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DOUBLE PARTON SCATTERING

Double parton scattering 

(DPS) is where we have two 

separate hard scatters in one 

collision
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B

A
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SPS DPS

𝜎𝑆 = 𝑓 𝑥1 ⊗ ො𝜎𝐴𝐵 ⊗𝑓 𝑥1
′

𝜎𝐷 = න𝑑2𝒚 𝐹 𝑥1, 𝑥2 , 𝒚 ⊗ ො𝜎𝐴 ො𝜎𝐵⊗𝐹 𝑥1
′ , 𝑥2

′ , 𝒚

𝒚

Single parton 

distributions 

(PDFs)

Double parton densities (DPDs)
Paver, Treleani, Nuovo Cim. A70 (1982) 215

Mekhfi, Phys.Rev. D32 (1985) 2371

Diehl, Ostermeier, Schafer, JHEP 1203 (2012) 089
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WHY STUDY DPS?

DPS can give a significant contribution 

to processes where SPS is suppressed 

by small/multiple coupling constants:

…or in certain phase space 

regions
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DPDS AT SMALL Y

4

For large 𝑦~𝑅𝑝, need to use models, or compute on lattice.

Theory predictions require DPDs: 𝐹 𝑥1, 𝑥2 , 𝒚

But for 𝑦 ≪ 𝑅𝑝, can compute DPDs perturbatively!  

Two partons entering DPS process

Proton

LO computation of 𝑉 performed in Diehl, Ostermeier, 

Schafer JHEP 03 (2012) 089

Here: NLO computation of 𝑉.

See e.g. Bali et al., JHEP 09 (2021) 106
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CALCULATION

Strategy: Compute (bare) DPD in momentum space 𝐹𝐵
(2)

Δ for a partonic

initial state (Δ = Fourier conjugate to 𝑦) 

Can extract 𝑉(2) 𝑦 from 𝜖−1 part of 𝐹𝐵
(2)

Δ .

𝑘 = 𝑘+, 0,0

Plus components fixed:

𝑘𝑖
+ = 𝑧𝑖𝑘

+,σ𝑧𝑖 = 1

Must integrate over 

transverse 

components 𝒌1, 𝒌2
and minus 

components 𝑘1
−, 𝑘2

−, Δ−

Incoming parton

Parton pair in DPD



GRAPHS TO COMPUTE

+virtuals

Four topologies. Calculation done in both light-cone and Feynman gauge. 

Graphs to compute (in light-cone gauge):
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Compute graph 

expressions
(FORM, FeynCalc).

Integrate over 

minus components 

using contours.

Integration-by-parts reduction to 
master integrals (LiteRed)

Construct differential 

equations in 𝑧1 and solve 
(Fuchsia)

Results for 

bare 

graphs!

Computation of 𝑧3 → 0
limit of master integrals 

using method of 

regions (boundary 

conditions)[Lee, J. Phys. Conf.

Ser. 523 (2014)]

[Gituliar, Magerya, Comput. Phys. 

Commun. 219 (2017) 329-338]

[Kuipers, Ueda, Vermaseren, 
Vollinga, Comput. Phys. 
Commun. 184 (2013) 1453-1467]
[Shtabovenko, Mertig, 
Orellana, Comput. Phys. 
Commun. 207 (2016) 432-444]

METHOD: II

𝑧1

𝑧2

DEs

BCs

𝐷1 =
𝒌1 + 𝚫 2

𝑧1
+

𝒌2 − 𝚫 2

𝑧2
+

𝒌1 + 𝒌2
2

𝑧3
𝐷2 =

𝒌1
2

𝑧1
+

𝒌2
2

𝑧2
+

𝒌1 + 𝒌2
2

𝑧3

𝜋3−2𝜖𝑧3
1−𝜖 𝑧1𝑧2

𝜖
Γ −𝜖

sin 2𝜋𝜖 Γ 1 − 3𝜖



• Full computation of bare graphs done using light-cone and covariant 
Feynman gauge 

• Master integrals satisfy differential equation in 𝒙𝟐 
• Master integrals all checked numerically at 10 random points using 

FIESTA 

• Individual graphs have poles in 𝜖 up to 𝜖−3. The 𝝐−𝟑 pole cancels after 

summing over graphs, 𝝐−𝟐 pole is as predicted by renormalisation 
group equation 

• Splitting kernels satisfy constraints related to number and momentum 

sum rules:



CROSS CHECKS
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JG, Stirling, JHEP 1003 (2010) 005, 
Blok, Dokshitzer, Frankfurt, Strikman, Eur.Phys.J. C74 (2014) 2926,
Ceccopieri, Phys.Lett. B734 (2014) 79-85, 
Diehl, Plößl, Schäfer, Eur.Phys.J. C79 (2019) no.3, 253

Closely linked to 𝑉 kernels

Smirnov, Smirnov, Tentyukov, Comput. Phys. Commun. 182, 790 (2011)



NLO: SOME NUMERICS

𝑦 = 0.022 fm, 𝜇 = Τ𝑏0 𝑦 = 10 GeV, splitting contribution only

LO V, LO PDFs

LO V, NLO PDFs

NLO V, NLO PDFs
𝑥1 = 𝑥2 𝑥1 = 𝑥2
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NLO: SOME NUMERICS

[Full NLO – LO]/LO

[NLO V, NLO PDFs]/[LO V, NLO PDFs]

[NLO 𝑞 → 𝑔𝑔]/[LO V, NLO PDFs]

𝑥1 = 𝑥2

10

• Large impact of NLO corrections, especially at low 𝑥𝑖 and 𝑥1 + 𝑥2 = 1.

• Much of this comes from switching LO PDF  NLO PDF, but effect of 𝜶𝒔
𝟐

term in V ~5-10% of over wide kinematic range.
• Effect of 𝑞→𝑔𝑔 splitting is fairly small.



COLOUR INTERFERENCE
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Previous picture is not the full story…can also have interference 

contributions to DPS. 

𝑦

Example: colour interference

Mekhfi and Artru, Phys.Rev. D37 (1988) 2618–2622

Diehl, Ostermeier and Schafer (JHEP 1203 (2012) 089)

Manohar and Waalewijn, Phys.Rev. D85 (2012) 114009

Associated with modifications to DPS cross section 

due to colour correlations between partons

Can compute perturbative part of these colour correlations as before



RAPIDITY DIVERGENCES
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Subtlety here: naïve 

computation of DPDs for 

colour interference yields 

rapidity divergences!

Collinear1

Collinear2

Soft

Rapidity divergences

IR divergences

Rapidity divergences can’t be regulated via dim reg. Need 

additional regulator!

𝑘3
+

𝑘3
−



SOFT INTERACTIONS & COLOUR INTERFERENCE 

13

Sensitivity of this contribution to soft 

interactions, linked to shift of colour 

between amplitude & conjugate:

𝒚

𝑌𝑅𝑌𝐿

−

+

𝐹𝑢𝑠 𝑌𝐿

𝑆 𝑌𝑅 − 𝑌𝐿

𝐹𝑢𝑠 𝑌𝑅

Initial factorisation formula 

needs soft function

Soft function can be 

“divided up” between 

DPDs at central rapidity

𝑌𝑅𝑌𝐿

−

+

𝑌𝐶

−

𝐹 𝜁𝑝

𝐹 ҧ𝜁𝑝

𝜁𝑝 = 2 𝑝+ 2𝑒−2𝑌𝐶

ҧ𝜁𝑝 = 2 ҧ𝑝− 2𝑒2𝑌𝐶

Vladimirov, JHEP 1804 (2018) 045

Buffing, Diehl, Kasemets, JHEP 1801 (2018) 044 



Real diagrams with rapidity divergences:

1

𝑘3
+ + 𝑖0

Any partons

from Wilson line

See rapidity divergences 

as 𝑧3 → 0 (but 𝒌3 finite) 

We use two different regulators:

(1) 𝜹 regulator:
1

𝑘3
++𝑖0

→
1

𝑘3
++𝑖𝛿+

(2) Collins regulator. Tilt Wilson line off the light-cone:
1

𝑘3⋅𝑛+𝑖0
→

1

𝑘3⋅𝑣+𝑖0
, 𝑣2 < 0

RAPIDITY REGULATORS
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Collins, Foundations of perturbative QCD. Cambridge University Press, 2013.

