Numerical Unitarity for Binary Dynamics

Fernando Febres Cordero Department of Physics, Florida State University

RADCOR 2023, Crieff, Scotland, 7/1/2023

Based on [arXiv:2205.07357] with Manfred Kraus, Guanda Lin, Michael Ruf and Mao Zeng and [*in progress*]

Precision in Gravitational Waveforms

Conservative Dynamics with Spinning Black Hole at $\mathcal{O}(G^3)$

Multi-Loop Numerical Unitarity for GW Astronomy

Binary Mergers and Gravitational Waves

 A precise theoretical description of the merger process is necessary to exploit the physics potential of measurements at gravitational wave observatories - The inspiral can be described through perturbative methods (in the Post-Newtonian and Post-Minkowskian frameworks), the merger with numerical relativity, and the ringdown with black hole pertubation theory

- To estimate parameters associated to GW measurements, reliable semi-analytic models are required (NR expensive!).

 To estimate parameters associated to GW measurements, reliable semi-analytic models are required (NR expensive!).
 Key example is the EOB model [Buonanno, Damour, Pan, Taracchini, ...]

 To estimate parameters associated to GW measurements, reliable semi-analytic models are required (NR expensive!).
 Key example is the EOB model [Buonanno, Damour, Pan, Taracchini, ...]

As input (to fix corresponding parameters) the EOB model takes NR simulations, analytic results for the inspiral and for the ringdown phases of the merger.

 To estimate parameters associated to GW measurements, reliable semi-analytic models are required (NR expensive!).
 Key example is the EOB model [Buonanno, Damour, Pan, Taracchini, ...]

As input (to fix corresponding parameters) the EOB model takes NR simulations, analytic results for the inspiral and for the ringdown phases of the merger. Even more, it can benefit also from data of unbound binary observables

 To estimate parameters associated to GW measurements, reliable semi-analytic models are required (NR expensive!).
 Key example is the EOB model [Buonanno, Damour, Pan, Taracchini, ...]

As input (to fix corresponding parameters) the EOB model takes NR simulations, analytic results for the inspiral and for the ringdown phases of the merger. Even more, it can benefit also from data of unbound binary observables

 \rightarrow scattering amplitudes can provide critical input for theoretical descriptions in the form of conservative potentials and scattering observables!

	Buona	anno,	Kha	hi, O	Conr	iell, ł	Roiba	n, So	olon, Z	eng	arXiv:2	204.0	5194]
G(1 +	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{2}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{3}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^4(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{5}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{6}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{7}(1 +$	v^2	$^+$	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$

	Buon	anno,	Khal	il, O	'Conr	nell, I	Roiba	n, Sc	olon, Z	eng	arXiv:2	2204.0	05194]
G(1 +	$-v^2$	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{2}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^3(1 +$	$-v^2$	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{4}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{5}(1 +$	$-v^2$	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{6}(1 +$	$-v^2$	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{7}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+)

- New results recently produced with QFT tools

	Buona	anno,	Khal	iil, O	'Conr	nell, F	Roiba	n, Sc	olon, Z	eng	arXiv:2	204.0	05194]
G(1 +	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{2}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{3}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{4}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{5}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{6}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{7}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+)

- New results recently produced with QFT tools
- State-of-the-art PN results

	Buona	anno,	Khali	il, O	Conr	iell, F	Roiba	n, Sc	olon, Z	eng [arXiv:2	204.0	05194]
G(1 +	$-v^2$	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{2}(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^3(1 +$	v^2	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^4(1 +$	$-v^2$	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{5}(1 +$	$-v^2$	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{6}(1 +$	$-v^2$	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	$\cdots)$
$G^{7}(1 +$	$-v^2$	+	v^4	+	v^6	+	v^8	+	v^{10}	+	v^{12}	+	· · ·)

- New results recently produced with QFT tools
- State-of-the-art PN results
- Expected terms given sensitivity of future GW observatories

Progress for Spinless Binary Merger

Progress for Spinless Binary Merger

Progress for Spinless Binary Merger

 \rightarrow See Michael Ruf's talk next for 5PL related calculation

Progress for Binary Merger with a Spinning Black Hole

Phenomenological Impact

Antonelli, Buonanno, Steinhoff, van de Meent, Vines [arXiv:1901.07102]

- Exploration of impact of higher-order corrections
- Benchmark quantities: bounding energy and scattering angle
- NR results serve as reference. 4PM results give excellent results
- Both bound and unbound observables studied

Phenomenological Impact

Damour, Rettegno [arXiv:2211.01399]

- Exploration of impact of higher-order corrections
- Benchmark quantities: bounding energy and scattering angle
- NR results serve as reference. 4PM results give excellent results
- Both bound and unbound observables studied

QFT Techniques for Classical Observables

- Techniques based on scattering amplitudes can produce information for classical observables
 - → Effective field theory approaches Goldberger, Rothstein; Cheung, Rothstein, Solon; ...
 - → 'in-in' formalism for computing (inclusive) observables Kosower, Maybee, O'Connell; Maybee, O'Connell, Vines
 - → Classical radial action and eikonal exponentiation, ... Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng; ...

