$B_{c} \rightarrow \eta_{c}$ Form Factors in the
 Double-Logarithmic Approximation

Philipp Böer

based on 2205.06021 with Guido Bell and Thorsten Feldmann
\& "in progress" with Guido Bell, Thorsten Feldmann, Dennis Horstmann and Vladyslav Shtabovenko

RADCOR 2023 (Crieff, Scotland)

01 June 2023

B physics in the precision era

B physics is a precision laboratory for tests of the Standard Model.

- Decays of B hadrons provide insights into flavour-changing interactions
\rightarrow extraction of SM parameters
\rightarrow probe of new physics through small quantum fluctuations
\rightarrow observed anomalies in specific decay channels, e.g. $B \rightarrow \pi K, B \rightarrow K^{*} \ell \ell, \ldots$

B physics in the precision era

B physics is a precision laboratory for tests of the Standard Model.

- Decays of B hadrons provide insights into flavour-changing interactions
\rightarrow extraction of SM parameters
\rightarrow probe of new physics through small quantum fluctuations
\rightarrow observed anomalies in specific decay channels, e.g. $B \rightarrow \pi K, B \rightarrow K^{*} \ell \ell, \ldots$
- Challenging QCD dynamics, in particular for charmless exclusive decays (at large recoil)
\rightarrow factorization of decay amplitudes in the heavy-quark limit $m_{b} \sim E_{\pi, K} \rightarrow \infty \quad$ [BBNS '99]
\rightarrow clear separation of perturbative and non-perturbative physics
\rightarrow open conceptual problem: endpoint-divergent convolution integrals can spoil factorization

This work

... is not (yet) about phenomenologically relevant precision calculations. We rather aim at:

- improving the theoretical methods used to describe hard-exclusive processes
- consistent treatment of endpoint-singularities in SCET
- understanding soft-collinear factorization at sub-leading power in $\Lambda_{\text {had }} / m_{b} \simeq 0.2$

This work

... is not (yet) about phenomenologically relevant precision calculations. We rather aim at:

- improving the theoretical methods used to describe hard-exclusive processes
- consistent treatment of endpoint-singularities in SCET
- understanding soft-collinear factorization at sub-leading power in $\Lambda_{\text {had }} / m_{b} \simeq 0.2$

Active field of current research
\rightarrow heavy-to-light form factors
[PB '18] + [Bell,PB,Feldmann,Horstmann, to appear]
\rightarrow bottom induced $h \rightarrow \gamma \gamma(g g)$ decay
[Neubert et al. ' 19-22]
\rightarrow off-diagonal gluon thrust
$\rightarrow \mu-e$ backscattering
\rightarrow QED corrections in leptonic B decays
[Feldmann et al. '22, Cornella et al. '23]
\rightarrow power-corrections in inclusive $\bar{B} \rightarrow X_{s} \gamma$
[Hurth, Szafron '23]
Recent progress has been made using refactorization ideas [PB $\left.{ }^{\prime} 18\right]$ and additive rearrangements of the endpoint contributions [Liu/Neubert $\left.{ }^{1} 19\right]$. However, the problem is considerably more complicated in hadronic hard-exclusive processes [PB '18; Bell/PB/Feldmann '22]. A systematic treatment requires novel theoretical tools!

This work

... is not (yet) about phenomenologically relevant precision calculations. We rather aim at:

- improving the theoretical methods used to describe hard-exclusive processes
- consistent treatment of endpoint-singularities in SCET
- understanding soft-collinear factorization at sub-leading power in $\Lambda_{\text {had }} / m_{b} \simeq 0.2$

Idea: resum logarithms in $B_{c} \rightarrow \eta_{c}$ form factor at large recoil for non-relativistic bound states
\checkmark quark mass $m_{c} \gg \Lambda_{\mathrm{QCD}}$ provides physical IR cut-off
\checkmark relativistic dynamics at scales $\mu \gtrsim m_{c}$ perturbative
\checkmark provides one of the simplest setups to study a sub-leading power hard-exclusive reaction

