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DOUBLE PARTON SCATTERING

A SP A DPS
Double parton scattering
(DPS) is where we have two Iy
separate hard scatters in one
collision B B
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WHY STUDY DPS¢

DPS can give a significant contribution
to processes where SPS is suppressed
by small/multiple coupling constants:

..0r in certain phase space
regions
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DPDS AT SMALL Y

Theory predictions require DPDs: F(x4, x,,y)

For large y~R,, need to use models, or compute on laftice.
See e.g. Bali et al., JHEP 09 (2021) 106

But for y « R,, can compute DPDs perturbatively!

X Twc‘z partons entering DPS process

1
1 dz T1 T2 1y
Fgng(CCl,ZUQ,y,#) = ﬂ_—yg Z f ; Valag,ag (?y?ua’s(”):log? fao(zﬂu’)
0
a

0 21 +zo

LO computation of ¥V performed in Diehl, Ostermeier,
Schafer JHep 03 (2012) 089

Proton .
Here: NLO computation of V.



CALCULATION

Strategy: Compute (bare) DPD in momentum space FB(Z)(A) for a partonic

initial state (A = Fourier conjugate to y)

a2

as

o)

Can extract V@ (y) from e~ part of FB(Z)(A).

kQ—A ki + A

Plus components fixed:
k:_ = Zl'k+,ZZl' =1

Must infegrate over
transverse
components k4, k,
and minus
components ki, k;,A”
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GRAPHS TO COMPUTE
Graphs to compute (in thf'conie gauge):ﬁ |

(e) T2B (f) (2) (e

(h)

) (fl] (;)
Y Y/\T/ \F/Y +virtuals
(il} U‘)

(n) Wada (0) Wiia

Four topologies. Calculation done in both light-cone and Feynman gauge.



METHOD: |l

Compu‘l'e grqph [Kuipers, Ueda, Vermaseren,

Vollinga, Comput. Phys.

expreSSiOI‘lS Eﬁ%@g&%ﬁé(ﬁ%gﬁfs&l467] [01(1.1.0.0)] ‘W0 00007 [L(110.0)]
(FORM, FeynCalc). Commmun. 207 [2016) 435444 au((éf,’jﬁxo) OmO00 00 If((_):ljljo)
Infegrate over %”01 |leemooof [n(111.0)

: CRCELDL 10 4 0 MO 0| [1(1,0,1.1)
mMiNus components @ ceoomm| |L(LLY)
using contours. onciin| (oo e emm (52111

Construct differential
equations in z; and solve
(Fuchsia)

[Gituliar, Magerya, Comput. Phys. Results for
Commun. 219 (2017) 329-338]

Uy +A)2  (ky— D)2 (g + ky)? (k)?  (kp)?  (ky + ky)? bare
Dl = Z + Z + Z DZ = Z + Z + Z
1 2 3 1 2 3 I
Di=(ki+A?  Di=ki Di=kl  Di=(ki+k)’ graphs!

d'2kd? ks Is(ay, as, a3, a4, as) f
o 2(a1, az, a3, aq,05) =
|| Py 2 [Ti=

flfi72k1(i1i72k2

I'[—e]
m = * 11(0,1,1,0) — g3-2€z,1-€ € -
3 Di_f Hé=4,,.5 D;'J 1( 3 ’ ) [ Z3 (2122) 51n[27T6]F[1 — 3E] /

Ii(a1, a2, a3,a4) =

A(1,1,0,0), 14(0,1,1,0), 11(1,1,1,0), 13(0,1,1,0,1), I5(1,1,1,1,0) CompUTOTIOﬂ Of 23 - O ZZ
L(1,0,1,1),1,(1,1,1,1), 1(2,1,1,1) TSR .. .
. . limit of master integrals
Integration-by-parts reduction to Usina method of BCs
master integrals (LiteRed) ng
regions (boundary
[Lee, J. Phys. Conf. T4
Ser. 523 (2014)] conditions) A

DEs



CROSS CHECKS

Full computation of bare graphs done using light-cone and covariant
Feynman gauge v

Master integrals satisfy differential equation in x, v

Master integrals all checked numerically at 10 random points using

Fl ESTA v Smirnov, Smirnov, Tentyukov, Comput. Phys. Commun. 182, 790 (2011)
Individual graphs have poles in e up to e73. The €3 pole cancels after
summing over graphs, e % pole is as predicted by renormalisation
group equation v’

Splitting kernels satisfy constraints related to number and momentum
sum rules: JG, stirling, JHEP 1003 (2010) 005,

Blok, Dokshitzer, Frankfurt, Strikman, Eur.Phys.J. C74 (2014) 2926,
Ceccopieri, Phys.Lett. B734 (2014) 79-85,
Diehl, PI&BI, Schafer, Eur.Phys.J. C79 (2019) no.3, 253

