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B physics in the precision era
B physics is a precision laboratory for tests of the Standard Model.

Fig. taken from 1609.02015
Decays of B hadrons provide insights into flavour-changing interactions

→ extraction of SM parameters
→ probe of new physics through small quantum fluctuations
→ observed anomalies in specific decay channels, e.g. B → πK, B → K∗ℓℓ, . . .
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Fig. taken from 1609.02015
Decays of B hadrons provide insights into flavour-changing interactions

→ extraction of SM parameters
→ probe of new physics through small quantum fluctuations
→ observed anomalies in specific decay channels, e.g. B → πK, B → K∗ℓℓ, . . .

Challenging QCD dynamics, in particular for charmless exclusive decays (at large recoil)

→ factorization of decay amplitudes in the heavy-quark limit mb ∼ Eπ,K → ∞ [BBNS ’99]

→ clear separation of perturbative and non-perturbative physics
→ open conceptual problem: endpoint-divergent convolution integrals can spoil factorization
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This work

. . . is not (yet) about phenomenologically relevant precision calculations. We rather aim at:

improving the theoretical methods used to describe hard-exclusive processes

consistent treatment of endpoint-singularities in SCET

understanding soft-collinear factorization at sub-leading power in Λhad/mb ≃ 0.2
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. . . is not (yet) about phenomenologically relevant precision calculations. We rather aim at:

improving the theoretical methods used to describe hard-exclusive processes

consistent treatment of endpoint-singularities in SCET

understanding soft-collinear factorization at sub-leading power in Λhad/mb ≃ 0.2

Active field of current research

→ heavy-to-light form factors [PB ’18] + [Bell,PB,Feldmann,Horstmann, to appear]

→ bottom induced h → γγ(gg) decay [Neubert et al. ’19-22]

→ off-diagonal gluon thrust [Beneke et al. ’22]

→ µ-e backscattering [Bell,PB,Feldmann ’22]

→ QED corrections in leptonic B decays [Feldmann et al. ’22, Cornella et al. ’23]

→ power-corrections in inclusive B̄ → Xsγ [Hurth, Szafron ’23]

Recent progress has been made using refactorization ideas [PB ’18] and additive rearrangements of the
endpoint contributions [Liu/Neubert ’19]. However, the problem is considerably more complicated in hadronic
hard-exclusive processes [PB ’18; Bell/PB/Feldmann ’22]. A systematic treatment requires novel theoretical tools!
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This work

. . . is not (yet) about phenomenologically relevant precision calculations. We rather aim at:

improving the theoretical methods used to describe hard-exclusive processes

consistent treatment of endpoint-singularities in SCET

understanding soft-collinear factorization at sub-leading power in Λhad/mb ≃ 0.2

Idea: resum logarithms in Bc → ηc form factor at large recoil for non-relativistic bound states

✓ quark mass mc ≫ ΛQCD provides physical IR cut-off

✓ relativistic dynamics at scales µ ≳ mc perturbative

✓ provides one of the simplest setups to study a sub-leading power hard-exclusive reaction
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Heavy-to-light form factors for NR bound states

Form factors parametrize hadronic matrix elements of weak currents, e.g.

⟨ηc(p)| c̄γµb |Bc(pB)⟩ = F+(q2)(pµB + pµ) + F−(q
2)qµ

At large recoil energies Eηc ∼ mBc → soft-collinear factorization (SCET) [Beneke/Feldmann ’00]

✓ works well for spin-symmetry violating terms

× fails for spin-symmetric (universal) contribution due to endpoint singularities (“soft-overlap”)

F (non-fac)
+ =

1

2Eηc

⟨ηc(p)| c̄
/̄n/n

4
b |Bc(pB)⟩ (p ≃ En with n2 = n̄2 = 0, n · n̄ = 2)
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2)qµ

At large recoil energies Eηc ∼ mBc → soft-collinear factorization (SCET) [Beneke/Feldmann ’00]

✓ works well for spin-symmetry violating terms

× fails for spin-symmetric (universal) contribution due to endpoint singularities (“soft-overlap”)

In the NR limit mb ≫ mc ≫ Λ the mesons are entirely dominated by 2-particle Fock states.

