High-energy resummation in Higgs production at next-to-leading order

Michael Fucilla

Università della Calabria & **INFN** - Cosenza Laboratoire de Physique des 2 Infinis Irène Joliot-Curie **IJCLab**

in collaboration with

F.G. Celiberto, D. Yu. Ivanov, M.M.A. Mohammed, A. Papa

based on

JHEP 2022, 92 (2022)

RADCOR, Crieff, 1 June 2023

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BFKL approach

Reggeization BFKL in the LLA BFKL in the NLLA

Higgs impact factor at NLO

Real corrections Virtual corrections Cancellation of divergences

BFKL approach

Reggeization BFKL in the LLA BFKL in the NLLA

Higgs impact factor at NLO

Real corrections Virtual corrections Cancellation of divergences

- Record energies in the center-of-mass reachable by modern and future colliders allow us to study Quantum Chromodynamics (QCD) in its least well understood "final frontier"
- Semi-hard collision process \rightarrow stringent scale hierarchy

 $s \gg Q^2 \gg \Lambda_{\rm QCD}^2$, Q^2 a hard scale,

 ${\bf Regge}$ kinematic region

 $\alpha_s(Q^2) \ln\left(\frac{s}{Q^2}\right) \sim 1 \implies$ all-order **resummation** needed

- The **BFKL** (Balitsky, Fadin, Kuraev, Lipatov) approach
 - *i.* Leading-Logarithmic-Approximation (**LLA**): $(\alpha_s \ln s)^n$
 - *ii.* Next-to-Leading-Logarithmic-Approximation (NLLA): $\alpha_s(\alpha_s \ln s)^n$
 - iii. Progress on next-to-NLLA

[C. Milloy's talk]

[G. Falcioni, E. Gardi, N. Maher, C. Milloy, L. Vernazza (2022)]
[F. Caola, A. Chakraborty, G. Gambuti, A. von Manteuffel, L. Tancredi (2022)]
[E. P. Byrne, V. Del Duca, L. J. Dixon, E. Gardi, J. M. Smillie (2022)]
[V. S. Fadin, M. F., A. Papa (2023)]

Higgs plus jet production

- Inclusive Higgs plus jet production in proton-proton collision
 - *i*. Full NLL Green function + Partial NLO impact factors (full m_t -dep.)

[F. G. Celiberto, D. Yu. Ivanov, M. M. A. Mohammed, A. Papa (2021)]

ii. Same process in HEJ framework (full m_t, m_b -dep.)

[J. R. Andersen, H. Hassan, A. Maier, J. Paltrinieri, A. Papaefstathiou, J. M. Smillie (2022)]

BFKL approach

Reggeization BFKL in the LLA BFKL in the NLLA

Higgs impact factor at NLO

Real corrections Virtual corrections Cancellation of divergences

The Reggeized gluon in pQCD

- Elastic scattering process $A + B \longrightarrow A' + B'$
 - *i.* Gluon quantum numbers in the t-channel
 - *ii.* **Regge limit** $\longrightarrow s \simeq -u \rightarrow \infty$, $t = q^2$ fixed (i.e not growing with s)
 - *iii* Valid in LLA ($\alpha_s^n \ln^n s$ resummed) and NLLA ($\alpha_s^{n+1} \ln^n s$ resummed)

• LLA [L. N. Lipatov (1976)] $\Gamma_{A'A}^{(0)} = \delta_{\lambda_{A'}\lambda_{A}}, \quad \omega^{(1)}(t) = \frac{g^{2}t}{(2\pi)^{(D-1)}} \frac{N}{2} \int \frac{d^{D-2}k_{\perp}}{k_{\perp}^{2}(q-k)_{\perp}^{2}} = -g^{2} \frac{N\Gamma(1-\epsilon)}{(4\pi)^{2+\epsilon}} \frac{\Gamma^{2}(\epsilon)}{\Gamma(2\epsilon)} (\vec{q}^{\ 2})^{\epsilon}$

• Inelastic scattering process $A + B \longrightarrow \tilde{A} + \tilde{B} + n$ in the LLA

- i. Leading-logarithm resummation ↓ Multi-Regge kinematics (MRK)
- ii. Exchange of fermions suppressed in LLA
- *iii.* Vertical gluons become Reggeized due to loop radiative corrections

iv.
$$\gamma_{c_i c_{i+1}}^{P_i}(q_i, q_{i+1}) \rightarrow Lipatov \ vertex$$

• Multi-Regge form of inelastic amplitudes

$$\Re \mathcal{A}_{AB}^{\tilde{A}\tilde{B}+n} = 2s\Gamma_{\tilde{A}A}^{c_1} \left(\prod_{i=1}^n \gamma_{c_i c_{i+1}}^{P_i}(q_i, q_{i+1}) \left(\frac{s_i}{s_0}\right)^{\omega(t_i)} \frac{1}{t_i}\right) \frac{1}{t_{n+1}} \left(\frac{s_{n+1}}{s_0}\right)^{\omega(t_{n+1})} \Gamma_{\tilde{B}B}^{c_{n+1}}$$