1*39]_
diE’Q [PG'L%GO (mlﬂftpal%ao (:Ula :BQ)] - (5a1(j - 5a1q - (Saoq + 5&0(]) ‘Palao (35‘1) ,
7
’ T Closely linked to V kernels
Z / dzs T2 PalGQ’QO(xl’ .7:2) - (1 - 1171) Paag (331) v

as 0



NLO: SOME NUMERICS

y = 0.022 fm, u = by/y = 10 GeV, splitting contribution only

LO V, LO PDFs
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RNLO/LO-1

02 __. R@/®

[Full NLO - LO]/LO

0.00001 0.0001 0.001 0.01 0.1
X1 = Xy

0.2 0.3 0.4

Large impact of NLO corrections, especially af low x; and x; + x, = 1.
Much of this comes from switching LO PDF - NLO PDF, but effect of a?

term in V ~5-10% of over wide kinematic range.
Effect of g—gg splitting is fairly small.



COLOUR INTERFERENCE

Previous picture is not the full story...can also have interference
conftributions to DPS.

Example: colour interference

Mekhfi and Artru, Phys.Rev. D37 (1988) 2618-2622
Diehl, Ostermeier and Schafer (JHEP 1203 (2012) 089)
Manohar and Waalewijn, Phys.Rev. D85 (2012) 114009

Associated with modifications to DPS cross section
due to colour correlations between partons

Can compute perturbative part of these colour correlations as before



RAPIDITY DIVERGENCES

A Collinear,

Subtlety here: naive v
computation of DPDs for ‘
colour interference yields
rapidity divergences!

. Rapidity divergences
Vo Soft

~
~<_

IR dlvergeﬂces! k
3

Rapidity divergences can’t be regulated via dim reg. Need
additional regulator!



SOFT INTERACTIONS & COLOUR INTERFERENCE

Sensitivity of this contribution to soft v
interactions, linked to shift of colour /
between amplitude & conjugate: j

Initial factorisation formula I
needs soft function

Y, Y, Yz
Soft function can be K ){ i i
“divided up” between PP - :
DPDs at central rapidity ! - }

[ —— F($p)
Vladimirov, JHEP 1804 (2018) 045 ! ' ' [ }

. . Zp — 2(p+)26—2YC
Buffing, Diehl, Kasemets, JHEP 1801 (2018) 044 7, = 2(5)2e?Ye



Real diagrams with rapidity divergences:

1 . .
\4,/ kT + 00 from Wilson line

See rapidity divergences
as z; — 0 (but k5 finite)

N/

Any partons

We use two different regulators:

N 1 Echevarria, Scimemi, Vliadimirov, Phys. Rev.
k¥+io  kI+ist D 93 (2016) 054004, JHEP 09 (2016) 004

(1) 6 regulator:

1
. P 4
k3-n+i0 k3-v+i0

(2) Collins regulator. Tilt Wilson line off the light-cone:

RAPIDITY REGULATORS

V2 <0

Collins, Foundations of perturbative QCD. Cambridge University Press, 2013.



15

5 REGULATOR

Procedure with § regulator:

L el 7 im 2 = L L5 og p — log(z2,)]
k;- + l6+ / k+ Z?% +Z1Z2/p p—>0023 +Z]_Zz/p [Z3]+ 2

Adding conjugate graph p = kiki/(54)?

IBPs, differential Use elementary methods
equations, method
of region
e 1 1 1 e Soft divergence,
Lo(z3)z5" = 257" = =2 6(z) + s 6(23)25"~ = 0 regulated by dim reg

d regulator easy to use here since it doesn’t interfere with transverse
momentum integrations. In fact one can just naively do IBP, DE method
(ignoring rapidity regulator), perform transverse momentum integrations,
then identify places where one has a 1/z; factor (with no z5€), then insert
regulator and perform distributional expansion.



COLLINS REGULATOR

Procedure with Collins regulator:

2 Z3

lim +cc= PV — Lt ta,— /]t
e-0v"ky +vtks +ic ¢ vkt z2 —Kk3z.7,/p — p=kik;v /|v7]|

/

Note transverse momentum dependence. Could consider following IBP,
DE,.. procedure including also this denominator — however this is very
messy (a lot of additional master integrals, with more severe rapidity
divergences than final result)




COLLINS REGULATOR

Benefit from simplifications when p —

m — ¥ + = \V4 Z3
l. " . I P
gl—>()v k3 I v+lC§ Hie “° VK Z% k%zlzz/P
;l)—>. 00 75 - k - I '6(2 ) log —p —10 ( ) 1 k%
1m —
?% §Z1Zz/p [Z3]+ 2 3 A2 g\Z1Z,) — 108 2

One extra term here, which can be evaluated with elementary
methods after using: log(k%/A%) = [% (k%/Az)a] i
a=



Construction of subtracted two-loop kernel:

THE SUBTRACTED KERNEL

1
MRy ¢) = lim {RlRZV@) ()25, ()RleVu)}

B,us B,us

Dependence on rapidity regulator cancels between two terms.

