Next-to-soft resummation for color singlet processes

at the LHC

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Aparna Sankar

Max Planck Institute for Physics Technical University of Munich (TUM)

RADCOR 2023, 28 May - 2 June, 2023 Crieff, Scotland

Eur.Phys.J.C. 82 (2022) 3, 234, Ajjath, P. Mukherjee, Ravindran, A.S, S.Tiwari

• What is Next-to-soft?

In QCD improved parton model, the hadronic cross-section is computed via the convolution of parton distribution functions (PDFs), f(x), and the partonic coefficient function, $\Delta_{ab}(z)$:

$$\sigma(\mathbf{q}^{2},\tau) = \sigma_{\mathbf{0}}(\mu_{\mathbf{R}}^{2}) \sum_{\mathbf{ab}=\mathbf{q},\bar{\mathbf{q}},\mathbf{g}} \int \mathbf{dx_{1}} \int \mathbf{dx_{2}} \mathbf{f_{a}}(\mathbf{x_{1}},\mu_{\mathbf{F}}^{2}) \mathbf{f_{b}}(\mathbf{x_{2}},\mu_{\mathbf{F}}^{2}) \mathbf{\Delta}_{\mathbf{ab}}(\mathbf{q}^{2},\mu_{\mathbf{R}}^{2},\mu_{\mathbf{F}}^{2},\mathbf{z})$$

$$q^{2} \rightarrow \text{Invariant mass of the final} \qquad \tau = \frac{q^{2}}{s} \rightarrow \text{Hadronic scaling variable} \qquad z = \frac{q^{2}}{s} \rightarrow \text{Partonic scaling variable}$$

$$\mu_{R}^{2} \rightarrow \text{Renormalisation scale} \qquad \mu_{F}^{2} \rightarrow \text{Factorisation scale} \qquad \sqrt{s} \rightarrow \frac{\text{Partonic centre of mass}}{\text{energy}} \qquad \sqrt{s} \rightarrow \frac{\text{Hadronic centre of mass}}{\text{energy}}$$

• The Partonic coefficient function near the threshold : z->1 limit

$$\Delta_{\mathbf{a}\mathbf{b}} = \sum_{\mathbf{n}=\mathbf{0}}^{\infty} \left(\frac{\alpha_{\mathbf{s}}}{4\pi}\right)^{\mathbf{n}} \sum_{\mathbf{m}=\mathbf{0}}^{\mathbf{2n-1}} \left\{ \mathbf{c_{nm}} \left[\frac{\log^{\mathbf{m}}(\mathbf{1}-\mathbf{z})}{(\mathbf{1}-\mathbf{z})} \right]_{+} + \mathbf{c_{n}} \ \delta(\mathbf{1}-\mathbf{z}) + \mathbf{d_{nm}} \ \log^{\mathbf{m}}(\mathbf{1}-\mathbf{z}) + \mathcal{O}(\mathbf{1}-\mathbf{z}) \right\}$$

- Leading singular distributions, also known as leading power (LP)
- Corrections only from diagonal channels
- Contributions from soft real emissions + virtual corrections
- > Well-understood
- Resummation known to N³LL

The Partonic coefficient function near the threshold : z->1 limit

$$\Delta_{\mathbf{a}\mathbf{b}} = \sum_{\mathbf{n}=\mathbf{0}}^{\infty} \left(\frac{\alpha_{\mathbf{s}}}{4\pi}\right)^{\mathbf{n}} \sum_{\mathbf{m}=\mathbf{0}}^{\mathbf{2n-1}} \left\{ \mathbf{c_{nm}} \left[\frac{\log^{\mathbf{m}}(\mathbf{1}-\mathbf{z})}{(\mathbf{1}-\mathbf{z})} \right]_{+} + \mathbf{c_{n}} \ \delta(\mathbf{1}-\mathbf{z}) + \mathbf{d_{nm}} \ \log^{\mathbf{m}}(\mathbf{1}-\mathbf{z}) + \mathcal{O}(\mathbf{1}-\mathbf{z}) \right\}$$

- Next-to-leading singular, also known as next-toleading power (NLP)
- Collinear logarithms
- Corrections from diagonal and off-diagonal channels
- Not much understood
- Resummation known to LL

Next-to soft-virtual (NSV)

• Why Next-to-soft?

For the Drell-Yan process at N3LO, Q= 200 GeV

$Q = \mu_R = \mu_F \; (\text{GeV})$		SV	NSV		
	\mathcal{D}_5	5.44%	$\ln^5(1-z)$	8.60%	
	\mathcal{D}_4	2.62%	$\ln^4(1-z)$	9.82%	
	\mathcal{D}_3	-2.73%	$\ln^3(1-z)$	-1.54%	
200	\mathcal{D}_2	-4.25%	$\ln^2(1-z)$	-8.98%	
	\mathcal{D}_1	-1.94%	$\ln^1(1-z)$	-6.14%	
	\mathcal{D}_0	-0.146%	$\ln^0(1-z)$	-1.28%	
	$\delta(1-z)$	1.03%			
TOTAL		0.026%		0.47%	

$Q = \mu_R = \mu_F \; (\text{GeV})$		SV	NSV		
	$\ln^6 N$	-0.0025%	$\frac{\ln^6 N}{N}$	0%	
	$\ln^5 N$	-0.001%	$\frac{\ln^5 N}{N}$	0.0004%	
200	$\ln^4 N$	0.0244%	$\frac{\ln^4 N}{N}$	0.006%	
	$\ln^3 N$	0.171%	$\frac{\ln^3 N}{N}$	0.1%	
	$\ln^2 N$	2.85%	$\frac{\ln^2 N}{N}$	0.56%	
	$\ln N$	6.23%	$\frac{\ln N}{N}$	4.31%	
	$\ln^0 N$	18.3%	$\frac{1}{N}$	3.30%	
TOTAL		27.6%		8.28%	