Heavy-to-light form factors for NR bound states

Form factors parametrize hadronic matrix elements of weak currents, e.g.

$$
\left\langle\eta_{c}(p)\right| \bar{c} \gamma^{\mu} b\left|B_{c}\left(p_{B}\right)\right\rangle=F_{+}\left(q^{2}\right)\left(p_{B}^{\mu}+p^{\mu}\right)+F_{-}\left(q^{2}\right) q^{\mu}
$$

At large recoil energies $E_{\eta_{c}} \sim m_{B_{c}} \rightarrow$ soft-collinear factorization (SCET)
\checkmark works well for spin-symmetry violating terms
\times fails for spin-symmetric (universal) contribution due to endpoint singularities ("soft-overlap")

$$
F_{+}^{(\text {non-fac })}=\frac{1}{2 E_{\eta_{c}}}\left\langle\eta_{c}(p)\right| \bar{c} \frac{\not \hbar \not h}{4} b\left|B_{c}\left(p_{B}\right)\right\rangle \quad\left(p \simeq E n \text { with } n^{2}=\bar{n}^{2}=0, n \cdot \bar{n}=2\right)
$$

Heavy-to-light form factors for NR bound states

Form factors parametrize hadronic matrix elements of weak currents, e.g.

$$
\left\langle\eta_{c}(p)\right| \bar{c} \gamma^{\mu} b\left|B_{c}\left(p_{B}\right)\right\rangle=F_{+}\left(q^{2}\right)\left(p_{B}^{\mu}+p^{\mu}\right)+F_{-}\left(q^{2}\right) q^{\mu}
$$

At large recoil energies $E_{\eta_{c}} \sim m_{B_{c}} \rightarrow$ soft-collinear factorization (SCET)
\checkmark works well for spin-symmetry violating terms
\times fails for spin-symmetric (universal) contribution due to endpoint singularities ("soft-overlap")
In the NR limit $m_{b} \gg m_{c} \gg \Lambda$ the mesons are entirely dominated by 2-particle Fock states.
$\rightarrow 2 \rightarrow 2$ scattering process of on-shell massive quarks with ext. current e.g. [Bell/Feldmann '05+'08, Bell '06]
\rightarrow radiative cor. induce double-logs $\sim \alpha_{s} \ln ^{2}(2 \gamma) \quad\left(v \cdot v^{\prime} \equiv \gamma \gg 1\right.$ is the large boost between the mesons $)$

Heavy-to-light form factors for NR bound states

Form factors parametrize hadronic matrix elements of weak currents, e.g.

$$
\left\langle\eta_{c}(p)\right| \bar{c} \gamma^{\mu} b\left|B_{c}\left(p_{B}\right)\right\rangle=F_{+}\left(q^{2}\right)\left(p_{B}^{\mu}+p^{\mu}\right)+F_{-}\left(q^{2}\right) q^{\mu}
$$

At large recoil energies $E_{\eta_{c}} \sim m_{B_{c}} \rightarrow$ soft-collinear factorization (SCET)
\checkmark works well for spin-symmetry violating terms
\times fails for spin-symmetric (universal) contribution due to endpoint singularities ("soft-overlap")
In the NR limit $m_{b} \gg m_{c} \gg \Lambda$ the mesons are entirely dominated by 2-particle Fock states.
$\rightarrow 2 \rightarrow 2$ scattering process of on-shell massive quarks with ext. current e.g. [Bell/Feldmann '05+'08, Bell '06]
\rightarrow radiative cor. induce double-logs $\sim \alpha_{s} \ln ^{2}(2 \gamma) \quad\left(v \cdot v^{\prime} \equiv \gamma \gg 1\right.$ is the large boost between the mesons $)$
Goal of this work:

- "diagrammatic resummation" of the leading double-logs in the "soft-overlap" \rightarrow non-standard!