Multi-Regge kinematics

• Sudakov decomposition

$$k_i = z_i p_A + \lambda_i p_B + k_{i\perp} \qquad p_A^2 = p_B^2 = 0$$

• Multi-Regge kinematics (MRK)

$$z_0 \gg z_1 \gg \dots \gg z_n \gg z_{n+1}$$
$$\lambda_{n+1} \gg \lambda_n \gg \dots \gg \lambda_1 \gg \lambda_0$$
$$k_{0\perp} \sim k_{1\perp} \sim \dots \sim k_{n\perp} \sim k_{n+1\perp}$$

Cutkosky rules

$$\Im \mathcal{A}_{AB}^{A'B'} = \frac{1}{2} \sum_{n} d\Phi_{\tilde{A}\tilde{B}+n} \mathcal{A}_{AB}^{\tilde{A}\tilde{B}+n} \left(\mathcal{A}_{A'B'}^{\tilde{A}\tilde{B}+n} \right)^*$$

• Integration over phase space

Each integration over s_i (or z_i) \downarrow One energy logarithm

7/22

BFKL resummation

- Diffusion $A + B \longrightarrow A' + B'$ in the **Regge kinematical region**
- BFKL factorization for $\Im \mathcal{A}_{AB}^{A'B'} \rightarrow \text{convolution of a Green function}$ (process independent) with the *Impact factors* of the colliding particles (process dependent)

$$\Im \mathcal{A}_{AB}^{A'B'(\mathcal{R})} = \frac{s}{(2\pi)^{D-2}} \int \frac{d^{D-2}q_1}{\vec{q}_1^2(\vec{q}_1 - \vec{q}\,)^2} \frac{d^{D-2}q_2}{\vec{q}_2^2(\vec{q}_2 - \vec{q}\,)^2} \\ \times \sum_{\nu} \Phi_{A'A}^{(\mathcal{R},\nu)}(\vec{q}_1, \vec{q}, s_0) \int \frac{d\omega}{2\pi i} \left[\left(\frac{s}{s_0} \right)^{\omega} G_{\omega}^{(\mathcal{R})}(\vec{q}_1, \vec{q}_2; \vec{q}\,) \right] \Phi_{B'B}^{(\mathcal{R},\nu)}(-\vec{q}_2, \vec{q}, s_0)$$

•
$$\mathcal{R} = 1^+$$
(singlet), 8^- (octect), ...

BFKL resummation

• $G^{(R)}_{\omega}(\vec{q}_1, \vec{q}_2; \vec{q})$ -Mellin transform of the Green function for the Reggeon-Reggeon scattering

• **BFKL** equation $(\vec{q}^2 = 0 \text{ and singlet color state representation})$ [I. Balitsky, V. S. Fadin, E. A. Kuraev, L. N. Lipatov (1975-1978)]

• $\Phi_{P'P}^{(R,\nu)}$ - LO impact factor in the *t*-channel color state (R,ν)

$$\Phi_{PP'}^{(R,\nu)} = \langle cc' | \hat{\mathcal{P}} | \nu \rangle \sum_{\{f\}} \int \frac{ds_{PR}}{2\pi} d\rho_f \Gamma_{\{f\}P}^c (\Gamma_{\{f\}P'}^{c'})^*$$

BFKL at NLLA in a nutshell

• Simple factorized form of inelastic amplitudes

[V. S. Fadin, L. N. Lipatov (1989)] Straightforward program of computations

- Resummation of subleading logarithms means a *new kinematics*
 - i. Multi-Regge kinematics (MRK)
 - ii. Quasi multi-Regge kinematics (QMRK)
- Multi-Regge kinematics

Previous quantity must be calculated at higher loops (one α_s more)

BFKL at NLLA in a nutshell

• Quasi Multi-Regge kinematics

A pair of particles (but only one!) may have longitudinal Sudakov variables of the same order (one logarithm less)

• 3 new contributions to the real kernel

 $\mathcal{K}_{r}\left(\vec{q}_{1},\vec{q}_{2}\right) = \mathcal{K}_{RRG}^{(1)}\left(\vec{q}_{1},\vec{q}_{2}\right) + \mathcal{K}_{RRGG}^{(0)}\left(\vec{q}_{1},\vec{q}_{2}\right) + \mathcal{K}_{RRQ\bar{Q}}^{(0)}\left(\vec{q}_{1},\vec{q}_{2}\right).$

BFKL at NLLA in a nutshell

- Separating MRK and QMRK \rightarrow Introduction of s_Λ parameter
- QMRK $(s_{ij} < s_{\Lambda})$

In the $two-gluon\ contribution\ to\ the\ kernel$ the invariant mass should be constrained

$$\mathcal{K}_{r}(\vec{q}_{1},\vec{q}_{2}) = \frac{\langle c_{1}c_{1}'|\hat{\mathcal{P}}_{0}|c_{2}c_{2}'\rangle}{2} \sum_{\{f\}} \int \frac{ds_{RR}}{(2\pi)^{D}} d\rho_{f} \ \gamma_{c_{1}c_{2}}^{\{f\}}(q_{1},q_{2}) \left(\gamma_{c_{1}'c_{2}'}^{\{f\}}(q_{1},q_{2})\right)^{*} \theta(s_{\Lambda}-s_{RR})$$

MRK (s_{ij} > s_Λ)

The lower bound of integration over invariant masses is s_{Λ}

$$-\frac{1}{2}\int d^{D-2}q' \ \vec{q}_1^2 \vec{q}_2^2 \mathcal{K}_r^{(0)}(\vec{q}_1, \vec{q}\,') \mathcal{K}_r^{(0)}(\vec{q}\,', \vec{q}_2) \ln\left(\frac{s_\Lambda^2}{(\vec{q}\,' - \vec{q}_1)^2 (\vec{q}\,' - \vec{q}_2)^2}\right)$$

