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INTRODUCTION

● What is Next-to-soft?
In QCD improved parton model, the hadronic cross-section is computed via the 
convolution of parton distribution functions (PDFs),         , and the partonic coefficient 
function,                : 

Invariant mass of the final 
state

Hadronic scaling variable Partonic scaling variable

Renormalisation scale Factorisation scale Hadronic centre of mass 
energy

Partonic centre of mass 
energy
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INTRODUCTION

 The Partonic coefficient function near the threshold : z->1 limit 

Soft-Virtual (SV)

➢ Leading singular distributions, also known as leading 
power (LP)

➢ Corrections only from diagonal channels
➢ Contributions from soft real emissions + virtual corrections
➢ Well-understood 
➢ Resummation known to N3LL 
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INTRODUCTION

 The Partonic coefficient function near the threshold : z->1 limit 

➢ Next-to-leading singular, also known as next-to-
leading power (NLP) 

➢ Collinear logarithms
➢ Corrections from diagonal and off-diagonal channels
➢ Not much understood 
➢ Resummation known to LL

Next-to soft-virtual (NSV)
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INTRODUCTION

● Why Next-to-soft?
➢ For the Drell-Yan process at N3LO, Q= 200 GeV

z-space Mellin N- conjugate space
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INTRODUCTION

Higgs production in the gluon fusion | N3LO JHEP 03 (2015) 091

 The total SV contribution in z-space ->  -2.25 % of the Born
                              
 The total NSV contribution in z-space -> 25 % of the Born ! 
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INTRODUCTION

 The total SV contribution in Mellin N-space (conjugate space) ->  18 % of the Born        
 The total NSV contribution in N-space -> 11 % of the Born ! 
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INTRODUCTION

Understanding the NSV sector is important because:

➢    Numerically sizeable owing to their large coefficients
➢    Provide a check of higher-order correction

➢ Since the NSV sector gives rise to large logarithmic contributions in the threshold limit : spolis the 
perturbativity of the FO series

➢ Resolution : Find a way to resum these NSV logarithms beyond LL accuracy
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PREVIOUS WORKS ON NSV/NLP

● The earliest evidence that IR effects can be studied at NSV/NLP
[Low, Burnett, Kroll]

● Early attempts :
[Kraemer, Laenen, Spira (98)]
[Akhoury, Sotiropoulos & Sterman (98)]

● Important Results & Predictions using Physical Kernel Approach & explicit computation:
[Moch , Vogt et al. (09-20)]
[Anastasiou, Duhr, Dulat et al.(14)]

● Universality of NSV/NLP effects and LL Resummation:
[Laenen, Magnea, et al. (08-19)]
[Grunberg & Ravindran (09)]
[Ball, Bonvini, Forte, Marzani, Ridolfi (13)]
[Del Duca et al. (17)]

● Subleading Factorisation and LL Resummation at NSV/NLP using SCET:
[Larkoski, Nelli , Stewart et al. (14) ]
[Kolodrubetz, Moult, Neill ,Stewart et al. (17)]
[Beneke et al. (19-20)] And many other works...
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OUR APPROACH

 The SV formalism was already known for color singlet processes : [Ravindran ‘05,’06] 
 We extended the very formalsim to study the NSV effects in the diagonal channels for 

the color singlet processes 
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OUR APPROACH

Key points
➢     Collinear factorisation 

➢ Renormalisation group (RG) invariance
➢    Logarithmic structure present in  the higher order results

 The SV formalism was already known for color singlet processes : [Ravindran ‘05,’06] 
 We extended the very formalsim to study the NSV effects in the diagonal channels for 

the color singlet processes 
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Let’s begin with the collinear factorisation

THE FORMALISM
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Let’s begin with the collinear factorisation

Coliinear finite partonic 
coefficient function

Altarelli-Parisi (AP) kernels

THE FORMALISM

bare partonic cross-section

: Dimensional regularisation 
parameter
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Let’s begin with the collinear factorisation

Coliinear finite partonic 
coefficient function

Altarelli-Parisi (AP) kernels

THE FORMALISM

bare partonic cross-section

: Dimensional regularisation 
parameterWe only study the contribution from 

diagonal channel in the above 
factorisation formula keeping only SV 
and NSV terms 
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THE FORMALISM

For instance, we only consider the diagonal qq channel for the Drell-Yan process
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The factorisation in the diagonal qq channel for the Drell-Yan process:

Contribute to beyond NSV terms

  We can safely remove these terms 

Remarkably simple form!! 

