and opposite charge
- $p_{T,j} > 30$ GeV and $|\eta_j| < 4.5$ on clustered jets

Back-Up: Coupling power counting algorithm

For any $2 \rightarrow n$ tree-level process: total number of coupling powers of either α_s or α

$$n_{\rm tot} \equiv p_s + p_e = n_{\rm legs} - 2 = n \tag{1}$$

with p_s for α_s and p_e for α demanded as user input. \Rightarrow Complete set for powers l_s of α_s and l_e of α , i. e.

$$\{l_s, l_e\} = \{n - k, k\}, \qquad 0 \le k \le n \qquad (2$$

 \Rightarrow Constraints by the flavour structure of a sub-process

$$n_W + \frac{n_l}{2} \le k \le n - n_g \tag{3}$$

with numbers of external particles n_W for EW bosons $\gamma/W/Z/H$, n_l for leptons and n_g for gluons.

Back-Up: Coupling power counting algorithm

Additionally, for quark external states constraints by

• exactly one $q\bar{q}$ pair and only gluons

$$k = 0 \tag{4}$$

• exactly one $q\bar{q}$ pair and only EW bosons or leptons

$$k = n \tag{5}$$

• If quarks as external states are all of different flavours (pure EW couplings to W^{\pm} of the quarks)

$$k = n - n_g = n_W + \frac{n_l}{2} + \frac{n_q}{2} \quad . \tag{6}$$

With range or definite value k vetoing of flavour structures which not contribute to coupling powers p_s and p_e .

Pia Bredt (University of Siegen)

RADCOR 2023

Back-Up: Lepton collisions at NLO EW

Fixed-order massive approximation for NLO cross sections:

- $\bullet~{\rm IS}$ leptons considered as massive \Rightarrow no collinear counterterms needed
- lepton mass dependencies kept explicit in matrix elements
- NLO phase-space construction with on-shell projection: radiated momentum according to FKS parametrisation; IS momenta fixed; boost of Born FS into recoiling system

Checks with $\texttt{MCSANCee}, \, \mathrm{e.} \, \mathrm{g.}$

$e^+e^- \rightarrow HZ$	MCSANCee[S	adykov,2020]	WHI	ZARD+RECOLA		$\sigma^{ m sig}$
\sqrt{s} [GeV]	$\sigma_{ m LO}^{ m tot}$ [fb]	$\sigma_{ m NLO}^{ m tot}$ [fb]	$\sigma_{ m LO}^{ m tot}$ [fb]	$\sigma_{ m NLO}^{ m tot}$ [fb]	$\delta_{\rm EW}$ [%]	LO/NLO
250	225.59(1)	206.77(1)	225.60(1)	207.0(1)	-8.25	0.4/2.1
500	53.74(1)	62.42(1)	53.74(3)	62.41(2)	+16.14	0.2/0.3
1000	12.05(1)	14.56(1)	12.0549(6)	14.57(1)	+20.84	0.5/0.5
$e^+e^- ightarrow \mu^+\mu^-$	MCSANCee	[2206.09469]	WI	HIZARD+RECOI	LA	$\sigma^{ m sig}$
\sqrt{s} [GeV]	$\sigma_{ m LO}^{ m tot}~[m pb]$	$\sigma_{ m NLO}^{ m tot}~[{ m pb}]$	$\sigma_{ m LO}^{ m tot}$ [pb]	$\sigma_{\rm NLO}^{\rm tot}$ [pb]	$\delta_{\rm EW}$ [%]	LO/NLO
5	2978.6(1)	3434.2(1)	2978.7(1)	3433.5(3)	+15.27	0.3/2.2
7	1519.6(1)	1773.8(1)	1519.605(4)	1773.1(2)	+16.68	0.05/3.0

 $\alpha(0)$ scheme, $m_e = 0.5109...$ MeV

• LL resummation[Cacciari, Deandrea, Montagna, Nicrosini, 1992; Skrypek, Jadach, 1991]: Non-singlet evolution equation

$$\Gamma_e(x,\mu^2) = \delta(1-x) + \int_{m^2}^{\mu^2} \frac{dq^2}{q^2} \frac{\alpha(q^2)}{2\pi} \int_x^1 dz P_{ee}(z) \Gamma_e\left(\frac{x}{z},q^2\right)$$