→ 2 → 2 scattering process of on-shell massive quarks with ext. current e.g. [Bell/Feldmann ’05+’08, Bell ’06]

→ radiative cor. induce double-logs ∼ αs ln
2(2γ) (v · v′ ≡ γ ≫ 1 is the large boost between the mesons)
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2)qµ

At large recoil energies Eηc ∼ mBc → soft-collinear factorization (SCET) [Beneke/Feldmann ’00]

✓ works well for spin-symmetry violating terms

× fails for spin-symmetric (universal) contribution due to endpoint singularities (“soft-overlap”)

In the NR limit mb ≫ mc ≫ Λ the mesons are entirely dominated by 2-particle Fock states.

→ 2 → 2 scattering process of on-shell massive quarks with ext. current e.g. [Bell/Feldmann ’05+’08, Bell ’06]

→ radiative cor. induce double-logs ∼ αs ln
2(2γ) (v · v′ ≡ γ ≫ 1 is the large boost between the mesons)

Goal of this work:

“diagrammatic resummation” of the leading double-logs in the “soft-overlap” → non-standard!
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Prelude I: h → γγ via b-quark loop

scale hierarchy MH ≫ mb

sub-leading power due to helicity suppression

The LO graph develops a double-log when the b-quark propagator between the two γ’s becomes soft:

→ soft quark effectively goes on-shell: 1/(k2 −m2
b) → −2πi δ(k2 −m2

b)

→ other quark propagators become eikonal (largely off-shell) ⇒
∫
d2k⊥ ∼ θ(k+k− −m2

b)

→ hard cut-offs through external photon momenta

iM(0) ∼
∫ mH

0

dk+

k+

∫ mH

0

dk−

k−
θ(k+k− −m2

b) =
L2

2
with L ≡ lnm2

b/m
2
H
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All-order result from soft-gluon exponentiation at hard H → (bb̄)∗ vertex: [Kotsky/Yakovlev ’98; Liu/Penin ’18],
SCET analysis in [Liu/Neubert/Mecaj/Wang 19-22]

iM(DL) ∼
∫ mH

0

dk+

k+

∫ mH

0

dk−

k−
θ(k+k− −m

2
b) exp

{
−

αsCF

2π
ln

k+

mH

ln
k−

mH

}

=
L2

2
2F2

(
1,1;

3

2
,2;−

αsCF

4π

L2

2

)
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Prelude II: muon-electron backscattering

exact backward scattering at high energies
s ∼ −t ≫ m2

µ ∼ m2
e ≫ u

leading-power process
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µ ∼ m2
e ≫ u

leading-power process

In the sum of all NLO graphs, double-logarithms from soft-photon configurations cancel

→ The NLO double log arises from a soft-lepton exchange (two soft lepton propagators due to special kinematics)

iM(1) ≃ iM(0)

∫ √s

0

dk+

k+
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k−
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0

dk+

k+

∫ √s

0

dk−

k−
θ(k+k− −m2) =

L2

2
with L ≡ lnλ2 ≡ lnm2/s

Configuration is not helicity suppressed ⇒ ladder diagrams iterate the one-loop double log

→ all lepton propagators on shell. Longitudinal momenta are strongly ordered

√
s ≫ kn,− ≫ kn−1,− ≫ · · · ≫ k1,− ≫ m2/

√
s

√
s ≫ k1,+ ≫ k2,+ ≫ · · · ≫ kn,+ ≫ m2/

√
s
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√
s ≫ kn,− ≫ kn−1,− ≫ · · · ≫ k1,− ≫ m2/