QFT Techniques for Classical Observables

- Techniques based on scattering amplitudes can produce information for classical observables
 - → Effective field theory approaches Goldberger, Rothstein; Cheung, Rothstein, Solon; ...
 - → 'in-in' formalism for computing (inclusive) observables Kosower, Maybee, O'Connell; Maybee, O'Connell, Vines
 - → Classical radial action and eikonal exponentiation, ... Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng; ...
- Many advances in QFT techniques have been exploited!
 - $\rightarrow\,$ Generalized unitarity, on-shell techniques, double copy, ...
 - \rightarrow Integration-by-parts identities, expansion by regions, differential equations, effective field theory, ...

QFT Techniques for Classical Observables

- Techniques based on scattering amplitudes can produce information for classical observables
 - → Effective field theory approaches Goldberger, Rothstein; Cheung, Rothstein, Solon; ...
 - → 'in-in' formalism for computing (inclusive) observables Kosower, Maybee, O'Connell; Maybee, O'Connell, Vines
 - → Classical radial action and eikonal exponentiation, ... Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng; ...
- Many advances in QFT techniques have been exploited!
 - $\rightarrow\,$ Generalized unitarity, on-shell techniques, double copy, \ldots
 - \rightarrow Integration-by-parts identities, expansion by regions, differential equations, effective field theory, ...
 - → Here: EFT matching in dimensional regularization, modular arithmetics and numerical unitarity

Precision in Gravitational Waveforms

Conservative Dynamics with Spinning Black Hole at $\mathcal{O}(G^3)$

Multi-Loop Numerical Unitarity for GW Astronomy

Scalar-Vector Scattering

- Use $2 \rightarrow 2$ quantum scattering with massive spin s for conservative dynamics through 2s powers in spin Vaidya [arXiv:1410.5348]

Scalar-Vector Scattering

- Use $2 \rightarrow 2$ quantum scattering with massive spin s for conservative dynamics through 2s powers in spin Vaidya [arXiv:1410.5348]
- Consider theory of massive scalar and vector fields minimally coupled to gravity

$$\mathcal{L} = \sqrt{-g} \left[-\frac{2R}{\kappa^2} + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - \frac{1}{2} m_\phi^2 \phi^2 - \frac{1}{4} g^{\mu\alpha} g^{\nu\beta} F_{\alpha\beta} F_{\mu\nu} + \frac{1}{2} m_A^2 g^{\mu\nu} A_\mu A_\nu \right]$$

 $\kappa=\sqrt{32\pi G}$ and expand in the weak field approximation

$$g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}$$

Scalar-Vector Scattering

- Use $2 \rightarrow 2$ quantum scattering with massive spin s for conservative dynamics through 2s powers in spin Vaidya [arXiv:1410.5348]
- Consider theory of massive scalar and vector fields minimally coupled to gravity

$$\mathcal{L} = \sqrt{-g} \left[-\frac{2R}{\kappa^2} + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - \frac{1}{2} m_\phi^2 \phi^2 - \frac{1}{4} g^{\mu\alpha} g^{\nu\beta} F_{\alpha\beta} F_{\mu\nu} + \frac{1}{2} m_A^2 g^{\mu\nu} A_\mu A_\nu \right]$$

 $\kappa=\sqrt{32\pi G}$ and expand in the weak field approximation

$$g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}$$

Our scattering process:

-> Scalar

Parra-Martinez, Ruf, Zeng [arXiv:2005.04236]

Kinematics:

Parra-Martinez, Ruf, Zeng [arXiv:2005.04236]

Kinematics:

Bern, Cheung, Roiban, Shen, Solon, Zeng [arXiv:1908.01493]

Multi-loop numerical untarity for amplitudes:

Parra-Martinez, Ruf, Zeng [arXiv:2005.04236]

Kinematics:

$$V(p_{1}) + s(p_{2}) \rightarrow s(p_{3}) + V(p_{4}) \qquad \bar{p}_{1} - q/2 \qquad \bar{p}_{1} + q/2 \\ q^{\mu} = p_{2}^{\mu} - p_{3}^{\mu} = (0, q) \\ \bar{p}_{i} \cdot q = 0 \qquad \sigma = \frac{p_{1} \cdot p_{2}}{m_{A} m_{\phi}} \qquad \bar{p}_{2} + q/2 \qquad \bar{p}_{2} - q/2$$

Bern, Cheung, Roiban, Shen, Solon, Zeng [arXiv:1908.01493]

Multi-loop numerical untarity for amplitudes:

Parra-Martinez, Ruf, Zeng [arXiv:2005.04236]

Kinematics:

Bern, Cheung, Roiban, Shen, Solon, Zeng [arXiv:1908.01493]

Multi-loop numerical untarity for amplitudes:

Abreu, FFC, Ita, Kraus, Page, Pascual, Ruf, Sotnikov [arXiv:2009.11957]

IBPs, expansion and integration:

Smirnov, Chuharev [arXiv:1901.07808]

FIRE6, using finite fields

By the method of regions obtain expansion in q^2 to $\mathcal{O}((q^2)^0)$ and ϵ

Parra-Martinez, Ruf, Zeng [arXiv:2005.04236]

Construct appropriate ansatz in the variables m_{ϕ}, m_A and σ to obtain analytic result

IBPs, expansion and integration:

Smirnov, Chuharev [arXiv:1901.07808]

FIRE6, using finite fields

By the method of regions obtain expansion in q^2 to $\mathcal{O}((q^2)^0)$ and ϵ

Parra-Martinez, Ruf, Zeng [arXiv:2005.04236]

Construct appropriate ansatz in the variables m_{ϕ}, m_A and σ to obtain analytic result

The amplitudes (an example):

$$\begin{split} M_4^{(2,2)} &= \frac{1}{\epsilon^2} \Bigg[-\frac{(m_A^3 m_\phi + m_A m_\phi^3)\sigma(1-2\sigma^2)^2}{2(8\pi)^2(\sigma^2-1)^2} - \frac{m_A^2 m_\phi^2(1-2\sigma^2)(1-8\sigma^4)}{2(16\pi)^2(\sigma^2-1)^2} \Bigg] \\ &+ \frac{1}{\epsilon} \Bigg[-\frac{m_A^2 m_\phi^2 \sigma(-6+\sigma^2)(1+2\sigma^2)}{2(4\pi)^2(\sigma^2-1)^{3/2}} \operatorname{arcosh}(\sigma) + \frac{m_A m_\phi^3 \sigma(3-16\sigma^2+16\sigma^4)}{2(8\pi)^2(\sigma^2-1)^2} \\ &+ \frac{m_A^3 m_\phi (\sigma-5\sigma^3+5\sigma^5)}{2(4\pi)^2(\sigma^2-1)^2} + \frac{m_A^2 m_\phi^2(77+189\sigma^2-360\sigma^4+136\sigma^6)}{3(16\pi)^2(\sigma^2-1)^2} \Bigg] + \mathcal{O}(\epsilon^0) \end{split}$$

FFC, Kraus, Lin, Ruf, Zeng [arXiv:2205.07357]

. . .

Effective Field Theory Amplitude

- We employ the non-relativistic, non-local, 3D EFT:

$$\begin{split} L_{\rm EFT} &= \int_{\boldsymbol{k}} \hat{\phi}^{\dagger}(-\boldsymbol{k}) \left(\mathrm{i}\partial_{t} - \sqrt{\boldsymbol{k}^{2} + m_{\phi}^{2}} \right) \hat{\phi}(\boldsymbol{k}) + \int_{\boldsymbol{k}} \hat{A}^{\dagger,i}(-\boldsymbol{k}) \left(\mathrm{i}\partial_{t} - \sqrt{\boldsymbol{k}^{2} + m_{A}^{2}} \right) \hat{A}^{i}(\boldsymbol{k}) \\ &- \int_{\boldsymbol{k},\boldsymbol{k}'} \tilde{V}_{ij}(\boldsymbol{k},\boldsymbol{k}') \hat{A}^{\dagger,i}(\boldsymbol{k}') \hat{A}^{j}(\boldsymbol{k}) \hat{\phi}^{\dagger}(-\boldsymbol{k}') \hat{\phi}(-\boldsymbol{k}) \end{split}$$

Effective Field Theory Amplitude

- We employ the non-relativistic, non-local, 3D EFT:

$$\begin{split} L_{\rm EFT} &= \int_{\boldsymbol{k}} \hat{\phi}^{\dagger}(-\boldsymbol{k}) \left(\mathrm{i}\partial_{t} - \sqrt{\boldsymbol{k}^{2} + m_{\phi}^{2}} \right) \hat{\phi}(\boldsymbol{k}) + \int_{\boldsymbol{k}} \hat{A}^{\dagger,i}(-\boldsymbol{k}) \left(\mathrm{i}\partial_{t} - \sqrt{\boldsymbol{k}^{2} + m_{A}^{2}} \right) \hat{A}^{i}(\boldsymbol{k}) \\ &- \int_{\boldsymbol{k},\boldsymbol{k}'} \tilde{V}_{ij}(\boldsymbol{k},\boldsymbol{k}') \hat{A}^{\dagger,i}(\boldsymbol{k}') \hat{A}^{j}(\boldsymbol{k}) \hat{\phi}^{\dagger}(-\boldsymbol{k}') \hat{\phi}(-\boldsymbol{k}) \end{split}$$