One-loop accurate regularised (unpolarised) Altarelli-Parisi kernels

$$P_{ee}(z) = \langle \hat{P}_{ee} \rangle(z) - \delta(1-z) \int_0^1 dt \langle \hat{P}_{ee} \rangle(t), \qquad \qquad \langle \hat{P}_{ee} \rangle(z) = \frac{1+z^2}{1-z}$$

Recursive approach via auxiliary function $G(x, \mu^2)$

$$G(x,\mu^2) = \int_x^1 dt \Gamma_e(t,\mu^2) \qquad \qquad \Gamma_e(x,\mu^2) = -\frac{\partial}{\partial x} G(x,\mu^2)$$

Solution in asymptotic $x \simeq 1$ limit

$$\Gamma_e(x,\mu^2) = \frac{e^{\eta(\frac{3}{4} - \gamma_E)}}{\Gamma(1+\eta)} \eta(1-x)^{\eta-1} \qquad \eta = \frac{\alpha}{\pi} \log \frac{\mu^2}{m^2}$$

Alternative approach: Identically, transforming the integro-differential evolution equations into Mellin space by

$$M[f] \equiv f_N = \int_0^1 dz z^{N-1} f(z) \qquad \qquad M[g \star h] = M[g] M[h] \quad .$$

⇒ using the asymptotic limit $N \to \infty$ analogously to $z \to 1$ in z-space ⇒ analytical Mellin inversion of the resulting solution <u>'All x' solution:</u> $G(x, \mu^2)$ and $\Gamma_e(x, \mu^2)$ can be written as a perturbative series expressed as

$$G(x,\mu^2) = \sum_{n=0}^{\infty} \frac{\eta^n}{2^n n!} I_n(x), \qquad \qquad \Gamma_e(x,\mu^2) = \sum_{n=0}^{\infty} \frac{\eta^n}{2^n n!} \frac{\partial I_n(x)}{\partial x}$$

Find recurrence relation

$$I_n(x) = \int_x^1 dz P(z) I_{n-1}\left(\frac{x}{z}\right)$$

Boundary conditions $G^{(0)}(x, \mu^2) = G(x, m^2) = 1$ implicating $I_0(x) = 1$ and $I_1(x) = \int_x^1 dz P(z)$ \Rightarrow 'all x' solution for G and Γ_e up to $\mathcal{O}(\alpha^3)$ by iterations up to I_3

Pia Bredt (University of Siegen)

• NLO initial conditions of electron and photon PDFs [Frixione, 1909.03886]: Approach:

$$d\bar{\sigma}_{e^+e^-}(p_{e^+}, p_{e^-}, m^2) = \sum_{ij=e^{\pm}, \gamma} \int dz_+ dz_- \Gamma_{i/e^+}(z_+, \mu^2, m^2) \Gamma_{i/e^-}(z_-, \mu^2, m^2) \times d\hat{\sigma}_{ij}(z_+ p_{e^+}, z_- p_{e^-}, \mu^2)$$
(7)

- explicit short-distance cross section computation for specific but arbitrary process $e^+e^- \rightarrow u\bar{u}(\gamma)$
- \blacktriangleright parton-level cross section $d\hat{\sigma}_{ij}$ computed with massless electrons
- particle-level cross section $d\bar{\sigma}_{kl} = d\sigma_{kl} + \mathcal{O}\left(\left(\frac{m^2}{s}\right)^p\right), p \ge 1$
- \rightarrow (7) solved for PDFs $\Gamma_{i/e^-}, \Gamma_{i/e^+}$
- NLL resummation [Bertone, Cacciari, Frixione, Stagnitto, 1911.12040]: Recursive solutions valid for all z values computed up to $\mathcal{O}(\alpha^3)$ matched to the asymptotic large z solution (valid for $z \simeq 1$) retaining all orders in α