√
s

√
s ≫ k1,+ ≫ k2,+ ≫ · · · ≫ kn,+ ≫ m2/
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s

iM(n) ≃ iM(0)
∫ 1

λ2

dx1

x1

∫ 1

x1

dx2

x2

· · ·
∫ 1

xn−1

dxn

xn

∫ 1

λ2/x1

dy1

y1

∫ y1

λ2/x2

dy2

y2
· · ·
∫ yn−1

λ2/xn

dyn

yn

= iM(0) ln2n λ2

n!(n + 1)!
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→ all lepton propagators on shell. Longitudinal momenta are strongly ordered

√
s ≫ kn,− ≫ kn−1,− ≫ · · · ≫ k1,− ≫ m2/

√
s

√
s ≫ k1,+ ≫ k2,+ ≫ · · · ≫ kn,+ ≫ m2/

√
s

resums to modified Bessel function [Gorshkov/ Gribov/Lipatov/Frolov 66], SCET analysis in [Bell/PB/Feldmann ’22]

iM(DL) = iM(0) I1
(
2
√
z
)

√
z

, with z =
αem

2π
ln2 λ2
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Back to heavy-to-light form factors

The non-relativistic form factors combine features of both cases!

→ endpoint logarithms from rapidity ordered spectator-quark propagators [PB ’18] ← soft quarks

→ non-trivial interplay with additional “cusp-logarithms” ← soft gluons
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Back to heavy-to-light form factors

The non-relativistic form factors combine features of both cases!

→ endpoint logarithms from rapidity ordered spectator-quark propagators [PB ’18] ← soft quarks

→ non-trivial interplay with additional “cusp-logarithms” ← soft gluons

How to analyze the problem systematically?

→ so far: abelian limit (QED)

→ first study “pure” endpoint double logarithms

→ include exponentiated soft-gluon contributions
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Rapidity-ordered ladder diagrams
Observation I: In light-cone gauge n̄ ·A = 0 the leading pure endpoint logarithms arise only from
light-quark ladder diagrams!

→ no couplings of energetic (“hard-collinear”) gluons to heavy quark in this gauge

→ crossed diagrams turn out to be of sub-leading logarithmic order
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Rapidity-ordered ladder diagrams
Observation I: In light-cone gauge n̄ ·A = 0 the leading pure endpoint logarithms arise only from
light-quark ladder diagrams!

→ no couplings of energetic (“hard-collinear”) gluons to heavy quark in this gauge

→ crossed diagrams turn out to be of sub-leading logarithmic order

Observation II: Coupling to active (upper) quark line eikonal except for the two rightmost gluons!

→ more non-eikonal couplings (sub-leading interactions) forbidden by power-counting in mb → ∞ limit

→ similar to µ-e scattering, but more complicated Dirac structure
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Integral equations for pure endpoint logarithms

Double-logarithmic series governed by implicit integral equations:

f(q+,q−) = f (0) +
α

2π

∫ p−

q−

dk−

k−

∫ q+

m2
c/k−

dk+

k+

(
f(k+,k−)−mc fm(k+,k−)

)

fm(q+,q−) = f
(0)
m +

α

2π

∫ p−

q−

dk−

k−

∫ q+

m2
c/k−

dk+

k+
fm(k+,k−)

→ physical form factor F ∝ f(q+ = q− = mc)

→ translate into system of PDEs which can be solved in Laplace space
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→ translate into system of PDEs which can be solved in Laplace space

F (non-fac)
+ (γ)

∣∣
pure endpoint ∝

I1
(
2
√
z
)

√
z

+ I0
(
2
√
z
)
−

1

3
with z =

α

2π
ln2(2γ)

z → ∞ asymptotics: I0,1(2
√
z) grow exponentially

✓ all-order consistency check from analysis of endpoint singularities of Bc and ηc LCDAs in [PB ’18]
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Including cusp logarithms

In contrast to µ-e scattering, process has a hard interaction vertex

→ soft gluons exponentiate to global Sudakov suppression factor

F (non-fac)
+ (γ) ≡ exp

{
−

α

4π
ln2(2γ)