Mellin N- conjugate space

z-space

5

Higgs production in the gluon fusion | N3LO

JHEP 03 (2015) 091

Charalampos Anastasiou^{*a*}, Claude Duhr^{*b*}, Falko Dulat^{*a*}, Elisabetta Furlan^{*c*}, Thomas Gehrmann^{*d*}, Franz Herzog^{*e*}, Bernhard Mistlberger^{*a*}

$$\begin{split} \eta_{gg}^{(3)}(z)_{|(1-z)^0} &= -256 \log^5(1-z) & (\to 115.33\%) \\ &+ 959 \log^4(1-z) & (\to 101.07\%) \\ &+ 1254.029198 \dots \log^3(1-z) & (\to -32.15\%) \\ &- 11089.328274 \dots \log^2(1-z) & (\to -89.41\%) \\ &+ 15738.441212 \dots \log(1-z) & (\to -55.50\%) \\ &- 5872.588877 \dots & (\to -14.31\%) \end{split}$$

The total SV contribution in z-space -> -2.25 % of the Born

The total NSV contribution in z-space -> 25 % of the Born !

M

The total SV contribution in Mellin N-space (conjugate space) -> 18 % of the Born The total NSV contribution in N-space -> 11 % of the Born !

$\left[\eta_{gg}^{(3)}\right](N) \simeq 36 \log^6 N$	$(\rightarrow 0.0013\%)$
$+ 170.679 \dots \log^5 N$	$(\rightarrow 0.0226\%)$
$+744.849\ldots\log^4 N$	$(\rightarrow 0.2570\%)$
$+ 1405.185 \dots \log^3 N$	$(\rightarrow 1.0707\%)$
$+ 2676.129 \dots \log^2 N$	$(\rightarrow 4.0200\%)$
$+$ 1897.141 $\log N$	$(\rightarrow 5.1293\%)$
+ 1783.692	$(\rightarrow 8.0336\%)$
$+ 108 \frac{\log^5 N}{N}$	$(\rightarrow 0.0105\%)$
$+ 615.696 \dots \frac{\log^4 N}{N}$	$(\rightarrow 0.1418\%)$
$+\ 2036.407\dots \frac{\log^3 N}{N}$	$(\rightarrow 0.9718\%)$
$+ 3305.246 \dots \frac{\log^2 N}{N}$	$(\rightarrow 2.9487\%)$
$+ 3459.105 \dots \frac{\log N}{N}$	$(\rightarrow 5.2933\%)$
$+703.037\ldotsrac{1}{N}$	$(\rightarrow 1.7137\%).$

Understanding the NSV sector is important because:

- Numerically sizeable owing to their large coefficients
 - Provide a check of higher-order correction

- Since the NSV sector gives rise to large logarithmic contributions in the threshold limit : spolis the perturbativity of the FO series
- > Resolution : Find a way to resum these NSV logarithms beyond LL accuracy

PREVIOUS WORKS ON NSV/NLP

- The earliest evidence that IR effects can be studied at NSV/NLP [Low, Burnett, Kroll]
- Early attempts : [Kraemer, Laenen, Spira (98)] [Akhoury, Sotiropoulos & Sterman (98)]
- Important Results & Predictions using Physical Kernel Approach & explicit computation: [Moch , Vogt et al. (09-20)]
 [Anastasiou, Duhr, Dulat et al.(14)]
- Universality of NSV/NLP effects and LL Resummation: [Laenen, Magnea, et al. (08-19)]
 [Grunberg & Ravindran (09)]
 [Ball, Bonvini, Forte, Marzani, Ridolfi (13)]
 [Del Duca et al. (17)]
- Subleading Factorisation and LL Resummation at NSV/NLP using SCET: [Larkoski, Nelli, Stewart et al. (14)]
 [Kolodrubetz, Moult, Neill, Stewart et al. (17)]
 [Beneke et al. (19-20)]

And many other works...

OUR APPROACH

- The SV formalism was already known for color singlet processes : [Ravindran '05,'06]
- We extended the very formalsim to study the NSV effects in the diagonal channels for the color singlet processes

OUR APPROACH

- The SV formalism was already known for color singlet processes : [Ravindran '05,'06]
- We extended the very formalsim to study the NSV effects in the diagonal channels for the color singlet processes

<u>Key points</u>

- Collinear factorisation
- Renormalisation group (RG) invariance
- Logarithmic structure present in the higher order results

Let's begin with the collinear factorisation

$$\frac{1}{z}\hat{\sigma}_{ab}(q^2, z, \varepsilon) = \sigma_0(\mu_R^2) \sum_{a'b'} \Gamma_{a'a}^T(z, \mu_F^2, \varepsilon) \otimes \left(\frac{1}{z}\Delta_{a'b'}(q^2, \mu_R^2, \mu_F^2, z, \varepsilon)\right) \otimes \Gamma_{b'b}(z, \mu_F^2, \varepsilon)$$

Let's begin with the collinear factorisation

€ : Dimensional regularisation parameter

Let's begin with the collinear factorisation

For instance, we only consider the diagonal $q\overline{q}$ channel for the Drell-Yan process