Prelude I: $h \rightarrow \gamma \gamma$ via b-quark loop

- scale hierarchy $M_{H} \gg m_{b}$
- sub-leading power due to helicity suppression

The LO graph develops a double-log when the b-quark propagator between the two γ 's becomes soft:
\rightarrow soft quark effectively goes on-shell: $1 /\left(k^{2}-m_{b}^{2}\right) \rightarrow-2 \pi i \delta\left(k^{2}-m_{b}^{2}\right)$
\rightarrow other quark propagators become eikonal (largely off-shell) $\Rightarrow \int d^{2} k_{\perp} \sim \theta\left(k_{+} k_{-}-m_{b}^{2}\right)$
\rightarrow hard cut-offs through external photon momenta

$$
i \mathcal{M}^{(0)} \sim \int_{0}^{m_{H}} \frac{d k_{+}}{k_{+}} \int_{0}^{m_{H}} \frac{d k_{-}}{k_{-}} \theta\left(k_{+} k_{-}-m_{b}^{2}\right)=\frac{L^{2}}{2} \quad \text { with } \quad L \equiv \ln m_{b}^{2} / m_{H}^{2}
$$

Prelude I: $h \rightarrow \gamma \gamma$ via b-quark loop

- scale hierarchy $M_{H} \gg m_{b}$
- sub-leading power due to helicity suppression

The LO graph develops a double-log when the b-quark propagator between the two γ 's becomes soft:
\rightarrow soft quark effectively goes on-shell: $1 /\left(k^{2}-m_{b}^{2}\right) \rightarrow-2 \pi i \delta\left(k^{2}-m_{b}^{2}\right)$
\rightarrow other quark propagators become eikonal (largely off-shell) $\Rightarrow \int d^{2} k_{\perp} \sim \theta\left(k_{+} k_{-}-m_{b}^{2}\right)$
\rightarrow hard cut-offs through external photon momenta

$$
i \mathcal{M}^{(0)} \sim \int_{0}^{m_{H}} \frac{d k_{+}}{k_{+}} \int_{0}^{m_{H}} \frac{d k_{-}}{k_{-}} \theta\left(k_{+} k_{-}-m_{b}^{2}\right)=\frac{L^{2}}{2} \quad \text { with } \quad L \equiv \ln m_{b}^{2} / m_{H}^{2}
$$

All-order result from soft-gluon exponentiation at hard $H \rightarrow(b \bar{b})^{*}$ vertex: [Kotsky/Yakovlev '98; Liu/Penin '18], SCET analysis in [Liu/Neubert/Mecaj/Wang 19-22]

$$
\begin{aligned}
i \mathcal{M}^{(\mathrm{DL})} & \sim \int_{0}^{m_{H}} \frac{d k_{+}}{k_{+}} \int_{0}^{m_{H}} \frac{d k_{-}}{k_{-}} \theta\left(k_{+} k_{-}-m_{b}^{2}\right) \exp \left\{-\frac{\alpha_{s} C_{F}}{2 \pi} \ln \frac{k_{+}}{m_{H}} \ln \frac{k_{-}}{m_{H}}\right\} \\
& =\frac{L^{2}}{2}{ }_{2} F_{2}\left(1,1 ; \frac{3}{2}, 2 ;-\frac{\alpha_{s} C_{F}}{4 \pi} \frac{L^{2}}{2}\right)
\end{aligned}
$$

Prelude II: muon-electron backscattering

- exact backward scattering at high energies $s \sim-t \gg m_{\mu}^{2} \sim m_{e}^{2} \gg u$
- leading-power process

Prelude II: muon-electron backscattering

- exact backward scattering at high energies $s \sim-t \gg m_{\mu}^{2} \sim m_{e}^{2} \gg u$
- leading-power process