 As described by Cheung, Rothstein, Solon [arXiv:1808.02489] the EFT amplitude is given by iterated bubbles:

Effective Field Theory Amplitude

- We employ the non-relativistic, non-local, 3D EFT:

$$\begin{split} L_{\rm EFT} &= \int_{\boldsymbol{k}} \hat{\phi}^{\dagger}(-\boldsymbol{k}) \left(\mathrm{i}\partial_{t} - \sqrt{\boldsymbol{k}^{2} + m_{\phi}^{2}} \right) \hat{\phi}(\boldsymbol{k}) + \int_{\boldsymbol{k}} \hat{A}^{\dagger,i}(-\boldsymbol{k}) \left(\mathrm{i}\partial_{t} - \sqrt{\boldsymbol{k}^{2} + m_{A}^{2}} \right) \hat{A}^{i}(\boldsymbol{k}) \\ &- \int_{\boldsymbol{k},\boldsymbol{k}'} \tilde{V}_{ij}(\boldsymbol{k},\boldsymbol{k}') \hat{A}^{\dagger,i}(\boldsymbol{k}') \hat{A}^{j}(\boldsymbol{k}) \hat{\phi}^{\dagger}(-\boldsymbol{k}') \hat{\phi}(-\boldsymbol{k}) \end{split}$$

 As described by Cheung, Rothstein, Solon [arXiv:1808.02489] the EFT amplitude is given by iterated bubbles:

- The potential \tilde{V}_{ij} is decomposed in terms of $\{\delta^{ij}, \bar{p}^{[i}q^{j]}, ...\} \sim \{\mathbb{1}, -\mathrm{i}(q \times \bar{p}) \cdot S\}$. From the amplitudes' matching, we can then fix the potential!

Example Result: Spin-Orbit Interaction

- The $(q \times \bar{p}) \cdot S$ term in the conservative potential is a linear combination of the coefficients:

Example Result: Spin-Orbit Interaction

- The $(q \times \bar{p}) \cdot S$ term in the conservative potential is a linear combination of the coefficients:

$$\begin{split} c_{1,\mathrm{red}}^{(2)}(k^2) &= c_{1,\mathrm{red}}^{(2)}(k^2) + c_{1,\mathrm{ter}}^{(2)}(k^2) + \frac{c_1^{(1)}(k^2)}{m_A^2(\gamma_1+1)} \\ c_{1,\mathrm{red}}^{(2)}(k^2) &= -\frac{2\sigma m_{\phi}}{E\xi} \,, \quad c_{2,\mathrm{red}}^{(2)}(k^2) = \frac{m_{\phi}(4m_A + 3m_{\phi})\sigma(5\sigma^2 - 3)}{4\xi\xi(\sigma^2 - 1)} \,, \\ c_{3,\mathrm{red}}^{(2)}(k^2) &= \frac{m_{\phi}}{E\xi(\sigma^2 - 1)^2} \left[-2m_A^2\sigma(3 - 12\sigma^2 + 10\sigma^4) - \left(\frac{3}{6} + 27\sigma^2 - 52\sigma^4 + \frac{43}{3}\sigma^6\right) m_A m_{\phi} - m_{\phi}^2\sigma\left(\frac{7}{2} - 14\sigma^2 + 12\sigma^4\right) \right. \\ &\quad + \frac{(4m_A + 3m_{\phi})E}{4}\sigma(2\sigma^2 - 1)(5\sigma^2 - 3) + 4m_A m_{\phi}\sigma(\sigma^2 - 6)(2\sigma^2 + 1)\sqrt{\sigma^2 - 1} \arccos(\sigma) \right] \,, \\ c_{1,\mathrm{iter}}^{(2)}(k^2) &= 0 \,, \quad c_{2,\mathrm{iter}}^{(2)}(k^2) = E\xic_1^{(2)}\frac{\partial c_1^{(1)}}{\partial k^2} + c_1^{(1)}\left(E\xi\frac{\partial c_1^{(2)}}{\partial k^2} + \frac{c_1^{(2)}\left(\frac{2E^2\xi}{k^2} + \frac{1}{\xi} - 3\right)}{2E}\right) \,, \\ c_{3,\mathrm{iter}}^{(2)}(k^2) &= \left(c_1^{(1)}\right)^2 \left(-\frac{2}{3}E^2\xi^2\frac{\partial^2 c_1^{(2)}}{\partial k^2} + \left(\xi\left(3 - \frac{E^2\xi}{k^2}\right) - 1\right)\frac{\partial c_1^{(2)}}{\partial k^2} + c_1^{(2)}\left(\frac{\frac{1}{2\xi} - 2}{E^2} + \frac{3\xi - 1}{k^2}\right)\right) \right. \\ &\quad + c_1^{(1)}\left(c_1^{(2)}\left(\left(-\frac{3E^2\xi^2}{k^2} + 6\xi - 2\right)\frac{\partial c_1^{(1)}}{\partial k^2} + \frac{4}{3}E^2\xi^2\frac{\partial^2 c_1^{(2)}}{\partial (k^2)}\right) + \frac{E^2\xi^2\left(c_1^{(2)}\right)^2}{2k^2} + c_2^{(2)}\left(\frac{\frac{3}{2\xi} - 2}{E} + \frac{E\xi}{k^2}\right)\right) - \frac{1}{6}E^2\xi^2\left(c_1^{(2)}\right)^3 \\ &\quad + c_1^{(2)}\left(\frac{2}{3}E\xi\left(\frac{\partial c_2^{(2)}}{\partial k^2} - 2E\xi\left(\frac{\partial c_1^{(1)}}{\partial k^2}\right)^2\right) + \frac{c_1^{(2)}\left(\frac{2E^2\xi^2}{k^2} + \frac{1}{4} - 3\right)}{3E}\right) + \frac{2}{3}E\xi(c_1^{(2)}\frac{\partial c_1^{(2)}}{\partial k^2} + \frac{4}{3}E\xi(c_2^{(2)}\frac{\partial c_1^{(1)}}{\partial k^2} - 2E\xi\left(\frac{\partial c_1^{(2)}}{\partial k^2}\right)^2\right) \\ \end{array}$$