The factorisation in the diagonal $q\bar{q}$ channel for the Drell-Yan process:

$$\frac{\hat{\sigma}_{\mathbf{q}\mathbf{\bar{q}}}}{\mathbf{z}\sigma_{\mathbf{0}}} = \mathbf{\Gamma}_{\mathbf{q}\mathbf{q}}^{\mathbf{T}} \otimes \frac{\mathbf{\Delta}_{\mathbf{q}\mathbf{\bar{q}}}}{\mathbf{z}} \otimes \mathbf{\Gamma}_{\mathbf{\bar{q}}\mathbf{\bar{q}}} + \mathbf{\Gamma}_{\mathbf{q}\mathbf{q}}^{\mathbf{T}} \otimes \mathbf{\Gamma}_{\mathbf{z}}^{\mathbf{q}\mathbf{g}} \otimes \mathbf{\Gamma}_{\mathbf{g}\mathbf{\bar{q}}} + \cdots$$
Contribute to beyond NSV terms
$$(1-z)^{l} \ln^{k}(1-z), l > 0, k \ge 0$$
We can safely remove these terms

$$\frac{\hat{\sigma}_{\mathbf{q}\bar{\mathbf{q}}}^{\mathbf{SV}+\mathbf{NSV}}}{\mathbf{z}\sigma_{\mathbf{0}}} = \Gamma_{\mathbf{q}\mathbf{q}}^{\mathbf{T}} \otimes \mathbf{\Delta}_{\mathbf{q}\bar{\mathbf{q}}}^{\mathbf{SV}+\mathbf{NSV}} \otimes \Gamma_{\bar{\mathbf{q}}\bar{\mathbf{q}}}$$

Remarkably simple form!!

The perturbative structure of Finite mass-factorised SV+NSV partonic coefficient function for the diagonal channels:

cc -> qq for the DY gg for g+g->H bb for b+b->H

$$\Delta_{c\bar{c}}(z,\epsilon,q^2\mu_R^2,\mu_F^2) = \left(\Gamma^T\right)^{-1} \otimes \left\{ \left(Z_{c,UV}\right)^2 |\hat{F}_c(Q^2,\epsilon)|^2 S_c(q^2,z,\epsilon) \right\} \otimes \left(\Gamma\right)^{-1}$$

The perturbative structure of Finite mass-factorised SV+NSV partonic coefficient function for the diagonal channels:

Each of these building blocks obeys first order differential equations and additional evolution equations w.r.t various scales (Q, q, μF, μR)

Altarelli-Parisi (AP) kernels

$$\Delta_{c\bar{c}}(z,\epsilon,q^{2}\mu_{R}^{2},\mu_{F}^{2}) = (\Gamma^{T})^{-1} \otimes \left\{ (Z_{c,UV})^{2} | \hat{F}_{c}(Q^{2},\epsilon) |^{2} S_{c}(q^{2},z,\epsilon) \right\} \otimes (\Gamma)^{-1}$$
Altarelli-Parisi evolution eqn
scale

$$\mu_{F}^{2} \frac{d}{d\mu_{F}^{2}} \Gamma_{ab}(z,\mu_{F}^{2},\epsilon) = \frac{1}{2} \sum_{a'=q,\bar{q},g} P_{aa'}(z,a_{s}(\mu_{F}^{2})) \otimes \Gamma_{a'b}(z,\mu_{F}^{2},\epsilon)$$
We only need to consider diagonal AP splitting kernels and splitting function
Solution : $\Gamma_{cc}(\mu_{F}^{2},z,\epsilon) = C \exp\left(\frac{1}{2}\int_{0}^{\mu_{F}^{2}} \frac{d\lambda^{2}}{\lambda^{2}} P_{cc}(\lambda^{2},z,\epsilon)\right)$

$$P_{cc}(z,\mu_{F}^{2}) = 2\left[\frac{A^{c}}{(1-z)_{+}} + B^{c} \delta(1-z) + C^{c} \log(1-z) + D^{c} + O(1-z)\right]$$
beyond NSV
Collinear anomalous dimensions(contributes to pure NSV)

[Moch,Vogt,Vermaseren]

21

- > Soft-collinear function, S_c: captures the contributions with at least one real emission (R, RR, RV etc)
- Using the knowledge of the evolution equations and the correspoding solutions of other building blocks, we obtain a 1st order differential equation for the soft-collinear function S_c

K+G – type diff eqn

The solution to the above diff eqn is obtained using the RG invariance of S_c and studying the perturabative structure of state-of-the-art results for color singlet processes

SOFT-COLLINEAR FUNCTION

Inspired from explicit results, solution verified up to 3rd order, we propose the same structure to all orders

$$\ln S^{\text{SV+NSV}}(\hat{a}_{s}, q^{2}, z, \epsilon) = \sum_{i=1}^{\infty} \hat{a}_{s}^{i} S_{\epsilon}^{i} \left(\frac{q^{2}(1-z)^{2}}{\mu^{2}z}\right)^{i\frac{\epsilon}{2}} \left(\frac{i\epsilon}{1-z}\right) \left[\hat{\phi}^{\text{SV},(i)}(\epsilon) + (1-z) \hat{\phi}^{\text{NSV},(i)}(z, \epsilon)\right]$$
Pure SV part
Universal coefficients
$$A^{c}, f^{c}, \overline{\mathscr{G}^{c}} \qquad \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} \mathcal{G}_{i}^{(j,k)} \epsilon^{j} \log^{k}(1-z)$$
NSV part, z-dependency
Universal & Process dependent coeffcients
$$C^{c}, D^{c}, \varphi_{c}(z)$$

Knowing the functional form of each buliding blocks, we derive an integral representation for Δ_c, which gives an understanding of the all-order structure

$$\Delta_{\mathbf{c}}(\mathbf{q^2}, \mu_{\mathbf{R}}^2, \mu_{\mathbf{F}}^2, \mathbf{z}) = \mathbf{C_0^c}(\mathbf{q^2}, \mu_{\mathbf{R}}^2, \mu_{\mathbf{F}}^2) \quad \mathcal{C} \exp\left(\int_{\mu_{\mathbf{F}}^2}^{\mathbf{q^2(1-z)^2}} \frac{d\lambda^2}{\lambda^2} \mathbf{P_{cc}'(\mathbf{a_s}(\lambda^2), \mathbf{z}) + \mathcal{Q}^c(\mathbf{a_s}(\mathbf{q^2(1-z)^2}), \mathbf{z})}\right)$$