THE FORMALISM
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The perturbative structure of Finite mass-factorised SV+NSV partonic coefficient 
function  for the diagonal channels:  

THE FORMALISM : THE BUILDING BLOCKS 

cc ->  qq for the DY
         gg for g+g->H
         bb for b+b->H
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The perturbative structure of Finite mass-factorised SV+NSV partonic coefficient 
function  for the diagonal channels:  

THE FORMALISM : THE BUILDING BLOCKS 

Form factor (FF) Soft-collinear function

Altarelli-Parisi splitiing kernels

Each of these building blocks obeys first order differential equations and 
additional evolution equations w.r.t  various scales (Q, q, μF, μR)

cc ->  qq for the DY
         gg for g+g->H
         bb for b+b->H

Overall Renormalisation 
constant
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[Sen, Sterman,Magnea]

Sudakov diff eqn (K+G diff eqn) 

Form Factor (FF, captures pure virtual corrections)

THE FORMALISM : THE BUILDING BLOCKS

RG invariance

The hard scale

Solution 
Poles Finite
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Renormalisation Group Eqn (RGE)

UV anomalous dimension

Overall Renormalisation constant

THE FORMALISM : THE BUILDING BLOCKS

Renormalisation scale
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Altarelli-Parisi evolution eqn

Altarelli-Parisi (AP) kernels

THE FORMALISM : THE BUILDING BLOCKS

[Moch,Vogt,Vermaseren]

 Factorisation 
scale

We only need to consider diagonal AP splitting kernels and splitting function

Collinear anomalous dimensions(contributes to pure NSV)

beyond NSV

Solution :  
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K+G – type diff eqn

THE FORMALISM : THE BUILDING BLOCKS

[Ajjath, P. Mukherjee, Ravindran]
PRD.105.094035

PRD.105.L091503

➢ Using the knowledge of the evolution equations and the correspoding solutions of other 
builiding blocks, we obtain a 1st order differential equation for the soft-collinear function Sc

➢ The solution to the above diff eqn is obtained using the RG invariance of Sc and studying the 
perturabative structure of state-of-the-art results for color singlet processes  

➢ Soft-collinear function, Sc: captures the contributions with at least one real emission (R, RR, RV etc)

RG invariance Poles Finite



23

SOFT-COLLINEAR FUNCTION

➢ Inspired from explicit results, solution verified up to 3rd order, we propose the same structure to 
all orders

Pure SV part 
Universal coefficients

NSV part, z-dependency 
Universal & Process dependent coeffcients
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INTEGRAL REPRESENTATION

➢ Knowing the functional form of each buliding blocks, we derive an integral representation for Δc , which 
gives an understanding of the all-order structure
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INTEGRAL REPRESENTATION

➢ Proportional to δ(1  z) −
Finite part after cancelling of poles

between F.F & Soft-collinear function

➢ Knowing the functional form of each buliding blocks, we derive an integral representation for Δc , which 
gives an understanding of the all-order structure
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INTEGRAL REPRESENTATION

➢ Proportional to δ(1  z) −
Finite part after cancelling of poles

between F.F & Soft-collinear function

➢ Finite part after
cancellation of poles between splitting

kernels and soft -collinear function

➢ Knowing the functional form of each buliding blocks, we derive an integral representation for Δc , which 
gives an understanding of the all-order structure
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INTEGRAL REPRESENTATION

➢ Proportional to δ(1  z) −
Finite part after cancelling of poles

between F.F & Soft-collinear function

➢ The finite contribution comes completely 
from the soft-collinear function

➢ Finite part after
cancellation of poles between splitting

kernels and soft -collinear function

➢ Knowing the functional form of each buliding blocks, we derive an integral representation for Δc , which 
gives an understanding of the all-order structure
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RESUMMATION IN THE MELLIN N-SPACE

 We solve this integral representation in the Mellin N-space. Convolutions become normal products in the 
Mellin N-space, easy to handle.