Final result the same whether using Collins or § regulator.
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Note: strong colour correlations generated by splitting!
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NUMERICS: WITH COLOUR INTERFERENCE

y = 0.022 fm, u = \/x;x,{, = 10 GeV, splitting contribution only

Ty = I

5000F-

1000F
500p

100

Colour interference distributions ~ colour singlet distribution
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NUMERICS: WITH COLOUR INTERFERENCE

Ratio NLO/LO:
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SUMMARY

« NLO matching of DPDs onto PDFs computed for all colour
configurations of observed partons v

2,,2 2

X1 X y2u u
V _l_l 'l ’1

1 % RiR;

R4R
! ZF(xl;xz;J’i ‘Ll) = n__yz Zz

)f(z, 0,

« Rapidity divergences at intermediate stages of the calculation.
Used two regulators - § regulator and Collins regulator.
« § regulator is straightforward to use (no p; dependence in
regulator)
« Collins regulator calculation is only slightly more involved, after
p — oo [imit,

« NLO corrections to splitting are of 0(10%) when u = /x;x,{, = p,,.
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STRUCTURE OF RESULTS

General structure of results.

Colour non-singlet kernels:

2 2,0 21
Rle Va(la)z,ao (Z/ u/ yl ’/ll C) = Rle Vﬁ[lﬂz],llo (Z/ u) + L R1R2 Va[lap_],ao (Z/ Ll)

i (Llog”f ~ 2 “MS) 5 Vi (2, 0)

2.2
where L = log % and by = 2e¢~7 and
0

VR (7, ) = VL (z,u) + 601 — 2) VP w),

regular

1
1—z]+

VR (z,u) = VI (z,u) + v (1) + 601 = 2) v (u)

regular

[Slide from Peter PIOBI, talk at QCD evolution 2021]
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COLOUR CORRELATIONS

Colour correlations are strongly suppressed at high scales

[Technically: Sudakov suppression due to movement of colour
between amplitude & conjugate by distance y.]

------ U, U, _
— Uyonly | First estimate: negligible at 100
E GeV, but could be relevant at
; moderate scales ~10 GeV.
‘ 150 ST (Enhanced by splitting?)

0

Manohar, Waalewijn, Phys.Rev. D85 (2012) 114009



SMALL x4, 2, LIMIT ~

Interesting processes/regions for studying DPS typically involve small x
values (higher density of partons—greater chance of DPS, plus smaller
Q such that power suppression is reduced).

- Interesting to study matching coefficients and splitting functions in

limits of small x;. For example, small xy, x, limit of Pax (xy, x,):

Cj<(1—6u+6u2)+<8—%—4u+4u2>log[1—u]+{u<—>1—u})

(1)
ng,g(xlr xZ) — xz
X = X1 + X9

Same 1/x? behaviour for other splitting functions, and
/ P 9 u=xy/(x; + x5)

IV kernels

VW (xy,x,)~1/x% =2 F(xq1, x5, ¥)~a? 2log™* 1 (x)/x  (for NLO splitting)
l.e. NLL in small x logarithms!

[V (xp, x,)~1og(x)/x2 = F(xq1, x5, y)~al 2log™*2(x) /x, i.e. LL] =

Similar cf usual splitting functions, where P (x)~1/x and notlog(x)/x .

N
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REGIONS FOR x5 — 0

The leading behaviour of the integrals for x3 — 0 is computed using the method of
regions [86]. Let us introduce the scaling parameter A < 1, and say that 3 ~ A. Then for
all master integrals the following region gives a leading contribution in A:

Ri: a3~N, axixo~1, kLES (ki+A)2~A% (ki +k2)?~AA%. (106)
For I1(1,0,1,1) only, we identify a further leading region, namely
Ro: a3~N, ap,ma~1, k3 k3 (ki+A)% (k4 k)2 ~ A2, (107)