Knowing the functional form of each buliding blocks, we derive an integral representation for Δ_c, which gives an understanding of the all-order structure

$$\Delta_{\mathbf{c}}(\mathbf{q}^{2}, \mu_{\mathbf{R}}^{2}, \mu_{\mathbf{F}}^{2}, \mathbf{z}) = \mathbf{C}_{\mathbf{0}}^{\mathbf{c}}(\mathbf{q}^{2}, \mu_{\mathbf{R}}^{2}, \mu_{\mathbf{F}}^{2}) \quad \mathcal{C} \exp\left(\int_{\mu_{\mathbf{F}}^{2}}^{\mathbf{q}^{2}(1-\mathbf{z})^{2}} \frac{d\lambda^{2}}{\lambda^{2}} \mathbf{P}_{\mathbf{cc}}'(\mathbf{a}_{\mathbf{s}}(\lambda^{2}), \mathbf{z}) + \mathcal{Q}^{\mathbf{c}}(\mathbf{a}_{\mathbf{s}}(\mathbf{q}^{2}(1-\mathbf{z})^{2}), \mathbf{z})\right)$$

$$\stackrel{\text{Proportional to } \delta(1-z)$$
Finite part after cancelling of poles between F.F & Soft-collinear function

Knowing the functional form of each buliding blocks, we derive an integral representation for Δ_c, which gives an understanding of the all-order structure

$$\Delta_{\mathbf{c}}(\mathbf{q}^{2},\mu_{\mathbf{R}}^{2},\mu_{\mathbf{F}}^{2},\mathbf{z}) = \mathbf{C}_{\mathbf{0}}^{\mathbf{c}}(\mathbf{q}^{2},\mu_{\mathbf{R}}^{2},\mu_{\mathbf{F}}^{2}) \quad \mathcal{C}\exp\left(\int_{\mu_{\mathbf{F}}^{2}}^{\mathbf{q}^{2}(1-\mathbf{z})^{2}} \frac{d\lambda^{2}}{\lambda^{2}} \mathbf{P}_{\mathbf{cc}}'(\mathbf{a}_{\mathbf{s}}(\lambda^{2}),\mathbf{z}) + \mathcal{Q}^{\mathbf{c}}(\mathbf{a}_{\mathbf{s}}(\mathbf{q}^{2}(1-\mathbf{z})^{2}),\mathbf{z})\right)$$

$$\stackrel{\text{Proportional to } \delta(1-z)$$
Finite part after cancelling of poles
between F.F & Soft-collinear function
$$P_{cc}'(z,a_{s}(\mu_{F}^{2})) = 2\left[A^{c}(a_{s}(\mu_{F}^{2}))\mathcal{D}_{0}(z) + C^{c}(a_{s}(\mu_{F}^{2}))\log(1-z) + D^{c}(a_{s}(\mu_{F}^{2}))\right]$$

$$\stackrel{\text{Finite part after}}{=}$$

 Finite part after
 cancellation of poles between splitting kernels and soft -collinear function

> Knowing the functional form of each buliding blocks, we derive an integral representation for Δ_c , which gives an understanding of the all-order structure

$$\Delta_{\mathbf{c}}(\mathbf{q}^{2},\mu_{\mathbf{R}}^{2},\mu_{\mathbf{F}}^{2},\mathbf{z}) = \mathbf{C}_{\mathbf{0}}^{\mathbf{c}}(\mathbf{q}^{2},\mu_{\mathbf{R}}^{2},\mu_{\mathbf{F}}^{2}) \quad \mathcal{C}\exp\left(\int_{\mu_{\mathbf{F}}^{2}}^{\mathbf{q}^{2}(1-\mathbf{z})^{2}} \frac{\mathrm{d}\lambda^{2}}{\lambda^{2}} \mathbf{P}_{\mathbf{cc}}'(\mathbf{a}_{\mathbf{s}}(\lambda^{2}),\mathbf{z}) + \mathcal{Q}^{\mathbf{c}}(\mathbf{a}_{\mathbf{s}}(\mathbf{q}^{2}(1-\mathbf{z})^{2}),\mathbf{z})\right)$$

$$\stackrel{\text{Proportional to }\delta(1-z)}{\text{Finite part after cancelling of poles}}$$

$$\frac{\mathbf{P}_{cc}'(z,a_{s}(\mu_{F}^{2})) = 2\left[A^{c}(a_{s}(\mu_{F}^{2}))\mathcal{D}_{0}(z) + C^{c}(a_{s}(\mu_{F}^{2}))\log(1-z) + D^{c}(a_{s}(\mu_{F}^{2}))\right]$$

$$\stackrel{\text{Finite part after}}{=} \mathcal{Q}^{c}(a_{s}(q^{2}(1-z)^{2}),z) = \left(\frac{1}{2}\mathcal{G}_{\mathrm{SV}}^{c}(a_{s}(q^{2}(1-z)^{2}))\right) + \mathcal{G}_{\mathrm{NSV}}^{c}(a_{s}(q^{2}(1-z)^{2}),z)$$

cancellation of poles between splitting kernels and soft -collinear function

 $\mathcal{Q}(a_s(q(1-z)),z) = \left(\frac{1-z}{1-z}\mathcal{Q}_{SV}(a_s(q(1-z)))\right)_+ + \mathcal{Q}_{NSV}(a_s(q(1-z)))$

The finite contribution comes completely from the soft-collinear function

RESUMMATION IN THE MELLIN N-SPACE

• We solve this integral representation in the Mellin N-space. Convolutions become normal products in the Mellin N-space, easy to handle.

• Mellin transformation: \longrightarrow $\left(\Delta_N^c = \int_0^1 dz \ z^{N-1} \Delta_c(z) \right)$ • The soft limit then converts to :

$$Z \rightarrow 1 \longrightarrow N \rightarrow \infty$$

RESUMMATION IN THE MELLIN N-SPACE

• We solve this integral representation in the Mellin N-space. Convolutions become normal products in the Mellin N-space, easy to handle.