In the sum of all NLO graphs, double-logarithms from soft-photon configurations cancel
\rightarrow The NLO double log arises from a soft-lepton exchange (two soft lepton propagators due to special kinematics)

$$
i \mathcal{M}^{(1)} \simeq i \mathcal{M}^{(0)} \int_{0}^{\sqrt{s}} \frac{d k_{+}}{k_{+}} \int_{0}^{\sqrt{s}} \frac{d k_{-}}{k_{-}} \theta\left(k_{+} k_{-}-m^{2}\right)=\frac{L^{2}}{2} \quad \text { with } \quad L \equiv \ln \lambda^{2} \equiv \ln m^{2} / s
$$

Prelude II: muon-electron backscattering

- exact backward scattering at high energies $s \sim-t \gg m_{\mu}^{2} \sim m_{e}^{2} \gg u$
- leading-power process

In the sum of all NLO graphs, double-logarithms from soft-photon configurations cancel
\rightarrow The NLO double log arises from a soft-lepton exchange (two soft lepton propagators due to special kinematics)

$$
i \mathcal{M}^{(1)} \simeq i \mathcal{M}^{(0)} \int_{0}^{\sqrt{s}} \frac{d k_{+}}{k_{+}} \int_{0}^{\sqrt{s}} \frac{d k_{-}}{k_{-}} \theta\left(k_{+} k_{-}-m^{2}\right)=\frac{L^{2}}{2} \quad \text { with } \quad L \equiv \ln \lambda^{2} \equiv \ln m^{2} / s
$$

Configuration is not helicity suppressed \Rightarrow ladder diagrams iterate the one-loop double log
\rightarrow all lepton propagators on shell. Longitudinal momenta are strongly ordered

$$
\begin{aligned}
& \sqrt{s} \gg k_{n,-} \gg k_{n-1,-} \gg \cdots>k_{1,-} \gg m^{2} / \sqrt{s} \\
& \sqrt{s} \gg k_{1,+} \gg k_{2,+} \ggg k_{n,+} \gg m^{2} / \sqrt{s}
\end{aligned}
$$

Prelude II: muon-electron backscattering

- exact backward scattering at high energies $s \sim-t \gg m_{\mu}^{2} \sim m_{e}^{2} \gg u$
- leading-power process

In the sum of all NLO graphs, double-logarithms from soft-photon configurations cancel
\rightarrow The NLO double log arises from a soft-lepton exchange (two soft lepton propagators due to special kinematics)

$$
i \mathcal{M}^{(1)} \simeq i \mathcal{M}^{(0)} \int_{0}^{\sqrt{s}} \frac{d k_{+}}{k_{+}} \int_{0}^{\sqrt{s}} \frac{d k_{-}}{k_{-}} \theta\left(k_{+} k_{-}-m^{2}\right)=\frac{L^{2}}{2} \quad \text { with } \quad L \equiv \ln \lambda^{2} \equiv \ln m^{2} / s
$$

Configuration is not helicity suppressed \Rightarrow ladder diagrams iterate the one-loop double log
\rightarrow all lepton propagators on shell. Longitudinal momenta are strongly ordered

$$
\begin{aligned}
& \sqrt{s} \gg k_{n,-} \gg k_{n-1,-} \ggg>k_{1,-} \gg m^{2} / \sqrt{s} \\
& \sqrt{s} \gg k_{1,+} \gg k_{2,+} \ggg k_{n,+} \gg m^{2} / \sqrt{s} \\
& i \mathcal{M}^{(n)} \simeq i \mathcal{M}^{(0)} \int_{\lambda^{2}}^{1} \frac{d x_{1}}{x_{1}} \int_{x_{1}}^{1} \frac{d x_{2}}{x_{2}} \cdots \int_{x_{n-1}}^{1} \frac{d x_{n}}{x_{n}} \int_{\lambda^{2} / x_{1}}^{1} \frac{d y_{1}}{y_{1}} \int_{\lambda^{2} / x_{2}}^{y_{1}} \frac{d y_{2}}{y_{2}} \cdots \int_{\lambda^{2} / x_{n}}^{y_{n-1}} \frac{d y_{n}}{y_{n}} \\
& =i \mathcal{M}^{(0)} \frac{\ln ^{2 n} \lambda^{2}}{n!(n+1)!}
\end{aligned}
$$