Echevarria, Scimemi, Vladimirov, Phys. Rev. 
D 93 (2016) 054004, JHEP 09 (2016) 004



Procedure with 𝛿 regulator:

1

𝑘3
+ + 𝑖𝛿+

+ c. c. =
2

𝑘+
𝑧3

𝑧3
2 + 𝑧1𝑧2/𝜌

Adding conjugate graph

lim
𝜌→∞

𝑧3

𝑧3
2 + 𝑧1𝑧2/𝜌

=
1

𝑧3 +
+
1

2
𝛿 𝑧3 log 𝜌 − log 𝑧1𝑧2

IBPs, differential 

equations, method 

of region

Use elementary methods

ℒ0 𝑧3 𝑧3
−𝜖 → 𝑧3

−1−𝜖 → −
1

𝜖
𝛿 𝑧3 +

1

𝑧3 +
+⋯, 𝛿 𝑧3 𝑧3

−𝜖 → 0
Soft divergence, 

regulated by dim reg

𝛿 regulator easy to use here since it doesn’t interfere with transverse 

momentum integrations. In fact one can just naively do IBP, DE method 

(ignoring rapidity regulator), perform transverse momentum integrations, 
then identify places where one has a 1/𝑧3 factor (with no 𝑧3

−𝜖), then insert 

regulator and perform distributional expansion.

𝛿 REGULATOR
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𝜌 = 𝑘1
+𝑘2

+/ 𝛿+ 2



Procedure with Collins regulator:

lim
𝜀→0

1

𝑣−𝑘3
+ + 𝑣+𝑘3

− + 𝑖𝜀
+ c. c. =

2

𝑣−𝑘+
PV

𝑧3

𝑧3
2 − 𝒌3

2𝑧1𝑧2/𝜌

Note transverse momentum dependence. Could consider following IBP, 

DE,.. procedure including also this denominator – however this is very 

messy (a lot of additional master integrals, with more severe rapidity 

divergences than final result)

COLLINS REGULATOR
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𝜌 = 𝑘1
+𝑘2

+𝑣−/ 𝑣+



lim
𝜀→0

1

𝑣−𝑘3
+ + 𝑣+𝑘3

− + 𝑖𝜀
+ c. c. =

2

𝑣−𝑘+
PV

𝑧3

𝑧3
2 − 𝒌3

2𝑧1𝑧2/𝜌

lim
𝜌→∞

PV
𝑧3

𝑧3
2 − 𝒌3

2𝑧1𝑧2/𝜌
=

1

𝑧3 +
+
1

2
𝛿 𝑧3 log

𝜌

∆2
− log 𝑧1𝑧2 − log

𝒌3
2

∆2

COLLINS REGULATOR
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Benefit from simplifications when 𝝆 → ∞:

One extra term here, which can be evaluated with elementary 

methods after using: log 𝒌3
2/∆2 =

𝜕

𝜕𝛼
𝒌3
2/∆2

𝛼

𝛼=0



𝑅1𝑅2𝑉𝐵
2
𝜁 = lim

𝜌→∞

𝑅1𝑅2𝑉𝐵,𝑢𝑠
2

𝜌 −
1

2
𝑅1𝑆𝐵

1
𝜌, 𝜁

𝑅1𝑅2𝑉𝐵,𝑢𝑠
1

−

𝑌𝐿 𝑌𝐶

Construction of subtracted two-loop kernel:

Dependence on rapidity regulator cancels between two terms. 

Final result the same whether using Collins or 𝛿 regulator. 

THE SUBTRACTED KERNEL
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𝑦 = 0.022 fm, 𝜇 = 𝑥1𝑥2𝜁𝑝 = 10 GeV, splitting contribution only

Note: strong colour correlations generated by splitting! 

Colour interference distributions ~ colour singlet distribution

LO+NLO

gg:

NUMERICS: WITH COLOUR INTERFERENCE

19



Ratio NLO/LO:

𝓞 𝟏𝟎% NLO corrections

Varied structure as a 

function of 𝑥1, 𝑥2

NUMERICS: WITH COLOUR INTERFERENCE

20



qg:

𝑥2 = 0.2

Note at small 𝑥1, NLO 𝑔 → 𝑞𝑔 channel overtakes LO

NUMERICS: WITH COLOUR INTERFERENCE

21
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SUMMARY

• NLO matching of DPDs onto PDFs computed for all colour 
configurations of observed partons 

𝑅1𝑅2𝐹 𝑥1, 𝑥2, 𝑦; 𝜇 =
1

𝜋𝑦2
න
𝑑𝑧

𝑧2
𝑅1𝑅2𝑉

𝑥1
𝑧
,
𝑥2
𝑧
, 𝛼𝑠 𝜇 , log

𝑦2𝜇2

𝑏0
2 , log

𝜇2

𝑥1𝑥2𝜁𝑝
𝑓 𝑧, 𝜇

• Rapidity divergences at intermediate stages of the calculation. 
Used two regulators - 𝛿 regulator and Collins regulator. 