MC integration methods: Interpolation between grid points

NLL electron PDF f(x) (displayed as $\log_{10} f(x)$) as a function of $-\log_{10} (1-x)$

Pia Bredt (University of Siegen)

RADCOR 2023

Parametrisation of beam energy fractions in mapping variables $p_1, p_2 \in [0, 1]$

$$x_1 = p_1^{p_2} x_2 = p_1^{1-p_2}$$

For random numbers $r_1, r_2 \in [0, 1]$

$$p_1 = 1 - (1 - r_1)^{1/\epsilon} = 1 - \bar{r}_1^{1/\epsilon}$$

$$p_2 = \begin{cases} 1 - (2r_2)^{1/\epsilon}/2, & u > 0\\ (2r_2)^{1/\epsilon}/2, & u < 0\\ 1/2, & u = 0 \end{cases}$$

$$u = 2r_2 - 1.$$

 \Rightarrow for small ϵ mapping enhanced at the endpoints $p_1 \rightarrow 1$, $p_2 \rightarrow 1$ and $p_2 \rightarrow 0$

 \Rightarrow Jacobian factors $(1-r_1)^{1/\epsilon-1}\log p_1$ which **flattens** the integrand in the region $p_1 \to 1$, i. e. $x \to 1$ (where $\lim_{x\to 1} \Gamma_e(x) \to \infty$

At NLO-NLL:

Rescaling of the PDF arguments for real-emission and collinear subtraction terms (and ISR remnant of collinear subtraction) - beam energy fraction differs before and after radiation

FKS phase-space construction: From Born to real configurations

Ratio of the rescaled over the unrescaled PDFs:

$$\lim_{\substack{x' \to 1 \\ \text{rsitu of Siegen}}} \frac{\Gamma(x')}{\Gamma(x)} = \lim_{x \to 1-\delta x} \frac{\Gamma(x + \delta x)}{\Gamma(x)} \to \infty \implies \text{additional mapping for } \delta x$$

Pia Bredt (Univer

Remnant of the subtraction of collinear ISR singularities in integrated form (DGLAP remnant): The momentum dependence of the PDFs rescales as

 $\Gamma(x_j,\mu) \longrightarrow \Gamma(x_j/z_j,\mu)$

with $x_j \leq x_j/z_j < 1$ and emitter $j \in \{1, 2\}$ Mapping of the random variable $r_z \in [0, 1]$ defining

 $p_z = 1 - (1 - r_z)^{1/\epsilon}$

Condition $[0,1] \mapsto [x_j,1]$ mapping $p_z \longrightarrow z_j$ we can find the parametrisation

 $z_j = 1 - p_z (1 - \log p_z)(1 - x_j)$

Overall Jacobian per emitter

$$f_{\text{DGLAP},j} = f_{p_z} f_{z_j} = \frac{1}{\epsilon} (1 - r_z)^{1/\epsilon - 1} (1 - x_j) \log p_z$$

For the real component the momentum dependencies of the PDFs rescale as

$$\Gamma(x_1,\mu) \longrightarrow \Gamma(x'_1,\mu) = \Gamma\left(\frac{x_1}{\sqrt{1-\xi}}\sqrt{\frac{2-\xi(1-y)}{2-\xi(1+y)}}\right)$$
$$\Gamma(x_2,\mu) \longrightarrow \Gamma(x'_2,\mu) = \Gamma\left(\frac{x_2}{\sqrt{1-\xi}}\sqrt{\frac{2-\xi(1+y)}{2-\xi(1-y)}}\right)$$

Mapping for $\{x_1, x_2, x_1', x_2'\}$ instead of $\{x_1, x_2, \xi, y\}!$ Conditions

$$x_1 \le x_1' < 1 \qquad \qquad x_2 \le x_2' < 1$$

Construct $\hat{p}_j \in [0,1]$ from random numbers $\hat{r}_j \in [0,1]$ as

$$\hat{p}_j = 1 - (1 - \hat{r}_j)^{1/\epsilon}$$

Define rescaled variables with mapping

$$x'_{j} = 1 - \hat{p}_{j}(1 - \log \hat{p}_{j})(1 - x_{j}) \qquad j = 1, 2$$

leads to Jacobians

$$f_{x',j} = \frac{1}{\epsilon} (1 - \hat{r}_j)^{1/\epsilon - 1} (1 - x_j) \log \hat{p}_j$$