Prelude II: muon-electron backscattering

- exact backward scattering at high energies $s \sim-t \gg m_{\mu}^{2} \sim m_{e}^{2} \gg u$
- leading-power process

In the sum of all NLO graphs, double-logarithms from soft-photon configurations cancel
\rightarrow The NLO double log arises from a soft-lepton exchange (two soft lepton propagators due to special kinematics)

$$
i \mathcal{M}^{(1)} \simeq i \mathcal{M}^{(0)} \int_{0}^{\sqrt{s}} \frac{d k_{+}}{k_{+}} \int_{0}^{\sqrt{s}} \frac{d k_{-}}{k_{-}} \theta\left(k_{+} k_{-}-m^{2}\right)=\frac{L^{2}}{2} \quad \text { with } \quad L \equiv \ln \lambda^{2} \equiv \ln m^{2} / s
$$

Configuration is not helicity suppressed \Rightarrow ladder diagrams iterate the one-loop double log
\rightarrow all lepton propagators on shell. Longitudinal momenta are strongly ordered

$$
\begin{aligned}
& \sqrt{s} \gg k_{n,-} \gg k_{n-1,-} \gg \cdots>k_{1,-} \gg m^{2} / \sqrt{s} \\
& \sqrt{s} \gg k_{1,+} \gg k_{2,+} \ggg k_{n,+} \gg m^{2} / \sqrt{s}
\end{aligned}
$$

resums to modified Bessel function
[Gorshkov/ Gribov/Lipatov/Frolov 66], SCET analysis in [Bell/PB/Feldmann '22]

$$
i \mathcal{M}^{(\mathrm{DL})}=i \mathcal{M}^{(0)} \frac{I_{1}(2 \sqrt{z})}{\sqrt{z}}, \quad \text { with } \quad z=\frac{\alpha_{\mathrm{em}}}{2 \pi} \ln ^{2} \lambda^{2}
$$

Back to heavy-to-light form factors

The non-relativistic form factors combine features of both cases!
\rightarrow endpoint logarithms from rapidity ordered spectator-quark propagators [PB '18] \leftarrow soft quarks
\rightarrow non-trivial interplay with additional "cusp-logarithms"
\leftarrow soft gluons

Back to heavy-to-light form factors

The non-relativistic form factors combine features of both cases!
\rightarrow endpoint logarithms from rapidity ordered spectator-quark propagators [PB '18] \leftarrow soft quarks
\rightarrow non-trivial interplay with additional "cusp-logarithms"
\leftarrow soft gluons

How to analyze the problem systematically?
\rightarrow so far: abelian limit (QED)
\rightarrow first study "pure" endpoint double logarithms
\rightarrow include exponentiated soft-gluon contributions

Rapidity-ordered ladder diagrams

Observation I: In light-cone gauge $\bar{n} \cdot A=0$ the leading pure endpoint logarithms arise only from light-quark ladder diagrams!

\rightarrow no couplings of energetic ("hard-collinear") gluons to heavy quark in this gauge
\rightarrow crossed diagrams turn out to be of sub-leading logarithmic order

Rapidity-ordered ladder diagrams

Observation I: In light-cone gauge $\bar{n} \cdot A=0$ the leading pure endpoint logarithms arise only from light-quark ladder diagrams!