• Similarly, for the *impact factors*

$$\begin{split} \Phi_{AA}(\vec{q}_1;s_0) &= \left(\frac{s_0}{\vec{q}_1^{\,2}}\right)^{\omega(-\vec{q}_1^{\,2})} \sum_{\{f\}} \int \theta(s_\Lambda - s_{AR}) \frac{ds_{AR}}{2\pi} \ d\rho_f \ \Gamma^c_{\{f\}A} \left(\Gamma^{c'}_{\{f\}A}\right)^* \langle cc' | \hat{\mathcal{P}}_0 | 0 \rangle \\ &- \frac{1}{2} \int d^{D-2} q_2 \ \frac{\vec{q}_1^{\,2}}{\vec{q}_2^{\,2}} \ \Phi^{(0)}_{AA}(\vec{q}_2) \ \mathcal{K}^{(0)}_r(\vec{q}_2, \vec{q}_1) \ \ln\left(\frac{s_\Lambda^2}{s_0(\vec{q}_2 - \vec{q}_1)^2}\right) \end{split}$$

• Dependence on s_{Λ} disappears in the combination

BFKL approach

Reggeization BFKL in the LLA BFKL in the NLLA

Higgs impact factor at NLO

Real corrections Virtual corrections Cancellation of divergences

Factorization scheme for hadronic impact factors

• Infrared safety of impact factor for colorless particle

[V. S. Fadin, A. D. Martin (1999)]

• Impact factors of colored particles afflicted by *infrared singularities*

LO Higgs impact factor

- Gluon-Reggeon → Higgs (through the top quark loop)
- Off-shell t-channel gluon with effective p_2^{ν}/s polarization

• LO impact factor

• The study can be upgraded to Next-to-Leading Order (NLO), in the limit $m_t \to \infty$, by using the effective lagrangian

$$\mathcal{L}_{\mathbf{ggH}} = -\frac{1}{4} \mathbf{g}_{\mathbf{H}} \mathbf{F}^{\mathbf{a}}_{\mu\nu} \mathbf{F}^{\mu\nu,\mathbf{a}} \mathbf{H} \qquad \qquad g_{H} = \frac{\alpha_{s}}{3\pi v} \left(1 + \frac{11}{4} \frac{\alpha_{s}}{\pi} \right) + \mathcal{O}(\alpha_{s}^{3})$$

• Gluon initiated contribution

$$d\Phi_{gg}^{\{Hg\}} \sim \left\{ \frac{\vec{q}^{\,2} z_H}{(1-z_H)\vec{r}^{\,2}} + \frac{\vec{q}^{\,2}}{\vec{r}^{\,2}} \left[z_H(1-z_H) + 2(1-\epsilon) \frac{1-z_H}{z_H} \frac{(\vec{q}\cdot\vec{r})^2}{\vec{q}^{\,2}\vec{r}^{\,2}} \right] \right\} \\ \times \theta \left(s_\Lambda - \frac{(1-z_H)m_H^2 + \vec{\Delta}^2}{z_H(1-z_H)} \right) + \text{finite}$$

Divergences

Rapidity divergence $\Rightarrow s_{\Lambda}$ still present $\vec{\Delta} = \vec{p}_H - z_H \vec{q}$ Soft divergence: $z_H \rightarrow 1$, $\vec{r} \rightarrow \vec{0}$ Collinear divergence:

• Quark initiated contribution

$$d\Phi_{qq}^{\{Hq\}} \sim \left[\frac{4(1-z_H)\left(\vec{r}\cdot\vec{q}\,\right)^2 + z_H^2\vec{q}\,^2\vec{r}\,^2}{z_H(\vec{r}\,^2)^2}\right]$$

Divergences

Rapidity divergence absent $\implies s_{\Lambda} \rightarrow \infty$ Collinear divergence: $\vec{r} \equiv (\vec{q} - \vec{p}_H) \rightarrow \vec{0}$

• Agreement with calculation within Lipatov effective action framework [M. Hentschinski, K. Kutak, A. van Hameren (2021)]

<ロト < 部ト < 差ト < 差ト 三日本 のへで 16/22

 Comparison of a test amplitude (in the high-energy approximation) with the $Regge\ form$

$$\begin{aligned} \mathcal{A}_{gq \to Hq}^{(8,-)} &= \Gamma_{\{H\}g}^{ac} \frac{s}{t} \left[\left(\frac{s}{-t} \right)^{\omega(t)} + \left(\frac{-s}{-t} \right)^{\omega(t)} \right] \Gamma_{qq}^{c} \approx \Gamma_{\{H\}g}^{ac(0)} \frac{2s}{t} \Gamma_{qq}^{c(0)} \\ &+ \Gamma_{\{H\}g}^{ac(0)} \frac{s}{t} \omega^{(1)}(t) \left[\ln \left(\frac{s}{-t} \right) + \ln \left(\frac{-s}{-t} \right) \right] \Gamma_{qq}^{c(0)} + \Gamma_{\{H\}g}^{ac(0)} \frac{2s}{t} \Gamma_{qq}^{c(1)} + \Gamma_{\{H\}g}^{ac(1)} \frac{2s}{t} \Gamma_{qq}^{c(0)} \end{aligned}$$