Define auxiliary quantities

$$A \equiv \frac{x_1 x_2'}{x_2 x_1'} = \frac{2 - \xi(1 + y)}{2 - \xi(1 - y)} \qquad \qquad B \equiv \frac{x_1 x_2}{x_1' x_2'} = 1 - \xi$$

such that ξ and y can be derived, yielding

.

Considering

$$d\xi dy = \mathcal{J}_1(A, B) \ dAdB = \mathcal{J}_1(A, B) \mathcal{J}_2(x_1', x_2') \ dx_1' dx_1'$$

with

$$\mathcal{J}_1(A,B) = 2\left(\frac{1+B}{1-B}\right)\frac{1}{(1+A)^2} \qquad \qquad \mathcal{J}_2(x_1',x_2') = 2\frac{x_1^2}{x_1'^3 x_2'}$$

we get the final Jacobian factor for ξ and y parametrised in random numbers $\hat{r}_{1/2}$,

$$f_{\text{real},j} = \mathcal{J}_1(A, B) \mathcal{J}_2(x'_1, x'_2) f_{x',1} f_{x',2}$$

Back-Up: Complex-mass scheme at NLO

Renormalised self-energy:

$$\hat{\Sigma}^i(p^2) = \Sigma^i(p^2) - \delta M_i^2$$

Complex location of the pole $p^2 = \mu_i^2$ of propagator: $\mu_i^2 - M_{0,i}^2 + \Sigma(\mu_i^2) = 0 \implies \hat{\Sigma}^i(\mu_i^2)$ vanishes

 \Rightarrow renormalised masses $M_i^2 = M_{0,i}^2 - \delta M_i^2$ fixed at this pole due to OS condition $\delta M_i^2 = \Sigma(p^2)|_{p^2 = \mu_i^2}$ Complex-mass scheme requires calculating self-energies for complex squared momenta! Solutions:

- analytic continuation of the self-energies in the complex momentum variable to the unphysical Riemann sheet (MadLoop)[Frederix et. al., 1804.10017]
- expansion of self-energies around real arguments such that one-loop accuracy is retained (OpenLoops, Recola) [Denner et. al., 0505042]
 - ► 2-point integrals with $p^2 = \mu_i^2 = M_i^2 i\Gamma_i M_i$ can be obtained through first-order expansion in Γ_i/M_i around $p^2 = M_i^2$

Using the abbreviations for double and single logarithmic factors

$$L(s, M_W^2) = \frac{\alpha}{4\pi} \log^2 \frac{s}{M_W^2} \qquad \qquad l(s, M_W^2) = \frac{\alpha}{4\pi} \log \frac{s}{M_W^2}$$

For $s \gg M_W$, leading logarithmic, angular-independent, terms (from exchange of soft-collinear gauge bosons between pairs of external legs)

$$\Lambda_{l,\lambda}^{\kappa} = A_{\lambda}^{\kappa} L(s, M_W^2) + B_{\lambda}^{\kappa} \log \frac{M_Z^2}{M_W^2} l(s, M_W^2) + C_{\lambda}$$

with $\lambda = T, L$ the transverse and longitudinal polarisation of the Z boson, and $\kappa = L, R$ the muon initial state chirality

$$\begin{aligned} A_T^{\kappa} &= -\frac{1}{2} \left[2C_{\mu^{\kappa}}^{\text{EW}} + C_{\Phi}^{\text{EW}} + C_{ZZ}^{\text{EW}} \right] & A_L^{\kappa} &= - \left[C_{\mu^{\kappa}}^{\text{EW}} + C_{\Phi}^{\text{EW}} \right] \\ B_T^{\kappa} &= 2 (I_{\mu_{\kappa}}^Z)^2 + (I_H^Z)^2 & B_L^{\kappa} &= 2 \left[(I_{\mu_{\kappa}}^Z)^2 + (I_H^Z)^2 \right] \\ C_T &= \delta_H^{LSC,h} & C_L &= \delta_H^{LSC,h} + \delta_{\chi}^{LSC,h} \end{aligned}$$