\rightarrow no couplings of energetic ("hard-collinear") gluons to heavy quark in this gauge
\rightarrow crossed diagrams turn out to be of sub-leading logarithmic order

Observation II: Coupling to active (upper) quark line eikonal except for the two rightmost gluons!
\rightarrow more non-eikonal couplings (sub-leading interactions) forbidden by power-counting in $m_{b} \rightarrow \infty$ limit
\rightarrow similar to μ-e scattering, but more complicated Dirac structure

Integral equations for pure endpoint logarithms

Double-logarithmic series governed by implicit integral equations:

$$
\begin{aligned}
f\left(q_{+}, q_{-}\right) & =f^{(0)}+\frac{\alpha}{2 \pi} \int_{q_{-}}^{p_{-}} \frac{d k_{-}}{k_{-}} \int_{m_{c}^{2} / k_{-}}^{q_{+}} \frac{d k_{+}}{k_{+}}\left(f\left(k_{+}, k_{-}\right)-m_{c} f_{m}\left(k_{+}, k_{-}\right)\right) \\
f_{m}\left(q_{+}, q_{-}\right) & =f_{m}^{(0)}+\frac{\alpha}{2 \pi} \int_{q_{-}}^{p_{-}} \frac{d k_{-}}{k_{-}} \int_{m_{c}^{2} / k_{-}}^{q_{+}} \frac{d k_{+}}{k_{+}} f_{m}\left(k_{+}, k_{-}\right)
\end{aligned}
$$

\rightarrow physical form factor $F \propto f\left(q_{+}=q_{-}=m_{c}\right)$
\rightarrow translate into system of PDEs which can be solved in Laplace space

Integral equations for pure endpoint logarithms

Double-logarithmic series governed by implicit integral equations:

$$
\begin{aligned}
f\left(q_{+}, q_{-}\right) & =f^{(0)}+\frac{\alpha}{2 \pi} \int_{q_{-}}^{p_{-}} \frac{d k_{-}}{k_{-}} \int_{m_{c}^{2} / k_{-}}^{q_{+}} \frac{d k_{+}}{k_{+}}\left(f\left(k_{+}, k_{-}\right)-m_{c} f_{m}\left(k_{+}, k_{-}\right)\right) \\
f_{m}\left(q_{+}, q_{-}\right) & =f_{m}^{(0)}+\frac{\alpha}{2 \pi} \int_{q_{-}}^{p_{-}} \frac{d k_{-}}{k_{-}} \int_{m_{c}^{2} / k_{-}}^{q_{+}} \frac{d k_{+}}{k_{+}} f_{m}\left(k_{+}, k_{-}\right)
\end{aligned}
$$

\rightarrow physical form factor $F \propto f\left(q_{+}=q_{-}=m_{c}\right)$
\rightarrow translate into system of PDEs which can be solved in Laplace space

$$
\left.F_{+}^{\text {(non-fac) }}(\gamma)\right|_{\text {pure endpoint }} \propto \frac{I_{1}(2 \sqrt{z})}{\sqrt{z}}+I_{0}(2 \sqrt{z})-\frac{1}{3} \quad \text { with } \quad z=\frac{\alpha}{2 \pi} \ln ^{2}(2 \gamma)
$$

- $z \rightarrow \infty$ asymptotics: $I_{0,1}(2 \sqrt{z})$ grow exponentially
\checkmark all-order consistency check from analysis of endpoint singularities of B_{c} and η_{c} LCDAs in [PB ${ }^{188]}$

Including cusp logarithms

In contrast to $\mu-e$ scattering, process has a hard interaction vertex
\rightarrow soft gluons exponentiate to global Sudakov suppression factor

$$
F_{+}^{(\text {non-fac })}(\gamma) \equiv \exp \left\{-\frac{\alpha}{4 \pi} \ln ^{2}(2 \gamma)\right\} \cdot \xi(\gamma)
$$

$\rightarrow \xi(\gamma)$ contains all non-factorizable endpoint double-logarithms

Including cusp logarithms

In contrast to $\mu-e$ scattering, process has a hard interaction vertex
\rightarrow soft gluons exponentiate to global Sudakov suppression factor

$$
F_{+}^{(\text {non-fac })}(\gamma) \equiv \exp \left\{-\frac{\alpha}{4 \pi} \ln ^{2}(2 \gamma)\right\} \cdot \xi(\gamma)
$$

$\rightarrow \xi(\gamma)$ contains all non-factorizable endpoint double-logarithms