}
· ξ(γ)

→ ξ(γ) contains all non-factorizable endpoint double-logarithms
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→ soft gluons exponentiate to global Sudakov suppression factor

F (non-fac)
+ (γ) ≡ exp

{
−

α

4π
ln2(2γ)

}
· ξ(γ)

→ ξ(γ) contains all non-factorizable endpoint double-logarithms

In addition, soft-gluon couplings modify each rung in the ladder (similar to h→ γγ)

→ modified integral equations with off-shell Sudakov factor:

f(q+,q−) = f (0) +
α

2π

∫ p−

q−

dk−

k−

∫ q+

m2
c/k−

dk+

k+
exp

{
−

α

2π
ln

p−

k−
ln

q+

k+

}(
f −mc fm

)
(k+,k−)

fm(q+,q−) = f
(0)
m +

α

2π

∫ p−

q−

dk−

k−

∫ q+

m2
c/k−

dk+

k+
exp

{
−

α

2π
ln

p−

k−
ln

q+

k+

}
fm(k+,k−)

→ ξ(γ) ∝ f(q+ = q− = mc)

→ structure verified up to NNLO, but exponentiation remains conjecture

→ recover µ-e scattering and h → γγ in certain limits
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Towards a solution
It is more transparent to work with logarithmic variables ρ = ln

q+p−
m2

c
and η = ln

p−
q−

, e.g.

fm(ρ,η) = f
(0)
m + α̂

∫ η

0
dη′

∫ ρ

η′
dρ′ fm(ρ′,η′) e−α̂η′(ρ−ρ′) (α̂ ≡ α/2π)

This can be translated into a PDE

(∂ρ∂η + α̂η∂η − α̂)fm(ρ,η) = 0

→ look for solution evaluated at ρ = η = ln(2γ)

P. Böer Bc → ηc form factors in the DL approximation 10 / 12



Towards a solution
It is more transparent to work with logarithmic variables ρ = ln

q+p−
m2

c
and η = ln

p−
q−

, e.g.

fm(ρ,η) = f
(0)
m + α̂

∫ η

0
dη′

∫ ρ

η′
dρ′ fm(ρ′,η′) e−α̂η′(ρ−ρ′) (α̂ ≡ α/2π)

This can be translated into a PDE

(∂ρ∂η + α̂η∂η − α̂)fm(ρ,η) = 0

→ look for solution evaluated at ρ = η = ln(2γ)

So far could find closed form for the Laplace transform expressed through the error function

fm(z) = ez/2L−1

{
2

√
π

e−s2

erfc(s)

}(√
2z

)
with z =

α

2π
ln2(2γ)

The perturbative series is

fm(z) =
∞∑

n=0

cn(−z)n = 1 +
z

2
+

z2

24
−

z3

720
−

z4

40320
+

17z5

3628800
−

107z6

479001600
+ . . .

with recursively defined coefficients

c0 = 1 , cn =
−1

(2n)!

n−1∑
k=0

(n+ k)! ck
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with recursively defined coefficients

c0 = 1 , cn =
−1

(2n)!
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(n+ k)! ck work in progress!
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Conclusion

Fundamental open problems:

→ even the leading double-logs of very basic (QED) amplitudes defy our current EFT/RGE machinery

→ (How) Does soft-collinear factorization at sub-leading power work?

→ very active and phenomenologically relevant field of research

Recent progress:

→ refactorization and rearrangements can cure endpoint singularities in certain cases

→ more complicated in 2 → 2 scattering processes and beyond (µ-e scattering, B decays, . . . )

→ nested pattern of endpoint-singularities

Bc → ηc form factors as a perturbative playground:

→ non-factorizable endpoint logarithms modify Sudakov suppression

→ double-logarithmic series governed by integral equations

→ NNLO cross-check soon available (someone inspired to do N3LO??)

→ result constraints the all-order IR singularities of the massless scattering amplitude (matching coefficient)
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Thank you!
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