・ Mellin transformation: ____>

$$\Delta_N^c = \int_0^1 dz \ z^{N-1} \Delta_c(z)$$

• The soft limit then converts to :

 $Z \rightarrow 1 \longrightarrow N \rightarrow \infty$

• The large logarithms transform

to:

$$\Rightarrow \frac{SV}{\left(\frac{\ln(1-z)}{1-z}\right)_{+}} \rightarrow \frac{\ln^2 N}{2} - \frac{\ln N}{2N} + \frac{1}{2N} + \mathcal{O}\left(\frac{1}{N^2}\right)$$
$$\ln^k(1-z) \rightarrow \frac{\ln^k N}{N} + \mathcal{O}\left(\frac{1}{N^2}\right)$$

RESUMMATION EXPONENTS

Solving the integral representation in Mellin N-space, we obtain : $\omega = 2\beta_0 a_s(\mu_R^2) \log N$

$$\Delta_N^{\text{SV+NSV}}(q^2, \mu_R^2, \mu_F^2) = \left(\sum_{i=0}^{\infty} a_s^i(\mu_R^2) \tilde{g}_{0,i}(q^2, \mu_R^2, \mu_F^2)\right) \exp\left(\Psi_{\text{sv},\text{N}}^c + \Psi_{\text{nsv},\text{N}}^c\right)$$

N-independent

The SV part is well-known to third logarithmic accuracy for Color singlet processes

$$\Psi_{\rm sv,N}^{c} = g_{1}^{c}(\omega)\ln(N) + \sum_{i=0}^{\infty} a_{s}^{i}(\mu_{R}^{2})g_{i+2}^{c}(\omega)$$

[Sterman] [Catani, Trentedue]

The NSV part is the new result :

$$\Psi_{\text{nsv},N}^{c} = \frac{1}{N} \sum_{n=0}^{\infty} a_{s}^{n} \left[\overline{g}_{n+2}^{c}(\omega) + \sum_{k=0}^{n} h_{nk}^{c}(\omega) \log^{k} N \right]$$

ALL-ORDER PREDICTION: SV (ALREADY KNOWN)

$$\mathcal{L}^i = \ln^i(N)$$

GI	PREDICTIONS			
Logarithmic	Resummed	$\Delta_{c,N}^{(2)}$	$arDelta_{c,N}^{(3)}$	$arDelta_{c,N}^{(i)}$
Accuracy	Exponents			
SV-LL	$ ilde{g}^c_{0,0}, g^c_1$	\mathcal{L}^4	\mathcal{L}^6	\mathcal{L}^{2i}
SV-NLL	$ ilde{g}^c_{0,1}, g^c_2$		$\mathcal{L}^5, \mathcal{L}^4$	$\mathcal{L}^{2i-1},\mathcal{L}^{2i-2}$
$SV-N^2LL$	$ ilde{g}^c_{0,2}, g^c_3$			$\mathcal{L}^{2i-3},\mathcal{L}^{2i-4}$
$SV-N^nLL$	$\tilde{g}_{0,n}^c, g_{n+1}^c, \overline{g}_{n+1}^c, h_n^c$			$\mathcal{L}^{2i-2n-1},\mathcal{L}^{2i-2n}$

GI	VEN	PREDICTIONS			
Logarithmic	Resummed	$arDelta_{c,N}^{(2)}$	$arDelta_{c,N}^{(3)}$	$\varDelta^{(i)}_{c,N}$	
Accuracy	Exponents				
NSV-LL	$ ilde{g}^c_{0,0}, g^c_1, \overline{g}^c_1, h^c_0$	L_N^3	L_N^5	L_N^{2i-1}	
NSV-NLL	$\tilde{g}_{0,1}^c,g_2^c,\overline{g}_2^c,h_1^c$		L_N^4	L_N^{2i-2}	
NSV-N ² LL	$\tilde{g}_{0,2}^c,g_3^c,\overline{g}_3^c,h_2^c$			L_N^{2i-3}	
$NSV-N^{n}LL$	$\mathbb{I}^{n} \mathrm{LL} \qquad \tilde{g}_{0,n}^{c}, g_{n+1}^{c}, \overline{g}_{n+1}^{c}, h_{n}^{c}$			$L_N^{2i-(n+1)}$	

$$L_N^i = \frac{1}{N} \ln^i(N)$$

GIVEN			$a_s \frac{1}{N} \log N$	ONS	$L_N^i = \frac{1}{N} \ln^i(N)$
Logarithmic Accuracy	Resummed Exponents		$a_s^2 \frac{1}{N} \log^3 N$	$\Delta_{c,N}^{(i)}$	
NSV-LL	$ ilde{g}^c_{0,0}, g^c_1, \overline{g}^c_1, h^c_0$		$a^3 \frac{1}{1} \log^5 N$	L_N^{2i-1}	Contains only one-loop info
NSV-NLL	$\tilde{g}_{0,1}^c,g_2^c,\overline{g}_2^c,h_1^c$			L_N^{2i-2}	
$NSV-N^2LL$	$\tilde{g}_{0,2}^c,g_3^c,\overline{g}_3^c,h_2^c$			L_N^{2i-3}	
$NSV-N^{n}LL$	$\tilde{g}_{0,n}^c, g_{n+1}^c, \overline{g}_{n+1}^c, h_n^c$		•	$L_N^{2i-(n+1)}$	
			$a_s^i \frac{1}{N} \log^{2i-1} N$		