In addition, soft-gluon couplings modify each rung in the ladder (similar to $h \rightarrow \gamma \gamma$)
\rightarrow modified integral equations with off-shell Sudakov factor:

$$
\begin{aligned}
f\left(q_{+}, q_{-}\right) & =f^{(0)}+\frac{\alpha}{2 \pi} \int_{q_{-}}^{p_{-}} \frac{d k_{-}}{k_{-}} \int_{m_{c}^{2} / k_{-}}^{q_{+}} \frac{d k_{+}}{k_{+}} \exp \left\{-\frac{\alpha}{2 \pi} \ln \frac{p_{-}}{k_{-}} \ln \frac{q_{+}}{k_{+}}\right\}\left(f-m_{c} f_{m}\right)\left(k_{+}, k_{-}\right) \\
f_{m}\left(q_{+}, q_{-}\right) & =f_{m}^{(0)}+\frac{\alpha}{2 \pi} \int_{q_{-}}^{p_{-}} \frac{d k_{-}}{k_{-}} \int_{m_{c}^{2} / k_{-}}^{q_{+}} \frac{d k_{+}}{k_{+}} \exp \left\{-\frac{\alpha}{2 \pi} \ln \frac{p_{-}}{k_{-}} \ln \frac{q_{+}}{k_{+}}\right\} f_{m}\left(k_{+}, k_{-}\right)
\end{aligned}
$$

$\rightarrow \xi(\gamma) \propto f\left(q_{+}=q_{-}=m_{c}\right)$
\rightarrow structure verified up to NNLO, but exponentiation remains conjecture
\rightarrow recover μ-e scattering and $h \rightarrow \gamma \gamma$ in certain limits

Towards a solution

It is more transparent to work with logarithmic variables $\rho=\ln \frac{q_{+} p_{-}}{m_{c}^{2}}$ and $\eta=\ln \frac{p_{-}}{q_{-}}$, e.g.

$$
f_{m}(\rho, \eta)=f_{m}^{(0)}+\hat{\alpha} \int_{0}^{\eta} d \eta^{\prime} \int_{\eta^{\prime}}^{\rho} d \rho^{\prime} f_{m}\left(\rho^{\prime}, \eta^{\prime}\right) e^{-\hat{\alpha} \eta^{\prime}\left(\rho-\rho^{\prime}\right)} \quad(\hat{\alpha} \equiv \alpha / 2 \pi)
$$

This can be translated into a PDE

$$
\left(\partial_{\rho} \partial_{\eta}+\hat{\alpha} \eta \partial_{\eta}-\hat{\alpha}\right) f_{m}(\rho, \eta)=0
$$

\rightarrow look for solution evaluated at $\rho=\eta=\ln (2 \gamma)$

Towards a solution

It is more transparent to work with logarithmic variables $\rho=\ln \frac{q_{+} p_{-}}{m_{c}^{2}}$ and $\eta=\ln \frac{p_{-}}{q_{-}}$, e.g.

$$
f_{m}(\rho, \eta)=f_{m}^{(0)}+\hat{\alpha} \int_{0}^{\eta} d \eta^{\prime} \int_{\eta^{\prime}}^{\rho} d \rho^{\prime} f_{m}\left(\rho^{\prime}, \eta^{\prime}\right) e^{-\hat{\alpha} \eta^{\prime}\left(\rho-\rho^{\prime}\right)} \quad(\hat{\alpha} \equiv \alpha / 2 \pi)
$$

This can be translated into a PDE

$$
\left(\partial_{\rho} \partial_{\eta}+\hat{\alpha} \eta \partial_{\eta}-\hat{\alpha}\right) f_{m}(\rho, \eta)=0
$$