Example Result: Spin-Orbit Interaction

- The $(q \times \bar{p}) \cdot S$ term in the conservative potential is a linear combination of the coefficients:

$$\begin{split} c_{1,\mathrm{red}}^{(2)}(k^2) &= c_{1,\mathrm{red}}^{(2)}(k^2) + c_{1,\mathrm{ter}}^{(2)}(k^2) + \frac{c_1^{(1)}(k^2)}{m_A^2(\gamma_1+1)} \\ c_{1,\mathrm{red}}^{(2)}(k^2) &= -\frac{2\sigma m_{\phi}}{E\xi} \,, \quad c_{2,\mathrm{red}}^{(2)}(k^2) = \frac{m_{\phi}(4m_A + 3m_{\phi})\sigma(5\sigma^2 - 3)}{4\xi\xi(\sigma^2 - 1)} \,, \\ c_{3,\mathrm{red}}^{(2)}(k^2) &= \frac{m_{\phi}}{E\xi(\sigma^2 - 1)^2} \left[-2m_A^2\sigma(3 - 12\sigma^2 + 10\sigma^4) - \left(\frac{3}{6} + 27\sigma^2 - 52\sigma^4 + \frac{43}{3}\sigma^6\right) m_A m_{\phi} - m_{\phi}^2\sigma\left(\frac{7}{2} - 14\sigma^2 + 12\sigma^4\right) \right. \\ &\quad + \frac{(4m_A + 3m_{\phi})E}{4}\sigma(2\sigma^2 - 1)(5\sigma^2 - 3) + 4m_A m_{\phi}\sigma(\sigma^2 - 6)(2\sigma^2 + 1)\sqrt{\sigma^2 - 1} \arccos(\sigma) \right] \,, \\ c_{1,\mathrm{tter}}^{(2)}(k^2) &= 0 \,, \quad c_{2,\mathrm{tter}}^{(2)}(k^2) = E\xic_1^{(2)}\frac{\partial c_1^{(1)}}{\partial k^2} + c_1^{(1)}\left(E\xi\frac{\partial c_1^{(2)}}{\partial k^2} + \frac{c_1^{(2)}}{2E}\right) \,, \\ c_{3,\mathrm{tter}}^{(2)}(k^2) &= \left(c_1^{(1)}\right)^2 \left(-\frac{2}{3}E^2\xi^2\frac{\partial^2 c_1^{(2)}}{\partial k^2} + \left(\xi\left(3 - \frac{E^2\xi}{k^2}\right) - 1\right)\frac{\partial c_1^{(2)}}{\partial k^2} + c_1^{(2)}\left(\frac{2\xi^2 - \xi}{E^2} + \frac{1}{k^2} - 3\right)\right) \right. \\ &\quad + c_1^{(1)}\left(c_1^{(2)}\left(\left(-\frac{3E^2\xi^2}{k^2} + 6\xi - 2\right)\frac{\partial c_1^{(1)}}{\partial k^2} - \frac{4}{3}E^2\xi^2\frac{\partial^2 c_1^{(1)}}{\partial (k^2)}\right) + \frac{E^2\xi^2\left(c_1^{(2)}\right)^2}{2k^2} + c_2^{(2)}\left(\frac{2\pi}{k^2} - 2 + \frac{E\xi}{k^2}\right)\right) - \frac{1}{6}E^2\xi^2\left(c_1^{(2)}\right)^3 \\ &\quad + c_1^{(2)}\left(\frac{2}{3}E\xi\left(\frac{\partial c_2^{(2)}}{\partial k^2} - 2\varepsilon\xi\left(\frac{\partial c_1^{(1)}}{\partial k^2}\right)^2\right) + \frac{c_1^{(1)}\left(\frac{2\xi^2 (2\pi^2 + \frac{1}{k^2} - 3}{3E}\right)}{3E}\right) + \frac{2}{3}E\xi\epsilon_1^{(1)}\frac{\partial c_1^{(2)}}{\partial k^2} + \frac{4}{3}E\xi\epsilon_2^{(2)}\frac{\partial c_1^{(1)}}{\partial k^2} \,. \end{split}$$