(ロ) (日) (日) (三) (三) (三) (17/22)

• Comparison of a test amplitude (in the high-energy approximation) with the **Regge form**

$$\begin{aligned} \mathcal{A}_{gq \to Hq}^{(8,-)} &= \Gamma_{\{H\}g}^{ac} \frac{s}{t} \left[\left(\frac{s}{-t} \right)^{\omega(t)} + \left(\frac{-s}{-t} \right)^{\omega(t)} \right] \Gamma_{qq}^{c} \approx \Gamma_{\{H\}g}^{ac(0)} \frac{2s}{t} \Gamma_{qq}^{c(0)} \\ &+ \Gamma_{\{H\}g}^{ac(0)} \frac{s}{t} \omega^{(1)}(t) \left[\ln \left(\frac{s}{-t} \right) + \ln \left(\frac{-s}{-t} \right) \right] \Gamma_{qq}^{c(0)} + \Gamma_{\{H\}g}^{ac(0)} \frac{2s}{t} \Gamma_{qq}^{c(1)} + \Gamma_{\{H\}g}^{ac(1)} \frac{2s}{t} \Gamma_{qq}^{c(0)} \end{aligned}$$

• Virtual corrections to the impact factor

$$\frac{d\Phi_{gg}^{\{H\}(1)}}{dz_H d^2 \vec{p}_H} = \frac{d\Phi_{gg}^{\{H\}(0)}}{dz_H d^2 \vec{p}_H} \frac{\bar{\alpha}_s}{2\pi} \left(\frac{\vec{q}}{\mu^2}\right)^{-\epsilon} \left[-\frac{C_A}{\epsilon^2} + \frac{11C_A - 2n_f}{6\epsilon} - \frac{C_A}{\epsilon} \ln\left(\frac{\vec{q}}{s_0}\right) - \frac{5n_f}{9} + C_A \left(2 \Re\left(\text{Li}_2\left(1 + \frac{m_H^2}{\vec{q}}\right)\right) + \frac{\pi^2}{3} + \frac{67}{18}\right) + 11\right]$$

• Checks \rightarrow [C. R. Schmidt (1997)] [M. Nefedov (2019)]

<ロト < 部 > < E > < E > E = のへで 17/22

• Single gluon in the *t*-channel diagrams

Gribov's prescription:
$$g^{\rho\nu} = g^{\rho\nu}_{\perp\perp} + 2 \frac{p_1^{\rho} p_2^{\nu} + p_1^{\nu} p_2^{\rho}}{s} \rightarrow 2s \frac{p_1^{\nu}}{s} \frac{p_2^{\rho}}{s}$$

<ロ > < 部 > < 書 > < 書 > 三 = の Q @ 18/22

• Single gluon in the *t*-channel diagrams

Gribov's prescription: $g^{\rho\nu} = g^{\rho\nu}_{\perp\perp} + 2 \frac{p_1^{\rho}p_2^{\nu} + p_1^{\nu}p_2^{\rho}}{s} \rightarrow 2s \frac{p_1^{\nu}}{s} \frac{p_2^{\rho}}{s}$

• Two gluons in the *t*-channel diagrams

Dimension-5 operator in $\mathcal{L} = \mathcal{L}_{QCD} + \mathcal{L}_{ggH}$

$$g^{\rho\nu} = g^{\rho\nu}_{\perp\perp} + 2 \frac{p_1^{\rho} p_2^{\nu} + p_1^{\nu} p_2^{\rho}}{s} \rightarrow 2s \frac{p_1^{\nu}}{s} \frac{p_2^{\rho}}{s} + g^{\rho\nu}_{\perp\perp}$$

<ロト < 部 > < 目 > < 目 > の へ つ 18/22

• Perturbative expansion of the Kernel: $\hat{K} = \bar{\alpha}_s \hat{K}^0 + \bar{\alpha}_s^2 \hat{K}^1$

$$\hat{1} = \left(\omega - \hat{K}\right) \hat{G}_{\omega} \implies \hat{G}_{\omega} = \left(\omega - \hat{K}\right)^{-1}$$
$$\hat{G}_{\omega} \simeq \left(\omega - \bar{\alpha}_s \hat{K}^0\right)^{-1} + \left(\omega - \bar{\alpha}_s \hat{K}^0\right)^{-1} \left(\bar{\alpha}_s^2 \hat{K}^1\right) \left(\omega - \bar{\alpha}_s \hat{K}^0\right)^{-1}$$

• Eigenfunctions of the LO kernel

$$\hat{K}^{0} \left| n, \nu \right\rangle = \chi(n, \nu) \left| n, \nu \right\rangle \qquad \langle \vec{q} \left| n, \nu \right\rangle = \frac{1}{\pi \sqrt{2}} (\vec{q}^{\ 2})^{i\nu - \frac{1}{2}} e^{in\phi}$$

 $\chi(n,\nu) \rightarrow Lipatov\ characteristic\ function$

• BFKL cross-section

$$d\sigma_{AB} = \frac{1}{(2\pi)^{D-2}} \sum_{n,n'} \int d\nu \int d\nu' \int_{\delta - i\infty}^{\delta + i\infty} \frac{d\omega}{2\pi i} \left(\frac{s}{s_0}\right)^{\omega} \\ \times \langle \frac{d\Phi_{AA}}{\vec{q}_1^2} | n, \nu \rangle \langle n, \nu | \hat{G}_{\omega} | n', \nu' \rangle \langle n'\nu' | \frac{d\Phi_{BB}}{\vec{q}_2^2} \rangle$$