\rightarrow look for solution evaluated at $\rho=\eta=\ln (2 \gamma)$

So far could find closed form for the Laplace transform expressed through the error function

$$
f_{m}(z)=e^{z / 2} \mathcal{L}^{-1}\left\{\frac{2}{\sqrt{\pi}} \frac{e^{-s^{2}}}{\operatorname{erfc}(s)}\right\}(\sqrt{2 z}) \quad \text { with } \quad z=\frac{\alpha}{2 \pi} \ln ^{2}(2 \gamma)
$$

The perturbative series is

$$
f_{m}(z)=\sum_{n=0}^{\infty} c_{n}(-z)^{n}=1+\frac{z}{2}+\frac{z^{2}}{24}-\frac{z^{3}}{720}-\frac{z^{4}}{40320}+\frac{17 z^{5}}{3628800}-\frac{107 z^{6}}{479001600}+\ldots
$$

with recursively defined coefficients

$$
c_{0}=1, \quad c_{n}=\frac{-1}{(2 n)!} \sum_{k=0}^{n-1}(n+k)!c_{k}
$$

Towards a solution

It is more transparent to work with logarithmic variables $\rho=\ln \frac{q_{+} p_{-}}{m_{c}^{2}}$ and $\eta=\ln \frac{p_{-}}{q_{-}}$, e.g.

$$
f_{m}(\rho, \eta)=f_{m}^{(0)}+\hat{\alpha} \int_{0}^{\eta} d \eta^{\prime} \int_{\eta^{\prime}}^{\rho} d \rho^{\prime} f_{m}\left(\rho^{\prime}, \eta^{\prime}\right) e^{-\hat{\alpha} \eta^{\prime}\left(\rho-\rho^{\prime}\right)} \quad(\hat{\alpha} \equiv \alpha / 2 \pi)
$$

This can be translated into a PDE

$$
\left(\partial_{\rho} \partial_{\eta}+\hat{\alpha} \eta \partial_{\eta}-\hat{\alpha}\right) f_{m}(\rho, \eta)=0
$$

\rightarrow look for solution evaluated at $\rho=\eta=\ln (2 \gamma)$

So far could find closed form for the Laplace transform expressed through the error function

$$
f_{m}(z)=e^{z / 2} \mathcal{L}^{-1}\left\{\frac{2}{\sqrt{\pi}} \frac{e^{-s^{2}}}{\operatorname{erfc}(s)}\right\}(\sqrt{2 z}) \quad \text { with } \quad z=\frac{\alpha}{2 \pi} \ln ^{2}(2 \gamma)
$$

The perturbative series is

$$
f_{m}(z)=\sum_{n=0}^{\infty} c_{n}(-z)^{n}=1+\frac{z}{2}+\frac{z^{2}}{24}-\frac{z^{3}}{720}-\frac{z^{4}}{40320}+\frac{17 z^{5}}{3628800}-\frac{107 z^{6}}{479001600}+\ldots
$$

with recursively defined coefficients

$$
c_{0}=1, \quad c_{n}=\frac{-1}{(2 n)!} \sum_{k=0}^{n-1}(n+k)!c_{k}
$$

Conclusion

Fundamental open problems:
\rightarrow even the leading double-logs of very basic (QED) amplitudes defy our current EFT/RGE machinery
\rightarrow (How) Does soft-collinear factorization at sub-leading power work?
\rightarrow very active and phenomenologically relevant field of research

Recent progress:
\rightarrow refactorization and rearrangements can cure endpoint singularities in certain cases
\rightarrow more complicated in $2 \rightarrow 2$ scattering processes and beyond (μ-e scattering, B decays, \ldots)
\rightarrow nested pattern of endpoint-singularities
$B_{c} \rightarrow \eta_{c}$ form factors as a perturbative playground:
\rightarrow non-factorizable endpoint logarithms modify Sudakov suppression
\rightarrow double-logarithmic series governed by integral equations
\rightarrow NNLO cross-check soon available (someone inspired to do $\mathrm{N}^{3} \mathrm{LO}$??)
\rightarrow result constraints the all-order IR singularities of the massless scattering amplitude (matching coefficient)

Thank you!

Backup-Slides