• 𝛿 regulator is straightforward to use (no 𝒑𝑇 dependence in 

regulator)

• Collins regulator calculation is only slightly more involved, after 

𝜌 → ∞ limit.

• NLO corrections to splitting are of 𝒪 10% when 𝜇 = 𝑥1𝑥2𝜁𝑝 = 𝜇𝑦. 
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[Slide from Peter Plößl, talk at QCD evolution 2021]

STRUCTURE OF RESULTS



COLOUR CORRELATIONS

Colour correlations are strongly suppressed at high scales

[Technically: Sudakov suppression due to movement of colour 

between amplitude & conjugate by distance 𝒚.]

First estimate: negligible at 100
GeV, but could be relevant at 

moderate scales ~10 GeV. 

Manohar, Waalewijn, Phys.Rev. D85 (2012) 114009

24

(Enhanced by splitting?)



SMALL 𝑥1, 𝑥2 LIMIT 25

𝑃𝑔𝑔,𝑔
(1)

𝑥1, 𝑥2 ⟶
𝐶𝐴
2 1 − 6𝑢 + 6𝑢2 + 8 −

2
𝑢
− 4𝑢 + 4𝑢2 ሿlog[1 − 𝑢 + 𝑢 ⟷ 1− 𝑢

𝑥2

𝑥 ≡ 𝑥1 + 𝑥2
𝑢 ≡ 𝑥1/ 𝑥1 + 𝑥2

Interesting processes/regions for studying DPS typically involve small 𝑥
values (higher density of partons→greater chance of DPS, plus smaller 

𝑄 such that power suppression is reduced).

 Interesting to study matching coefficients and splitting functions in 

limits of small 𝑥𝑖. For example, small 𝑥1, 𝑥2 limit of 𝑃𝑔𝑔,𝑔
(1)

𝑥1, 𝑥2 :

𝑉 1 𝑥1, 𝑥2 ~ Τ1 𝑥2 ⇒ 𝐹 𝑥1, 𝑥2, 𝒚 ~𝛼𝑠
𝑛+2log𝑛+1 𝑥 /𝑥 (for NLO splitting)

i.e. NLL in small 𝑥 logarithms! 

[𝑉 1 𝑥1, 𝑥2 ~ Τlog 𝑥 𝑥2 ⇒ 𝐹 𝑥1, 𝑥2, 𝒚 ~𝛼𝑠
𝑛+2log𝑛+2 𝑥 /𝑥, i.e. LL]

Similar cf usual splitting functions, where 𝑃 1 𝑥 ~1/𝑥 and not log 𝑥 /𝑥 .

Same Τ1 𝑥2 behaviour for other splitting functions, and 

𝑉 kernels
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REGIONS FOR 𝑥3 → 0



Perturbative splitting can occur in 

both protons (1v1 graph) – gives 

power divergent contribution to DPS 

cross section!

DOUBLE COUNTING PROBLEMS

27

Proton 1

Proton 2



Perturbative splitting can occur in 

both protons (1v1 graph) – gives 

power divergent contribution to DPS 

cross section!

This is related to the fact that this graph can also be regarded as an SPS loop 

correction

Power 
divergence!

DOUBLE COUNTING PROBLEMS

28

Diehl, Ostermeier

and Schafer (JHEP 

1203 (2012)), 

Manohar, Waalewijn

Phys.Lett. 713 (2012) 

196, JG and Stirling, 

JHEP 1106 048 

(2011), Blok et al. 

Eur.Phys.J. C72 

(2012) 1963

Ryskin, Snigirev, 

Phys.Rev.D83:114047

,2011, Cacciari, 

Salam, Sapeta JHEP 

1004 (2010) 065

Short-distance part

Part absorbed into 

parton densities

Proton 1

Proton 2



Also have graphs with 

perturbative 1→2 splitting in one 

proton only (2v1 graph).

This has a log 

divergence:

Logarithmic 

divergence

Related to the fact that this graph can also be thought of as an NLO 

correction to collision of one parton with two

DOUBLE COUNTING PROBLEMS

29

Blok et al., Eur. 

Phys. J. C72 (2012) 

1963

Ryskin, Snigirev, 

Phys. Rev. 

D83:114047,2011, 

JG, JHEP 1301 

(2013) 042

Proton 1

Proton 2



DOUBLE COUNTING PROBLEMS

Desired features of a solution to these issues:

• DPS contribution finite + no double counting between DPS and SPS.