- Other terms in the potential more involved, but still relatively simple

Precision in Gravitational Waveforms

Conservative Dynamics with Spinning Black Hole at $\mathcal{O}(G^3)$

Multi-Loop Numerical Unitarity for GW Astronomy

Two-Loop Numerical Unitarity

Decompose \mathcal{A} in terms of *master* integrals:

$$\mathcal{A}^{(L)} = \sum_{\Gamma \in \Delta} \sum_{i \in M_{\Gamma}} c_{\Gamma,i} \, \mathcal{I}_{\Gamma,i}$$

Two-Loop Numerical Unitarity

Decompose A in terms of *master* integrals:

$$\mathcal{A}^{(L)} = \sum_{\Gamma \in \Delta} \sum_{i \in M_{\Gamma}} c_{\Gamma,i} \ \mathcal{I}_{\Gamma,i}$$

Drop the integral symbol, introducing the integrand ansatz:

$$\mathcal{A}^{(L)}(\ell_l) = \sum_{\Gamma \in \Delta} \sum_{k \in Q_{\Gamma}} c_{\Gamma,k} \frac{m_{\Gamma,k}(\ell_l)}{\prod_{j \in P_{\Gamma}} \rho_j(\ell_l)}$$

Functions $Q_{\Gamma} = \{m_{\Gamma,k}(\ell_l) | k \in Q_{\Gamma}\}$ parametrize every possible integrand (up to a given power of loop momenta). E.g.:

Two-Loop Numerical Unitarity

Decompose A in terms of *master* integrals:

$$\mathcal{A}^{(L)} = \sum_{\Gamma \in \Delta} \sum_{i \in M_{\Gamma}} c_{\Gamma,i} \ \mathcal{I}_{\Gamma,i}$$

Drop the integral symbol, introducing the integrand ansatz:

$$\mathcal{A}^{(L)}(\ell_l) = \sum_{\Gamma \in \Delta} \sum_{k \in Q_{\Gamma}} c_{\Gamma,k} \frac{m_{\Gamma,k}(\ell_l)}{\prod_{j \in P_{\Gamma}} \rho_j(\ell_l)}$$

Functions $Q_{\Gamma} = \{m_{\Gamma,k}(\ell_l) | k \in Q_{\Gamma}\}$ parametrize every possible integrand (up to a given power of loop momenta). E.g.:

- Tensor Basis
- Scattering Plane Tensor Basis
- Master-Surface Basis

- Given diagram Γ make an *adaptive* momentum parametrization

$$\ell_{l} = \sum_{j \in B_{l}^{p}} v_{l}^{j} r^{lj} + \sum_{\substack{j \in B_{l}^{t} \\ \overbrace{\mathcal{I}} \\ \fbox{S} \ \varUpsilon{S}}} v_{j}^{j} \alpha^{lj} + \sum_{\substack{i \in B^{ct} \\ \overbrace{\mathcal{I}} \\ \fbox{S} \ \varUpsilon{S}}} \frac{n^{i}}{(n^{i})^{2}} \alpha^{li} + \sum_{\substack{i \in B^{ct} \\ \overbrace{\mathcal{I}} \\ \fbox{S} \ \varUpsilon{S}}} n^{i} \mu_{l}^{i}$$

- Given diagram Γ make an *adaptive* momentum parametrization

$$\ell_{l} = \sum_{j \in B_{l}^{p}} v_{l}^{j} r^{lj} + \sum_{\substack{j \in B_{l}^{t} \\ \overleftarrow{\mathcal{I}} \\ \overleftarrow{\mathcal{S}} \\ \overleftarrow{\mathcal{S}}$$

- Tensor Basis: constructed from all monomials $(\alpha^{lj})^{\vec{a}}(\alpha^{li})^{\vec{b}}$ with $j \in B_l^t$ and $i \in B^{ct}$

- Given diagram Γ make an *adaptive* momentum parametrization

$$\ell_{l} = \sum_{j \in B_{l}^{p}} v_{l}^{j} r^{lj} + \sum_{\substack{j \in B_{l}^{t} \\ \overleftarrow{\mathcal{I}} \\ \overleftarrow{\mathcal{S}} \\ \overleftarrow{\mathcal{S}}$$