For each region, we use the appropriate scaling and drop terms in the denominator that are
subleading in A (so that the result is homogeneous in ). Following this approximation, every
master integral has a sufficiently simple form to be solved to all orders in € by the method of
Feynman parameters. Then one adds together the contributions from the leading regions to
obtain the leading behaviour in the limit x5 — 0. For any master integral, the region Rq gives
a non-integer power of zg for € # 0, namely :z:il))_e. This is because all denominators behave like
A, whilst the phase space contributes A'—¢. For I(1,0,1,1) the region Rs gives an integer
power of x3., namely :ré hecause Dy behaves like A™!, whilst all other denominators and the
phase space behave like \°.
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DOUBLE COUNTING PROBLEMS

Proton 1

Perturbative splitting can occur in
both protons (1v1 graph) — gives
power divergent conftribution to DPS
cross section! 9

-y

?
y4 ' Proton 2



Perturbative splitting can occurin Profon |
both protons (1v1 graph) — gives
power divergent conftribution to DPS
cross section! 9
oy _,
yt Proton 2
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DOUBLE COUNTING PROBLEMS

This is related to the fact that this graph can also be regarded as an SPS loop

correction /
/

Short-distance part —
\Pcr’r absorbedinfo _~
A2 parton densities 1
> QQ

Q* Power
divergencel!

Diehl, Ostermeier
and Schafer (JHEP
1203 (2012)).
Manohar, Waalewijn
Phys.Lett. 713 (2012)
196, JG and Stirling,
JHEP 1106 048
(2011), Blok et al.
Eur.Phys.J. C72
(2012) 1963

Ryskin, Snigirev,
Phys.Rev.D83:114047
2011, Cacciari,
Salam, Sapeta JHEP
1004 (2010) 065



29

DOUBLE COUNTING PROBLEMS

Also have graphs with Proton 1
perturbative 1-2 splitfing in one
proton only (2v1 graph).

This has a log

divergence: / d*y /v Fron-split (T1, 223 )
Proton 2

Related to the fact that this graph can also be thought of as an NLO

_

correction to collision of one parton with two

Blok et al., Eur.
Phys. J. C72 (2012)
1963

Ryskin, Snigirev,
Phys. Rev.
D83:114047,2011,
JG, JHEP 1301
(2013) 042

Logarithmic
divergence
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DOUBLE COUNTING PROBLEMS

Desired features of a solution fo these issues:
« DPS contribution finite + no double counting between DPS and SPS.

« Retain concept of the DPD for an individual hadron, with rigorous
definition beyond perturbation theory.

« Should resum DGLAP logarithms in all types of diagram (1v1, 2v1,
2v2) where appropriate.

- All-order formulation, with corrections that are practicably
computable.

« Re-use as many SPS results as possible.

Solution with these features achieved in ‘DGS framework’ Diehl, JG,
Schonwald JHEP 1706 (2017) 083.
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DPS WITHOUT DOUBLE COUNTING

| focus on SPS & 1v1 DPS overlap. Removal of overlap between 2v1 DPS
& 3 particle collision is similar.

Step 1:insert cut-off function into DPS cross section formula
‘ i I i k
{\ L 22:2:3:2:2:
| R +
)1 g
\ )
Y

A,B ! ! /
O-D(PS) = j dxldx idzy CI)Z(yV) Fik(xli x21 )’; :uAl .uB) E]l(x 11x 2 )’; .uA; ,uB)

X O-ij O-kl

Choose v~Q in practice.

Removed divergence. Double counting up to scale v.
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DPS WITHOUT DOUBLE COUNTING

Step 2: For total cross section for production of AB, include a
subtraction term to remove double counting.

Otot = Opps T Osps — Osyp

o.up- DPS cross section with DPDs replaced by fixed order splitting
expression —i.e. combining the approximations used to compute
double splitting piece in two approaches.

1 fi(xy + xp, 14?) ag(u?) ( X4 )

P ..
Ty?  x+x, 2 U\ x4 x,

Fij(xlleJ Y, #2) -

Similar philosophy used in subtraction terms in QCD factorisation, SCET
zero bin subtractions, combination of NLO and parton shower...
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HOW THE SUBTRACTION WORKS

Otot = Opps T Osps — Osyp

For small y (of order 1/Q) the dominant contribution to apps cOMes
from the (fixed order) perturbative expression = apps = 0y
& Otor = Osps v

Dependence on v cancels order-by-order between apps & 041

For large y (much larger than 1/Q) the
dominant conftribution to agpg is the
region of the 'double splitting' loop
where DPS approximations are valid
= Osps = Osyup
& Otot = Opps v
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CUTOFF DEPENDENCE

Important: apps is NOt really ‘meaningful’ on its own. Can only
MEQASUIe 0vor = Opps + Osps — Osub

N Generically o« v?
—é EVOLUTION \.é

IN CERTAIN CASES:

Bulk of apps shifts to large y where DPS approximations are valid. Small y
is less important - reduced v dependence, g, and two-loop agps l€SS
important.