Subleading, angular-dependent, terms due to W^\pm boson exchange between initial- and final-state legs

$$\Lambda_{\theta,\lambda}^{\kappa} = -\delta_{\kappa L} \frac{D_{\lambda}}{I_{\mu_{\kappa}}^{Z}} \, l(s, M_{W}^{2}) \left[\log \frac{|t|}{s} + \log \frac{|u|}{s} \right]$$

Mandelstam variables t and u approximated in the high-energy limit

$$t = (p_{\mu^+} - p_H)^2 \sim -\frac{s}{2}(1 - \cos\theta_H) \qquad u = (p_{\mu^+} - p_Z)^2 \sim -\frac{s}{2}(1 + \cos\theta_H)$$

Estimation for the unpolarised approximation factor:

• Born amplitudes for transverse polarized Z bosons are suppressed by M_Z^2/s

$$\Lambda_{\lambda}^{\kappa} \mathcal{M}_{0}^{\mu_{\kappa}^{+} \mu_{\kappa}^{-} \to HZ_{\lambda}} \xrightarrow{s \gg M_{W}^{2}} \delta_{\lambda L} \Lambda_{\lambda}^{\kappa} \mathcal{M}_{0}^{\mu_{\kappa}^{+} \mu_{\kappa}^{-} \to HZ_{\lambda}}$$

$$\tag{8}$$

• Chirality and helicity of the muon coincide in the ultrarelativistic limit (two helicity configurations (+, -) and (-, +) remaining, equivalent to chiralities $\kappa = L, R$). Spin-averaging yields

$$\Lambda_{\text{est}}^{\text{unpol}} = \frac{\sum_{\kappa} \Lambda_L^{\kappa} |\mathcal{M}_0^{\mu_{\kappa}^+ \mu_{\kappa}^- \to HZ_L}|^2}{|\mathcal{M}_0^{\mu^+ \mu^- \to HZ_L}|^2}$$
(9)

- $\Lambda_{\lambda}^{\kappa}$: Sudakov factors for muon chiralities $\kappa = L, R$ and Z polarisations $\lambda = T, L$
- $\Lambda_{\text{est}}^{\text{inpol}}$: estimated unpolarised correction factor at $\theta_H = 90^{\circ}$
- $\Lambda_{est.c}^{unpol}$: Λ_{est}^{unpol} without angular dependent terms

Pia Bredt (University of Siegen)

Back-Up: NLO QED corrections to $\mu^+\mu^- \to HZ/ZZ$

Relative QED corrections $\delta_{QED} = \sigma_{\text{NLO,QED}}^{\text{incl}} / \sigma_{\text{LO}}^{\text{incl}} - 1$ to HZ and ZZ production at the muon collider as a function of the collider energy, \sqrt{s}

Pia Bredt (University of Siegen)

RADCOR 2023

Back-Up: WHIZARD features

WHIZARD provides

- phase space evaluation with VAMP2 [Braß et. al.: 1811.09711]:
 - twofold self-adaptive multi-channel parametrization
 - ▶ OpenMP and MPI for parallelization \Rightarrow speedup of factor $\mathcal{O}(100)$
- matching to parton showers: POWHEG scheme
- \bullet showering and hadronization: <code>PYTHIA6</code> shipped with <code>WHIZARD</code>, interface between <code>WHIZARD</code> and <code>PYTHIA8</code>
- event formats: LHE, HepMC2/3, Stdhep, LCIO, ...
- special support for lepton collider processes:

beamstrahlung	CIRCE1/CIRCE2 [CPC 101 (1997) 269]
bremsstrahlung	LL resummation via ISR and EPA functions
beam polarization	inclusion for a user-defineable setup