 Mellin 
transformation:

 The soft limit then converts to :
 Z 1                      N→ →∞
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RESUMMATION IN THE MELLIN N-SPACE

 We solve this integral representation in the Mellin N-space. Convolutions become normal products in the 
Mellin N-space, easy to handle.  

 Mellin 
transformation:

 The soft limit then converts to :
 Z 1                      N→ →∞

 The large logarithms transform 
to: 
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RESUMMATION EXPONENTS

Solving the integral representation in Mellin N-space, we obtain :

The SV part is well-known to third logarithmic accuracy for Color singlet processes

The NSV part is the new result :

[Sterman]
[Catani, Trentedue ]

N-independent
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ALL-ORDER PREDICTION: SV  (ALREADY KNOWN)
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ALL-ORDER PREDICTION: NSV  (NEW)
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ALL-ORDER PREDICTION: NSV (NEW)  

Contains only
one-loop info
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ALL-ORDER PREDICTION: NSV (NEW)  

Contains only
one-loop info



35

ALL-ORDER PREDICTION: NSV  (NEW)

two-loop 
info

Contains only
two-loop info
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ALL-ORDER PREDICTION: NSV  (NEW)

Contains only
n+1-loop info
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ALL-ORDER PREDICTION: NSV  (NEW)

Contains only
n+1-loop info

 Verified our predictions up to 4th 
order in QCD 

[Moch, Vogt et.al], [De Florian et al.], [Das et al.]
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NSV Resummation Phenomenology | Drell-Yan Process
K- factor
 

➢ Increment from FO  resum at Q=2000 GeV→

10.6%  :     LO  LO + → LL
        5.2%    :     NLO  NLO + → NLL
        1.2%     :   NNLO  NNLO + → NNLL

➢                   ➢ NLO + NLL from quark part mimics the NNLO
 

➢ Resummed predictions are closer compared FO                          
Resummed corrections decrease as we go higher-order 
: Improves the reliability of perturbative predictions
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NSV Resummation Phenomenology | Drell-Yan Process
7-point Scale variation

Impact of μR & μF scales in the predictions using canonical 7-point variation:

➢ FO from all channels & 
resummed predictions
from only diagonal channels (qq̄)

➢    NLO to NLO + NLL : band width decreases. Large scale uncertainity at NNLO + NNLL
➢    NNLO + NNLL is within NLO + NLL unlike fixed order case at high energies 
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NSV Resummation Phenomenology | Drell-Yan Process
The Factorisation scale 

In order to understand the cause of large uncertainty at NNLO + NNLL, we study the scales separately.

➢ Bands in resummation plot look similar to 7-
point scale variation : large band in 7-point scale 
is due to  μF – uncertainities

➢ μF scale mixes up different channels:

➢ Collinear logarithms arise from diagonal(qq̄) & 
off-diagonal (like qg) channels
 

➢ Large μF uncertainity could be due to lack of off- 
diagonal contribution!

μF - variation
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NSV Resummation Phenomenology | Drell-Yan Process
The Renormalisation scale

To understand the role of collinear resummation, we see the μR - variation :
μR - variation

Substantial reduction in the μR – scale 
uncertainity at NNLO + NNLL
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NSV Resummation Phenomenology | Drell-Yan Process
The Renormalisation scale

The μR cancellation happens within each partonic channels.
Inclusion of resummed predictions improves the μR - scale uncertainity remarkably

μR - variation

Substantial reduction in the μR – scale 
uncertainity at NNLO + NNLL

To understand the role of collinear resummation, we see the μR - variation :
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NSV Resummation Phenomenology | Drell-Yan Process
SV -Resummation  vs NSV -Resummation