GI	IVEN	$a_s^2 \frac{1}{N} \log^2 N$	ONS	$L_N^i = \frac{1}{N} \ln^i (N$
Logarithmic Accuracy	Resummed Exponents	$a_s^3 \frac{1}{N} \log^4 N$	$\Delta_{c,N}^{(i)}$	
NSV-LL	$ ilde{g}^c_{0,0}, g^c_1, \overline{g}^c_1, h^c_0$	$a_{5}^{4} - \log^{6} N$	L_N^{2i-1}	
NSV-NLL	$ ilde{g}^c_{0,1}, g^c_2, \overline{g}^c_2, h^c_1$	N N N	L_N^{2i-2}	Contains only two-loop info
NSV-N ² LL	$\tilde{g}_{0,2}^c, g_3^c, \overline{g}_3^c, h_2^c$	•	L_N^{2i-3}	
$NSV-N^{n}LL$	$\tilde{g}_{0,n}^c, g_{n+1}^c, \overline{g}_{n+1}^c, h_n^c$	•	$L_N^{2i-(n+1)}$	
		$a_s^i \frac{1}{N} \log^{2i-2} N$		

GIVEN		$a_s^n \frac{1}{N} \log^n N$	IC	NS	$L_N^i = \frac{1}{N} \ln^i (N)$
Logarithmic	Resummed			$\Delta_{c,N}^{(i)}$	
Accuracy	Exponents				
NSV-LL	$ ilde{g}^c_{0,0}, g^c_1, \overline{g}^c_1, h^c_0$			L_N^{2i-1}	
NSV-NLL	$ ilde{g}^c_{0,1}, g^c_2, \overline{g}^c_2, h^c_1$			L_N^{2i-2}	
$NSV-N^2LL$	$\tilde{g}_{0,2}^c,g_3^c,\overline{g}_3^c,h_2^c$	•		L_N^{2i-3}	
$NSV-N^{n}LL$	$\tilde{g}_{0,n}^c, g_{n+1}^c, \overline{g}_{n+1}^c, h_n^c $	•		$L_N^{2i-(n+1)}$	Contains only n+1-loop info
		$a_s^i \frac{1}{N} \log^{2i-n} N$			
					36

GIVEN		$a_s^n \frac{1}{N} \log^n N$	IC	NS	$L_N^i = \frac{1}{N} \ln^i (N)$
Logarithmic	Resummed			$\Delta_{c,N}^{(i)}$	
Accuracy	Exponents				
NSV-LL	$ ilde{g}^c_{0,0}, g^c_1, \overline{g}^c_1, h^c_0$			L_N^{2i-1}	
NSV-NLL	$\tilde{g}_{0,1}^c,g_2^c,\overline{g}_2^c,h_1^c$			L_N^{2i-2}	
$NSV-N^2LL$	$\tilde{g}_{0,2}^c,g_3^c,\overline{g}_3^c,h_2^c$	•		L_N^{2i-3}	
$NSV-N^{n}LL$	$\tilde{g}_{0,n}^c, g_{n+1}^c, \overline{g}_{n+1}^c, h_n^c $	•		$L_N^{2i-(n+1)}$	Contains only n+1-loop info
Verified our pord ord [Moch, Vogt et.al], [predictions up to 4 th er in QCD De Florian et al.], [Das et al.]	$a_s^i \frac{1}{N} \log^{2i-n} N$			

NSV Resummation Phenomenology | Drell-Yan Process K- factor

$\mu_R = \mu_F = Q(\text{GeV})$	$LO + \overline{LL}$	NLO	$NLO + \overline{NLL}$	NNLO	$NNLO + \overline{NNLL}$
500	1.0624	1.3425	1.3925	1.3950	1.4082
1000	1.0728	1.3464	1.3995	1.4004	1.4138
2000	1.1062	1.3064	1.3739	1.3652	1.3818

→ Increment from FO \rightarrow resum at Q=2000 GeV

10.6% : LO → LO + $\overline{\text{LL}}$ 5.2% : NLO → NLO + $\overline{\text{NLL}}$ 1.2% : NNLO → NNLO + $\overline{\text{NNLL}}$

- NLO + NLL from quark part mimics the NNLO
- Resummed predictions are closer compared FO
 Resummed corrections decrease as we go higher-order
 : Improves the reliability of perturbative predictions

NSV Resummation Phenomenology | Drell-Yan Process 7-point Scale variation

Impact of $\mu_R \& \mu_F$ scales in the predictions using canonical 7-point variation: $\frac{1}{2} \le \frac{\mu_F}{O}, \frac{\mu_R}{O} \le 2$

1.5

1.1

0.7

 $d\sigma/dQ$ normalised to $d\sigma^{\rm LO}/dQ(\mu_R=\mu_F=Q)$

- 1.4 $\frac{1}{2} \leq \frac{\mu}{O} \leq 2$ **MMHT2014** 1.3 3 TeV LHC 1.2 1.0 0.9 $O + \overline{LL}$ 0 $NLO + \overline{NLL}$ VLO 0.8 $=\frac{Q^2}{S}$ NNLO+NNLL NNLO 0.6 ∟ 10⁻⁴ 10^{-2} 10^{-2} 10^{-3} 10^{-4} 10^{-3} τ τ
 - FO from all channels & resummed predictions from only diagonal channels (qq)

- NLO to NLO + $\overline{\text{NLL}}$: band width decreases. Large scale uncertainity at NNLO + $\overline{\text{NNLL}}$ ۶
- NNLO + $\overline{\text{NNLL}}$ is within NLO + $\overline{\text{NLL}}$ unlike fixed order case at high energies ۶

NSV Resummation Phenomenology | Drell-Yan Process The Factorisation scale

In order to understand the cause of large uncertainty at NNLO + \overline{NNLL} , we study the scales separately.

- > Bands in resummation plot look similar to 7point scale variation : large band in 7-point scale is due to μ_{F-} uncertainities
- > µ_F scale mixes up different channels:
- Collinear logarithms arise from diagonal(qq̄) & off-diagonal (like qg) channels
- Large µ_F uncertainity could be due to lack of offdiagonal contribution!