• Projection onto the eigenfunction of the BFKL kernel

$$\left\langle \frac{d\Phi_{AA}}{\vec{q}\,^2} | n, \nu \right\rangle = \int \frac{d^{2-2\epsilon}q}{\pi\sqrt{2}} (\vec{q}\,^2)^{i\nu-\frac{3}{2}} e^{in\phi} d\Phi_{AA}(\vec{q}\,) \equiv d\Phi_{AA}(n,\nu)$$

• **Rapidity** divergences \rightarrow removed by the BFKL counterterm

$$d\Phi_{PP}^{\{Hg\}} \longrightarrow d\tilde{\Phi}_{PP}^{\{Hg\}} = d\Phi_{PP}^{\{Hg\}} - d\Phi_{PP}^{\{H\}} \otimes \mathcal{K}_{r}^{(0)} \ln s_{\Lambda}$$

• **Rapidity** divergences \rightarrow removed by the BFKL counterterm

$$d\Phi_{PP}^{\{Hg\}} \longrightarrow d\tilde{\Phi}_{PP}^{\{Hg\}} = d\Phi_{PP}^{\{Hg\}} - d\Phi_{PP}^{\{H\}} \otimes \mathcal{K}_{r}^{(0)} \ln s_{\Lambda}$$

- ${\bf UV}$ divergences \rightarrow coupling renormalization

$$\alpha_s(\mu^2) = \alpha_s(\mu_R^2) \left[1 + \frac{\alpha_s(\mu_R^2)}{2\pi} \beta_0 \left(-\frac{1}{\epsilon} - \ln(4\pi e^{-\gamma_E}) + \ln\left(\frac{\mu_R^2}{\mu^2}\right) \right) \right]$$

• **Rapidity** divergences \rightarrow removed by the BFKL counterterm

$$d\Phi_{PP}^{\{Hg\}} \longrightarrow d\tilde{\Phi}_{PP}^{\{Hg\}} = d\Phi_{PP}^{\{Hg\}} - d\Phi_{PP}^{\{H\}} \otimes \mathcal{K}_{r}^{(0)} \ln s_{\Lambda}$$

- ${\bf UV}$ divergences \rightarrow coupling renormalization

$$\alpha_s(\mu^2) = \alpha_s(\mu_R^2) \left[1 + \frac{\alpha_s(\mu_R^2)}{2\pi} \beta_0 \left(-\frac{1}{\epsilon} - \ln(4\pi e^{-\gamma_E}) + \ln\left(\frac{\mu_R^2}{\mu^2}\right) \right) \right]$$

(ロ) (日) (日) (三) (三) (三) (三) (20/22)

• Soft divergences \rightarrow cancel in the real plus virtual combination

• **Rapidity** divergences \rightarrow removed by the BFKL counterterm

$$d\Phi_{PP}^{\{Hg\}} \longrightarrow d\tilde{\Phi}_{PP}^{\{Hg\}} = d\Phi_{PP}^{\{Hg\}} - d\Phi_{PP}^{\{H\}} \otimes \mathcal{K}_{r}^{(0)} \ln s_{\Lambda}$$

- ${\bf UV}$ divergences \rightarrow coupling renormalization

$$\alpha_s(\mu^2) = \alpha_s(\mu_R^2) \left[1 + \frac{\alpha_s(\mu_R^2)}{2\pi} \beta_0 \left(-\frac{1}{\epsilon} - \ln(4\pi e^{-\gamma_E}) + \ln\left(\frac{\mu_R^2}{\mu^2}\right) \right) \right]$$

- Soft divergences \rightarrow cancel in the real plus virtual combination
- Surviving collinear divergences \rightarrow gPDF renormalization

$$f_g(x,\mu) = f_g(x,\mu_F) - \frac{\alpha_s(\mu_F)}{2\pi} \left(-\frac{1}{\epsilon} - \ln(4\pi e^{-\gamma_E}) + \ln\left(\frac{\mu_F^2}{\mu^2}\right) \right)$$
$$\times \int_x^1 \frac{dz}{z} \left[P_{gq}(z) \sum_{a=q\bar{q}} f_a\left(\frac{x}{z},\mu_F\right) + P_{gg}(z) f_g\left(\frac{x}{z},\mu_F\right) \right]$$

(ロ) (日) (日) (三) (三) (三) (三) (20/22)

• **Rapidity** divergences \rightarrow removed by the BFKL counterterm

$$d\Phi_{PP}^{\{Hg\}} \longrightarrow d\tilde{\Phi}_{PP}^{\{Hg\}} = d\Phi_{PP}^{\{Hg\}} - d\Phi_{PP}^{\{H\}} \otimes \mathcal{K}_{r}^{(0)} \ln s_{\Lambda}$$

- ${\bf UV}$ divergences \rightarrow coupling renormalization

$$\alpha_s(\mu^2) = \alpha_s(\mu_R^2) \left[1 + \frac{\alpha_s(\mu_R^2)}{2\pi} \beta_0 \left(-\frac{1}{\epsilon} - \ln(4\pi e^{-\gamma_E}) + \ln\left(\frac{\mu_R^2}{\mu^2}\right) \right) \right]$$