- Tensor Basis: constructed from all monomials $(\alpha^{lj})^{\vec{a}}(\alpha^{li})^{\vec{b}}$ with $j \in B_l^t$ and $i \in B^{ct}$
- Scattering Plane Tensor Basis: constructed from all monomials $(\alpha^{lj})^{\vec{a}}$ with $j \in B_l^t$ and one-loop-like surface terms with common transverse variables [Abreu, FFC, Ita, Page, Zeng [arXiv:1703.05273]; see also Ossola, Papadopoulos, Pittau; Bobadilla, Mastrolia, Peraro, Primo]

- Given diagram Γ make an *adaptive* momentum parametrization

$$\ell_{l} = \sum_{j \in B_{l}^{p}} v_{l}^{j} r^{lj} + \sum_{\substack{j \in B_{l}^{t} \\ \overleftarrow{\mathcal{I}} \\ \overleftarrow{\mathcal{S}} \\ \overleftarrow{\mathcal{S}}$$

- Tensor Basis: constructed from all monomials $(\alpha^{lj})^{\vec{a}}(\alpha^{li})^{\vec{b}}$ with $j \in B_l^t$ and $i \in B^{ct}$
- Scattering Plane Tensor Basis: constructed from all monomials $(\alpha^{lj})^{\vec{a}}$ with $j \in B_l^t$ and one-loop-like surface terms with common transverse variables [Abreu, FFC, Ita, Page, Zeng [arXiv:1703.05273]; see also Ossola, Papadopoulos, Pittau; Bobadilla, Mastrolia, Peraro, Primo]

These integrand parametrizations have been automated in Caravel. Tipically less than $\mathcal{O}(5\%)$ (IBP-)reducible monomials (with scattering-plane variables) remain!

Master/Surface Decompositions

Consider the integration by parts (IBP) relation on Γ

$$0 = \int \prod_{i} d^{D} \ell_{i} \, \frac{\partial}{\partial \ell_{j}^{\nu}} \left[\frac{u_{j}^{\nu}}{\prod_{k \in P_{\Gamma}} \rho_{k}} \right]$$

making it *unitarity compatible* (controlling the propagator structure) [Gluza, Kadja, Kosower '10; Schabinger '11]

$$u_j^{\nu} \frac{\partial}{\partial \ell_j^{\nu}} \rho_k = f_k \rho_k$$

Write ansatz for u_j^{ν} expanded in external and loop momenta, and solve polynomial equations using algebraic geometry techniques

Build a full set of surface terms and fill the rest of the space with master integrands

Related [Boehm, Georgoudis, Larsen, Schulze, Zhang '16 - '19] [Agarwal, von Manteuffel '19]

Surface Terms Factory

Solutions to u_j^{ν} are power-counting independent. When parametrizing a given numerator of a $\Gamma \in \Delta$ we need to consider the required power-counting for the theory at hand.

But we can *industrially* produce surface terms by considering polynomials $t_r(\ell_l)$, and then considering the vector $t_r(\ell_l)u_j^{\nu}$:

$$m_{\Gamma,(r,s)} = \frac{u_j^{\nu}}{\partial \ell_i^{\nu}} \frac{\partial t_r(\ell_l)}{\partial \ell_i^{\nu}} + t_r(\ell_l) \left(\frac{\partial u_j^{\nu}}{\partial \ell_i^{\nu}} - \sum_{k \in P_{\Gamma}} f_k^s \right)$$

Surface Terms Factory

Solutions to u_j^{ν} are power-counting independent. When parametrizing a given numerator of a $\Gamma \in \Delta$ we need to consider the required power-counting for the theory at hand.

But we can *industrially* produce surface terms by considering polynomials $t_r(\ell_l)$, and then considering the vector $t_r(\ell_l)u_j^{\nu}$:

$$m_{\Gamma,(r,s)} = \frac{u_j^{\nu}}{\partial \ell_i^{\nu}} \frac{\partial t_r(\ell_l)}{\partial \ell_i^{\nu}} + t_r(\ell_l) \left(\frac{\partial u_j^{\nu}}{\partial \ell_i^{\nu}} - \sum_{k \in P_{\Gamma}} f_k^s \right)$$

A four-graviton amplitude calculation in **Einstein gravity** structurally the same as a four-gluon amplitude calculation in **QCD**!