NSV Resummation Phenomenology | Drell-Yan Process The Renormalisation scale

To understand the role of collinear resummation, we see the μ_R - variation :

NSV Resummation Phenomenology | Drell-Yan Process The Renormalisation scale

To understand the role of collinear resummation, we see the μ_R - variation :

The μ_R cancellation happens within each partonic channels. Inclusion of resummed predictions improves the μ_R - scale uncertainity remarkably

NSV Resummation Phenomenology | Drell-Yan Process SV -Resummation vs NSV -Resummation

Let's compare the SV resummation with SV+NSV resummation

Nomenclature : NⁿLL -> only SV Res NⁿLL -> SV+NSV Res

> Increment from SV resum \rightarrow NSV resum at Q=2000 GeV

2.1% for NLO+ NLL → NLO + $\overline{\text{NLL}}$ 0.64% for NNLO + NNLL → NNLO + $\overline{\text{NNLL}}$

 Perturbative convergence is improved after the inclusion of NSV resummation

NSV Resummation Phenomenology | Drell-Yan Process SV -Resummation vs NSV -Resummation

Comparing SV resummation, SV+NSV resummation with NNLO results

- Behaviour of NNLO_{qq}+NNLL is significantly improved from the corresponding SV NNLO_{qq}+NNLL
- Considerable improvement when adding the NSV resummation over the SV one leading to more reliable predictions

44

> Threshold resummation is essential in the kinematic limit $z \rightarrow 1$

- > Threshold resummation is essential in the kinematic limit $z \rightarrow 1$
- > We extended the threshold resummation framework by including the subleading nextto-soft large logarithms in the diagonal channels to NNLL accuracy

- > Threshold resummation is essential in the kinematic limit $z \rightarrow 1$
- Ye extended the threshold resummation framework by including the subleading nextto-soft large logarithms in the diagonal channels to NNLL accuracy
- > This brings in enhancement in the resummed predictions and improves the perturbative convergence

- > Threshold resummation is essentail in the kinematic limit $z \rightarrow 1$
- > We extended the threshold resummation framework by including the subleading nextto-soft large logarithms in the diagonal channels to NNLL accuracy
- > This brings in enhancement in the resummed predictions and improves the perturbative convergence
- However, large scale uncertainities w.r.t the factorisation scale shows the need of including off-diagonal channles in the NSV resummation for large collinear logarithms, on-going work, stay tuned!

Thank you for your attention!

Let's begin with the Factorisation

OUR APPROACH

DIAGONAL AND OFF DIAGONAL

$$\frac{\hat{\sigma}_{q\bar{q}}}{z\sigma_{0}} = \Gamma_{qq}^{T} \otimes \Delta_{qq} \otimes \Gamma_{q\bar{q}} + \Gamma_{qq}^{T} \otimes \Delta_{qg} \otimes \Gamma_{g\bar{q}} + \Gamma_{qq}^{T} \otimes \Delta_{q\bar{q}} \otimes \Gamma_{\bar{q}\bar{q}}
+ \Gamma_{qg}^{T} \otimes \Delta_{gq} \otimes \Gamma_{q\bar{q}} + \Gamma_{qg}^{T} \otimes \Delta_{gg} \otimes \Gamma_{g\bar{q}} + \Gamma_{qg}^{T} \otimes \Delta_{g\bar{q}} \otimes \Gamma_{\bar{q}\bar{q}}
+ \Gamma_{q\bar{q}}^{T} \otimes \Delta_{\bar{q}q} \otimes \Gamma_{q\bar{q}} + \Gamma_{q\bar{q}}^{T} \otimes \Delta_{\bar{q}g} \otimes \Gamma_{g\bar{q}} + \Gamma_{q\bar{q}}^{T} \otimes \Delta_{\bar{q}\bar{q}} \otimes \Gamma_{\bar{q}\bar{q}}.$$

$$\frac{\hat{\sigma}_{q\bar{q}}^{\rm sv+nsv}}{z\sigma_0} = \Gamma_{qq}^T \otimes \varDelta_{q\bar{q}}^{\rm sv+nsv} \otimes \Gamma_{\bar{q}\bar{q}} \,.$$

$$\frac{\hat{\sigma}_{qg}}{z\sigma_0} = \Gamma_{qq}^T \otimes \Delta_{qq} \otimes \Gamma_{qg} + \Gamma_{qq}^T \otimes \Delta_{qg} \otimes \Gamma_{gg} + \Gamma_{qq}^T \otimes \Delta_{q\bar{q}} \otimes \Gamma_{\bar{q}g}
+ \Gamma_{qg}^T \otimes \Delta_{gq} \otimes \Gamma_{qg} + \Gamma_{qg}^T \otimes \Delta_{gg} \otimes \Gamma_{gg} + \Gamma_{qg}^T \otimes \Delta_{g\bar{q}} \otimes \Gamma_{\bar{q}g}
+ \Gamma_{q\bar{q}}^T \otimes \Delta_{\bar{q}q} \otimes \Gamma_{qg} + \Gamma_{q\bar{q}}^T \otimes \Delta_{\bar{q}g} \otimes \Gamma_{gg} + \Gamma_{q\bar{q}}^T \otimes \Delta_{\bar{q}\bar{q}} \otimes \Gamma_{\bar{q}g}.$$

$$\frac{\hat{\sigma}_{qg}^{\rm sv+nsv}}{z\sigma_0} = \Gamma_{qq}^T \otimes \Delta_{q\overline{q}}^{\rm sv+nsv} \otimes \Gamma_{\overline{q}g} + \Gamma_{qq}^T \otimes \Delta_{qg}^{\rm sv+nsv} \otimes \Gamma_{gg} \,.$$