- Soft divergences \rightarrow cancel in the real plus virtual combination
- Surviving collinear divergences \rightarrow gPDF renormalization

$$f_g(x,\mu) = f_g(x,\mu_F) - \frac{\alpha_s(\mu_F)}{2\pi} \left(-\frac{1}{\epsilon} - \ln(4\pi e^{-\gamma_E}) + \ln\left(\frac{\mu_F^2}{\mu^2}\right) \right)$$
$$\times \int_x^1 \frac{dz}{z} \left[P_{gq}(z) \sum_{a=q\bar{q}} f_a\left(\frac{x}{z},\mu_F\right) + P_{gg}(z) f_g\left(\frac{x}{z},\mu_F\right) \right]$$

• Complete final expression

Integrals of Gaussian hypergeometric functions $_2F_1(a, b, c; z)$

Summary and outlook

Summary

• Higgs plus jet production at large difference of rapidity has been investigated within partial NLLA in the BFKL approach

[F. G. Celiberto, D. Yu. Ivanov, M. M. A. Mohammed, A. Papa (2021)] [J. R. Andersen, H. Hassan, A. Maier, J. Paltrinieri, A. Papaefstathiou, J. M. Smillie (2022)]

- NLO corrections to the forward Higgs boson impact factor has been obtained both in q_T and (n, ν) -space in the $m_t \to \infty$ limit
- *Gribov's prescription* for high-energy computations in QCD needs to be modified in the present case

Summary and outlook

Summary

• Higgs plus jet production at large difference of rapidity has been investigated within partial NLLA in the BFKL approach

[F. G. Celiberto, D. Yu. Ivanov, M. M. A. Mohammed, A. Papa (2021)] [J. R. Andersen, H. Hassan, A. Maier, J. Paltrinieri, A. Papaefstathiou, J. M. Smillie (2022)]

- NLO corrections to the forward Higgs boson impact factor has been obtained both in q_T and (n, ν) -space in the $m_t \to \infty$ limit
- *Gribov's prescription* for high-energy computations in QCD needs to be modified in the present case

Outlook

• Full NLL matched to NLO Higgs plus jet production

[Celiberto's talk]

- Finite top-mass corrections
- NLO impact factor for the central Higgs production

Thanks for your attention!

<ロト <回ト < 言ト < 言ト 三国 のへの 22/22

Backup

- UV counterterm $d\Phi_{PP}^{\{H\}}\Big|_{\alpha_s \ c.t.} = d\Phi_{PP}^{\{H\}(0)} \frac{\bar{\alpha}_s}{2\pi} \left[-\frac{\beta_0}{\epsilon}\right] + \text{finite}$
- gPDF counterterm

$$\begin{split} \left. d\Phi_{PP}^{\{H\}} \right|_{\mathbf{P}_{\mathbf{qg}} \text{ c.t.}} &= \frac{d\Phi_{PP}^{\{H\}(0)}}{fg(x_H)} \frac{\bar{\alpha}_s}{2\pi} \left[\frac{1}{\epsilon} P_{gq} \otimes \sum_{a=q\bar{q}} f_a \right] + \text{finite} \\ \left. d\Phi_{PP}^{\{H\}} \right|_{\mathbf{P}_{\mathbf{gg}} \text{ c.t.}} &= \frac{d\Phi_{PP}^{\{H\}(0)}}{fg(x_H)} \frac{\bar{\alpha}_s}{2\pi} \left[\frac{1}{\epsilon} \bar{P}_{gg} \otimes f_g + \frac{1}{2} \frac{\beta_0}{\epsilon} f_g(x_H) \right] + \text{finite} \end{split}$$

• Real quark contribution

$$\left. d\Phi_{PP}^{\{Hg\}} \right|_{\rm quark} = \frac{d\Phi_{PP}^{\{H\}(0)}}{f_g(x_H)} \frac{\bar{\alpha}_s}{2\pi} \left[-\frac{1}{\epsilon} P_{gq} \otimes \sum_{a=q\bar{q}} f_a \right] + {\rm finite}$$

• Real gluon contribution (BFKL counterterm subtracted)

$$d\Phi_{PP}^{\{Hq\}}\Big|_{\text{gluon}} = \frac{d\Phi_{PP}^{\{H\}(0)}}{f_g(x_H)} \frac{\bar{\alpha}_s}{2\pi} \left(\frac{\vec{p}_H^2}{\mu^2}\right)^{-\epsilon} \left[\left(\frac{C_A}{\epsilon^2} + \frac{C_A}{\epsilon} \ln\left(\frac{\vec{p}_H^2}{s_0}\right)\right) f_g(x_H) - \frac{1}{\epsilon} \tilde{P}_{gg} \otimes f_g \right] + \text{finite}$$