• Retain concept of the DPD for an individual hadron, with rigorous 

definition beyond perturbation theory.

• Should resum DGLAP logarithms in all types of diagram (1v1, 2v1, 

2v2) where appropriate.

• All-order formulation, with corrections that are practicably 

computable. 

• Re-use as many SPS results as possible. 

Solution with these features achieved in ‘DGS framework’ Diehl, JG, 

Schönwald JHEP 1706 (2017) 083.
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DPS WITHOUT DOUBLE COUNTING
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𝜎𝐷𝑃𝑆
(𝐴,𝐵)

= න𝑑𝑥𝑖𝑑𝑥′𝑖𝑑
2𝒚 Φ2 𝑦𝜈 𝐹𝑖𝑘 𝑥1, 𝑥2, 𝒚, 𝜇𝐴, 𝜇𝐵 𝐹𝑗𝑙 𝑥′1, 𝑥′2, 𝒚, 𝜇𝐴, 𝜇𝐵

× ො𝜎𝑖𝑗
𝐴 ො𝜎𝑘𝑙

𝐵

Step 1: insert cut-off function into DPS cross section formula

𝜈−1
𝑦

I focus on SPS & 1v1 DPS overlap. Removal of overlap between 2v1 DPS 

& 3 particle collision is similar.  

Removed divergence. Double counting up to scale 𝜈.

Choose 𝜈~𝑄 in practice. 

𝑖 𝑘 𝑖 𝑘



DPS WITHOUT DOUBLE COUNTING

𝜎𝑡𝑜𝑡 = 𝜎𝐷𝑃𝑆 + 𝜎𝑆𝑃𝑆 − 𝜎𝑠𝑢𝑏

Step 2: For total cross section for production of AB, include a 

subtraction term to remove double counting. 

32

𝜎𝑠𝑢𝑏: DPS cross section with DPDs replaced by fixed order splitting 

expression – i.e. combining the approximations used to compute 

double splitting piece in two approaches. 

𝐹𝑖𝑗 𝑥1, 𝑥2, 𝑦, 𝜇
2 →

1

𝜋𝑦2
𝑓𝑘 𝑥1 + 𝑥2, 𝜇

2

𝑥1 + 𝑥2

𝛼𝑠 𝜇2

2𝜋
𝑃𝑘→𝑖𝑗

𝑥1
𝑥1 + 𝑥2

Similar philosophy used in subtraction terms in QCD factorisation, SCET 

zero bin subtractions, combination of NLO and parton shower… 



HOW THE SUBTRACTION WORKS

For small 𝒚 (of order Τ1 𝑄) the dominant contribution to 𝜎𝐷𝑃𝑆 comes 

from the (fixed order) perturbative expression⇒ 𝜎𝐷𝑃𝑆 ≈ 𝜎𝑠𝑢𝑏
& 𝜎𝑡𝑜𝑡 ≈ 𝜎𝑆𝑃𝑆 

𝜎𝑡𝑜𝑡 = 𝜎𝐷𝑃𝑆 + 𝜎𝑆𝑃𝑆 − 𝜎𝑠𝑢𝑏

Dependence on 𝜈 cancels order-by-order between 𝜎𝐷𝑃𝑆 & 𝜎𝑠𝑢𝑏

For large 𝒚 (much larger than Τ1 𝑄) the 

dominant contribution to 𝜎𝑆𝑃𝑆 is the 

region of the 'double splitting' loop 

where DPS approximations are valid

⇒ 𝜎𝑆𝑃𝑆 ≈ 𝜎𝑠𝑢𝑏
& 𝜎𝑡𝑜𝑡 ≈ 𝜎𝐷𝑃𝑆 

33



CUTOFF DEPENDENCE

34

Important: 𝜎𝐷𝑃𝑆 is not really ‘meaningful’ on its own. Can only 

measure 𝜎𝑡𝑜𝑡 = 𝜎𝐷𝑃𝑆 + 𝜎𝑆𝑃𝑆 − 𝜎𝑠𝑢𝑏

Generically ∝ 𝜈2

IN CERTAIN CASES:

𝜈−1
𝑦

𝜈−1
𝑦

EVOLUTION

Bulk of 𝜎𝐷𝑃𝑆 shifts to large 𝒚 where DPS approximations are valid. Small 𝒚
is less important  reduced 𝜈 dependence, 𝜎𝑠𝑢𝑏 and two-loop 𝜎𝑆𝑃𝑆 less 

important.