OUR APPROACH

Off-diagonal Channel:

$$\frac{\hat{\sigma}_{qg}}{z\sigma_0} = \Gamma_{qq}^T \otimes \Delta_{qq} \otimes \Gamma_{qg} + \Gamma_{qq}^T \otimes \Delta_{qg} \otimes \Gamma_{gg} + \cdots$$

In the threshold limit z -> 1 , keeping only $\log^k(1-z_i), \quad k=0,\cdots\infty$ next to SV

$$\frac{\hat{\sigma}_{qg}^{\rm sv+nsv}}{z\sigma_0} = \Gamma_{qq}^T \otimes \Delta_{q\overline{q}}^{\rm sv+nsv} \otimes \Gamma_{\overline{q}g} + \Gamma_{qq}^T \otimes \Delta_{qg}^{\rm nsv} \otimes \Gamma_{gg} \,.$$

dropping $(1-z_i)^k$, $k=1,\cdots\infty$

Getting complicated due to Mixing of channels

Form factor (pure virtual corrections)

$$Q^{2} \frac{d}{dQ^{2}} \log \hat{F}^{c} = \frac{1}{2} \Big[K^{c} \Big(\hat{a}_{s}, \frac{\mu_{R}^{2}}{\mu^{2}}, \varepsilon \Big) + G^{c} \Big(\hat{a}_{s}, \frac{Q^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \varepsilon \Big) \Big] \qquad \begin{array}{l} \text{Sudakov diff eqn (K+G eqn)} \\ \text{[Sen, Sterman, Magnea]} \end{array}$$

 $a_s(\mu_R^2) = \frac{g_s^2(\mu_R^2)}{16\pi^2}$

[Sen, Sterman, Magnea]

Overall Renormalisation constant

$$\mu_R^2 \frac{d}{d\mu_R^2} \log Z_{c,UV}(\hat{a}_s, \mu_R^2, \mu^2, \varepsilon) = \sum_{i=1}^{\infty} a_s^i(\mu_R^2) \quad \gamma_{i-1}^c \xrightarrow{\text{Renormalisation Group Eqn}} \text{UV anomalous dimension}$$

Altarelli-Parisi **Splitting kernels**

$$\mu_{F}^{2} \frac{d}{d\mu_{F}^{2}} \Gamma_{ab}(z, \mu_{F}^{2}, \epsilon) = \frac{1}{2} \sum_{a'=q, \overline{q}, g} P_{aa'}(z, a_{s}(\mu_{F}^{2})) \otimes \Gamma_{a'b}(z, \mu_{F}^{2}, \epsilon)$$

$$Altarelli-Parisi evolution eqn [Moch, Vogt, Vermaseren]$$

Altarelli-Parisi splitting function [Expanded in the limit z->1] $P_{cc}(z, \mu_F^2) = 2 \begin{bmatrix} A^c \\ (1-z)_+ \end{bmatrix} + B^c \ \delta(1-z) + C^c \ \log(1-z) + D^c + \mathcal{O}(1-z) \end{bmatrix} \begin{bmatrix} A^c, B^c, C^c, D^c \\ Process independent IR anomalous \\ dimensions \end{bmatrix}$

dimensions

Phenomenology – Drell-Yan Process

	GI	VEN		PREDICTIONS			
$\Psi_c^{(1)}$	$\Psi_c^{(2)}$	$\Psi_c^{(3)}$	$\Psi_c^{(n)}$	$\Delta_c^{(2)}$	$\Delta_c^{(3)}$	$\Delta_c^{(i)}$	
$\mathcal{D}_0, \mathcal{D}_1, \delta$				$\mathcal{D}_3,\mathcal{D}_2$	$\mathcal{D}_5, \mathcal{D}_4$	$\mathcal{D}_{(2i-1)}, \mathcal{D}_{(2i-2)}$	
L^1_z, L^0_z				L_z^3	L_z^5	$L_z^{(2i-1)}$	
	$\mathcal{D}_0, \mathcal{D}_1, \delta$				$\mathcal{D}_3,\mathcal{D}_2$	$\mathcal{D}_{(2i-3)}, \mathcal{D}_{(2i-4)}$	
	L^2_z, L^1_z, L^0_z				L_z^4	$L_z^{(2i-2)}$	
		$\mathcal{D}_0,\mathcal{D}_1,\delta$				$\mathcal{D}_{(2i-5)}, \mathcal{D}_{(2i-6)}$	
		L_z^3, \cdots, L_z^0				$L_z^{(2i-3)}$	
			$\mathcal{D}_0, \mathcal{D}_1, \delta$			$\mathcal{D}_{(2i-(2n-1))}, \mathcal{D}_{(2i-2n)}$	
			L_z^n, \cdots, L_z^0			$L_z^{(2i-n)}$	

$$\mathcal{D}_{j} \equiv \left(\frac{\ln^{j}(1-z)}{1-z}\right)_{+}$$
$$L_{z}^{i} = \ln^{i}(1-z)$$
$$\delta = \delta(1-z)$$

The Predictions to all orders (z-space)

 $q\overline{q} \& qg$ contributions under μ_F variation keeping μ_R fixed

NSV Resummation Phenomenology | Drell-Yan Process The Factorisation scale

In order to understand the cause of large uncertainty at NNLO + \overline{NNLL} , we study the scales separately.

µ_F - variation

- Bands in resummation plot look similar to 7point scale variation : large band in 7-point scale is due to μ_{F-} uncertainties
- > μ_F scale mixes up different channels:
- Collinear logarithms arises from qq̄ & qg channels
- Large µ_F uncertainity could be due to lack of offdiagonal contribution!

57

Bigger cancellation at NNLO. Lack of qg resummed predictions causes the larger uncertainty at NNLO + NNLL

At NNLO : $q\bar{q} \rightarrow 4.9\% \& qg \rightarrow -2.5 \%$