• Virtual corrections contribution

$$\left. d\Phi_{PP}^{\{H\}} \right|_{\rm virtual} = \left. d\Phi_{PP}^{\{H\}(0)} \frac{\bar{\alpha}_s}{2\pi} \left(\frac{\vec{p}_H^2}{\mu^2} \right)^{-\epsilon} \left[-\frac{C_A}{\epsilon^2} - \frac{C_A}{\epsilon} \ln\left(\frac{\vec{p}_H^2}{s_0} \right) + \frac{1}{\epsilon} \frac{\beta_0}{2} \right] + \text{finite} \right.$$

$$I_1(\gamma_1, \gamma_2, n, \nu) = \int \frac{d^{2-2\epsilon}\vec{q}}{\pi\sqrt{2}} (\vec{q}^{\ 2})^{i\nu - \frac{3}{2}} e^{in\phi} (\vec{q}^{\ 2})^{-\gamma_1} \left[(\vec{q} - \vec{p}_H)^2 \right]^{-\gamma_2} = \frac{(\vec{p}_H^{\ 2})^{-\frac{1}{2} + i\nu - \epsilon - \gamma_1 - \gamma_2} e^{in\phi} H}{\sqrt{2}\pi^{\epsilon}}$$

$$\times \left[\frac{\Gamma\left(\frac{1}{2} + \gamma_1 + \gamma_2 + \frac{n}{2} - i\nu + \epsilon\right) \Gamma\left(-\frac{1}{2} - \gamma_1 + \frac{n}{2} + i\nu - \epsilon\right) \Gamma\left(1 - \gamma_2 - \epsilon\right)}{\Gamma\left(\frac{3}{2} + \gamma_1 + \frac{n}{2} - i\nu\right) \Gamma\left(\frac{1}{2} - \gamma_1 - \gamma_2 + \frac{n}{2} + i\nu - 2\epsilon\right) \Gamma\left(\gamma_2\right)} \right]$$

$$\begin{split} I_{3}(\gamma_{1},\gamma_{2},n,\nu) &= \int \frac{d^{2-2\epsilon}\vec{q}}{\pi\sqrt{2}} (\vec{q}^{\ 2})^{i\nu-\frac{3}{2}} e^{in\phi} (\vec{q}^{\ 2})^{-\gamma_{1}} \left[(1-z_{H})m_{H}^{2} + (\vec{p}_{H}-z_{H}\vec{q})^{2} \right]^{-\gamma_{2}} \\ &= \frac{(\vec{p}_{H}^{\ 2})^{\frac{n}{2}} e^{in\phi}_{H}}{(z_{H}^{2})^{\gamma_{2}+\frac{n}{2}}\sqrt{2}\pi^{\epsilon}} \left(\frac{\vec{p}_{H}^{\ 2}}{z_{H}^{2}} + \frac{(1-z_{H})m_{H}^{2}}{z_{H}^{2}} \right)^{-\frac{1}{2}-\gamma_{1}-\gamma_{2}-\frac{n}{2}+i\nu-\epsilon} \\ &\times \left[\frac{\Gamma\left(\frac{1}{2}+\gamma_{1}+\gamma_{2}+\frac{n}{2}-i\nu+\epsilon\right)\Gamma(-\frac{1}{2}-\gamma_{1}+\frac{n}{2}+i\nu-\epsilon)\Gamma(\frac{3}{2}+\frac{n}{2}+\gamma_{1}-i\nu)}{\Gamma\left(\frac{3}{2}+\gamma_{1}+\frac{n}{2}-i\nu\right)\Gamma\left(\gamma_{2}\right)\Gamma(1+n-\epsilon)} \right] \\ &\times {}_{2}F_{1}\left(-\frac{1}{2}-\gamma_{1}+\frac{n}{2}+i\nu-\epsilon,\frac{1}{2}+\gamma_{1}+\gamma_{2}+\frac{n}{2}-i\nu+\epsilon,1+n-\epsilon,\xi\right) \,, \end{split}$$

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

$$\begin{split} I_{2,\mathrm{reg}} &\equiv I_2 - I_{2,\mathrm{as}} = \frac{(\vec{p}_H^{-2})^{\frac{n}{2}} e^{in\phi_H}}{z_H^2 \sqrt{2}} \left[\frac{\Gamma\left(\frac{5}{2} + \gamma_1 + \frac{n}{2} - i\nu\right) \Gamma\left(-\frac{1}{2} - \gamma_1 + \frac{n}{2} + i\nu\right)}{\Gamma\left(1 + n\right)} \right] \\ &\times \int_0^1 d\Delta \left(\Delta + \frac{(1 - \Delta)}{z_H}\right)^n \left[\left(\Delta + \frac{(1 - \Delta)}{z_H^2}\right) \vec{p}_H^{-2} + \frac{(1 - \Delta)(1 - z_H)m_H^2}{z_H^2} \right]^{-\frac{5}{2} - \gamma_1 + i\nu - \frac{n}{2}} \\ &\times \left\{ 2F_1\left(-\frac{1}{2} - \gamma_1 + \frac{n}{2} + i\nu, \frac{5}{2} + \gamma_1 - i\nu + \frac{n}{2}, 1 + n, \zeta\right) - \frac{z_H^2(\vec{p}_H^2)^{-\frac{3}{2} - \gamma_1 - \frac{n}{2} + i\nu}}{\left(m_H^2 + (1 - z_H)\vec{p}_H^2\right)} \right. \\ &\times \frac{\Gamma(1 + n)}{\Gamma(\frac{5}{2} + \gamma_1 + \frac{n}{2} - i\nu)\Gamma(-\frac{1}{2} - \gamma_1 + \frac{n}{2} + i\nu)} \frac{1}{(1 - \Delta)(1 - z_H)} \right\} \\ &\zeta &= \frac{\left(\Delta + \frac{(1 - \Delta)}{z_H^2}\right)^2 \vec{p}_H^2}{\left[\left(\Delta + \frac{(1 - \Delta)}{z_H^2}\right)^2 \vec{p}_H^2 - \frac{(1 - \Delta)(1 - z_H)m_H^2}{z_H^2} \right]} \,. \end{split}$$