Let’s compare the SV resummation with SV+NSV resummation 

➢ Increment from SV resum  NSV resum at Q=2000 →
GeV

2.1%   for NLO+ NLL  NLO + → NLL
0.64% for NNLO + NNLL  NNLO + → NNLL

➢ Perturbative convergence is improved after the 
inclusion of NSV resummation

Nomenclature :
NnLL -> only SV Res 
NnLL -> SV+NSV Res 
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NSV Resummation Phenomenology | Drell-Yan Process
SV -Resummation  vs NSV -Resummation
Comparing SV resummation, SV+NSV resummation with NNLO results

➢ Considerable improvement when adding 
the NSV resummation over the SV one 
leading to more reliable predictions

μR scale variation within qq- channel

➢ Behaviour of NNLOqq+NNLL is 
significantly improved from the 
corresponding SV  NNLOqq + NNLL
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SUMMARY & OUTLOOK

➢ Threshold resummation is essential in the kinematic limit z  1→
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SUMMARY & OUTLOOK

➢ Threshold resummation is essential in the kinematic limit z  1→

➢ We extended the threshold resummation framework by including the subleading next-
to-soft large logarithms in the diagonal channels to NNLL accuracy 
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SUMMARY & OUTLOOK

➢ Threshold resummation is essential in the kinematic limit z  1→

➢ We extended the threshold resummation framework by including the subleading next-
to-soft large logarithms in the diagonal channels to NNLL accuracy 

➢ This brings in enhancement in the resummed predictions and improves the perturbative 
convergence
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SUMMARY & OUTLOOK

➢ Threshold resummation is essentail in the kinematic limit z  1→

➢ We extended the threshold resummation framework by including the subleading next-
to-soft large logarithms in the diagonal channels to NNLL accuracy 

➢ This brings in enhancement in the resummed predictions and improves the perturbative 
convergence

➢ However, large scale uncertainities w.r.t the factorisation scale shows the need of 
including off-diagonal channles in the NSV resummation for large collinear logarithms, 
on-going work, stay tuned!
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Thank you for your 
attention!
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Additional slides
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Let’s begin with the Factorisation

Partonic cross-section

UV 
Renormalisation 

constant

Unrenormalised Form Factor (FF)
        (pure virtual corrections)

Soft-collinear function
(soft real emission 

contributions)

Coliinear finite Partonic 
coefficient function

Altarelli-Parisi (AP) kernels

Mass Factorisation 

THE FORMALISM
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OUR APPROACH
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OUR APPROACH
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[Sen, Sterman,Magnea]

Sudakov diff eqn (K+G eqn)

THE FORMALISM : THE BUILDING BLOCKS

Renormalisation Group Eqn 
(RGE)

Altarelli-Parisi evolution eqn
[Moch,Vogt,Vermaseren]

UV anomalous dimension

Overall 
Renormalisation 

constant

 Form factor
(pure virtual 
corrections)

 Altarelli-Parisi
Splitting kernels

Altarelli-Parisi splitting function [Expanded in the limit z->1]

Process independent IR anomalous 
dimensions
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Phenomenology – Drell-Yan Process 
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The Predictions to all orders (z-space)

 qq & qg contributions under μF variation keeping μR fixed 
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NSV Resummation Phenomenology | Drell-Yan Process
The Factorisation scale 

In order to understand the cause of large uncertainty at NNLO + NNLL, we study the scales separately.

At NLO : qq̄  22% & qg   5 %→ → −

At NNLO : qq̄  4.9% & qg   2.5 %→ → −
 

Bigger cancellation at NNLO.
 Lack of qg resummed predictions

causes the larger uncertainty at NNLO + NNLL

μF - variation
➢ Bands in resummation plot look similar to 7-

point scale variation : large band in 7-point scale 
is due to  μF – uncertainties

➢ μF scale mixes up different channels:

➢ Collinear logarithms arises from qq̄ & qg     
channels
 

➢ Large μF uncertainity could be due to lack of off- 
diagonal contribution!
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