<ロ> < 団> < 団> < 茎> < 茎> < 茎) = のへで 4/6

Set of integrals

• The complete finite result is obtained in terms of hypergeometric functions and integrals of hypergeometric functions (with some shrewdness!), i.e,

$$\begin{split} I_{2}(\gamma_{1},n,\nu) &= \int \frac{d^{2-2\epsilon}\vec{q}}{\pi\sqrt{2}} (\vec{q}^{\ 2})^{i\nu-\frac{3}{2}} e^{in\phi} (\vec{q}^{\ 2})^{-\gamma_{1}} \frac{1}{[(\vec{q}-\vec{p}_{H})^{2}] \left[(1-z_{H})m_{H}^{2} + (\vec{p}_{H}-z_{H}\vec{q})^{2}\right]} \\ &= \frac{(\vec{p}_{H}^{\ 2})^{\frac{n}{2}} e^{in\phi}_{H}}{z_{H}^{2}\sqrt{2\pi^{\epsilon}}} \left[\frac{\Gamma\left(\frac{5}{2} + \gamma_{1} + \frac{n}{2} - i\nu + \epsilon\right)\Gamma\left(-\frac{1}{2} - \gamma_{1} + \frac{n}{2} + i\nu - \epsilon\right)}{\Gamma\left(1+n-\epsilon\right)} \right] \\ &\times \int_{0}^{1} d\Delta \left(\Delta + \frac{(1-\Delta)}{z_{H}}\right)^{n} \left[\left(\Delta + \frac{(1-\Delta)}{z_{H}^{2}}\right)\vec{p}_{H}^{\ 2} + \frac{(1-\Delta)(1-z_{H})m_{H}^{2}}{z_{H}^{2}} \right]^{-\frac{5}{2} - \gamma_{1} + i\nu - \frac{n}{2} - \epsilon} \\ &\times {}_{2}F_{1}\left(-\frac{1}{2} - \gamma_{1} + \frac{n}{2} + i\nu - \epsilon, \frac{5}{2} + \gamma_{1} - i\nu + \frac{n}{2} + \epsilon, 1+n-\epsilon, \zeta\right) , \qquad \zeta \xrightarrow{\Delta \to 1} 1 \end{split}$$

• Extracting singular part

$$\begin{split} I_{2,\mathrm{as}}(\gamma_1, n, \nu) &= \frac{(\vec{p}_H^2)^{-\frac{3}{2} - \gamma_1 + i\nu - \epsilon} e^{in\phi_H} \Gamma(1+\epsilon)}{(1-z_H)\sqrt{2}\pi^{\epsilon}} \frac{1}{\left(m_H^2 + (1-z_H)\vec{p}_H^2\right)} \int_0^1 d\Delta (1-\Delta)^{-\epsilon-1} \\ &= -\frac{1}{\epsilon} \frac{(\vec{p}_H^2)^{-\frac{3}{2} - \gamma_1 + i\nu - \epsilon} e^{in\phi_H} \Gamma(1+\epsilon)}{(1-z_H)\sqrt{2}\pi^{\epsilon}} \frac{1}{\left(m_H^2 + (1-z_H)\vec{p}_H^2\right)} \end{split}$$

• Replacement: $I_2 = I_{2,as} + (I_2 - I_{2,as}) \equiv I_{2,as} + I_{2,reg}$

$Higgs p_T$ -distribution

• Higgs p_T-distribution

$$\frac{d\sigma\left(|\vec{p}_{H}|,\Delta Y,s\right)}{d|\vec{p}_{H}|d\Delta Y} = \int_{p_{J}}^{p_{J}max} d|\vec{p}_{J}| \int_{y_{H}min}^{y_{H}max} dy_{H} \int_{y_{J}min}^{y_{J}max} dy_{J}\delta\left(y_{H}-y_{J}-\Delta Y\right)C_{0}$$

$$\frac{d\sigma\left(|\vec{p}_{H}|,\Delta Y,s\right)}{d|\vec{p}_{H}|d\Delta Y} = \int_{p_{J}}^{p_{J}max} d|\vec{p}_{J}| \int_{y_{H}min}^{2C} d(y_{H}) + y_{J} + y_{J}(\vec{p}_{J}) + y_{J}(z_{J}) + y_{J$$

<ロ > < 団 > < 臣 > < 臣 > 王 = の < で 6/6

Higgs p_T -distribution

• Higgs p_T-distribution

Additive matching procedure

[Celiberto, Delle Rose, M.F., Gatto, Papa (to appear)]

$$d\sigma^{\rm NLL/NLO}(\Delta Y, s) = \underbrace{d\sigma^{\rm NLO}(\Delta Y, s)}_{\rm fixed \ order} + \underbrace{d\sigma^{\rm NLL}(\Delta Y, s)}_{\rm BFKL} - \underbrace{\Delta d\sigma^{\rm NLL/NLO}(\Delta Y, s)}_{\rm NLO \ double \ counting}$$