Unitarity Approach to Computing Integrand Coefficients

[Bern, Dixon, Dunbar, Kosower] [Britto, Cachazo, Feng]

- In on-shell configurations of ℓ_l , the integrand factorizes and produces a *cut equation*:

$$\sum_{\text{states}} \prod_{i \in T_{\Gamma}} \mathcal{A}_{i}^{\text{tree}}(\ell_{l}^{\Gamma}) = \sum_{\substack{\Gamma' \geq \Gamma\\k \in Q_{\Gamma'}}} \frac{c_{\Gamma',k} \ m_{\Gamma',k}(\ell_{l}^{\Gamma})}{\prod_{j \in (P_{\Gamma'}/P_{\Gamma})} \rho_{j}(\ell_{l}^{\Gamma})}$$

- Need efficient computation of (products of) tree-level amplitudes
 - Off-and-on-shell recursion (Berends-Giele-like) relations
 - D_s -dimensional state sum

Unitarity Approach to Computing Integrand Coefficients

[Bern, Dixon, Dunbar, Kosower] [Britto, Cachazo, Feng]

- In on-shell configurations of ℓ_l , the integrand factorizes and produces a *cut equation*:

$$\sum_{\text{states}} \prod_{i \in T_{\Gamma}} \mathcal{A}_{i}^{\text{tree}}(\ell_{l}^{\Gamma}) = \sum_{\substack{\Gamma' \geq \Gamma\\k \in Q_{\Gamma'}}} \frac{c_{\Gamma',k} \ m_{\Gamma',k}(\ell_{l}^{\Gamma})}{\prod_{j \in (P_{\Gamma'}/P_{\Gamma})} \rho_{j}(\ell_{l}^{\Gamma})}$$

- Need efficient computation of (products of) tree-level amplitudes
 - Off-and-on-shell recursion (Berends-Giele-like) relations
 - D_s-dimensional state sum

Never construct analytic integrand, numerics for every phase-space point!

For a maximal:

$$N\left(\overleftarrow{\vdash},\ell_l^{\rm c}\right) \quad = \quad R\left(\overleftarrow{\vdash},\ell_l^{\rm c}\right)$$

For a maximal:

$$N\left(\widecheck{H},\ell_l^{\mathrm{c}}
ight) = R\left(\widecheck{H},\ell_l^{\mathrm{c}}
ight)$$

For a next-to-maximal:

$$\begin{split} & N\left({\sum}, \ell_l^{\rm f}\right) = R\left({\sum}, \ell_l^{\rm f}\right) \\ & -\frac{1}{\rho_{\rm fb}} N\left({\sum}, \ell_1^{\rm f}\right) - \frac{1}{\rho_{\rm fc}} N\left({\sum}, \ell_l^{\rm f}\right) \end{split}$$

For a maximal:

$$N\left(\widecheck{H},\ell_l^{
m c}
ight) = R\left(\widecheck{H},\ell_l^{
m c}
ight)$$

For a next-to-maximal:

$$\begin{split} & N\left({\sum}, \ell_l^{\rm f}\right) = R\left({\sum}, \ell_l^{\rm f}\right) \\ & -\frac{1}{\rho_{\rm fb}} N\left({\sum}, \ell_1^{\rm f}\right) - \frac{1}{\rho_{\rm fc}} N\left({\sum}, \ell_l^{\rm f}\right) \end{split}$$

(a) (b) (c) (d)

And for the combined single-pole diagram an bubble-box:

$$\begin{split} N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) &+ \frac{1}{\rho_{\mathrm{he}}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) = R\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) \\ &- \frac{1}{\rho_{\mathrm{hf}}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) - \frac{1}{\rho_{\mathrm{hg}}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) - \frac{1}{(\rho_{\mathrm{he}})^{2}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) \\ &- \frac{1}{\rho_{\mathrm{hf}}\rho_{\mathrm{fb}}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) - \frac{1}{\rho_{\mathrm{hf}}\rho_{\mathrm{fc}}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) - \frac{1}{\rho_{\mathrm{hg}}\rho_{\mathrm{gd}}}N\left(\widecheck{\boldsymbol{\Sigma}},\ell_{l}^{\mathrm{h}}\right) \end{split}$$

The $\operatorname{Caravel}$ Framework

A framework to explore multi-loop multi-leg scattering amplitudes in the SM and beyond

The $\operatorname{Caravel}$ Framework

A framework to explore multi-loop multi-leg scattering amplitudes in the SM and beyond

A modular C++17 library implementing the multi-loop numerical unitarity method

[Abreu, Dormans, FFC, Ita, Kraus, Page, Pascual, Ruf, Sotnikov, arXiv:2009.11957]

- Numerics in (high-precision) floating-point, rational and modular arithmetic
- Generic design for calculations in QFT, e.g. in the SM, gravity theories, and more
- Algebraic tools for semi-analytical calculations in C++
- Publicly available @ GitLab!

The $\operatorname{Caravel}$ Framework

Includes general tools for: - D-dimensional kinematics - graph isomorphism techniques - tree-level and multi-loop cut calculations - Generic scattering-plane integrand parametrizations - Selected master-surface decompositions - on-shell phase-space parametrizations - Feynman integral handling - Algebraic tools Caravel @ GitLab: https://gitlab.com/ caravel-public/caravel

Outlook

- QFT techniques developed for collider phenomenology playing a key role in improving the description of compact binary mergers
- We presented the conservative potential for compact binary systems with a spinning black hole at $\mathcal{O}(G^3)$ and to all orders in velocity and including up-to S^2 terms
- The multi-loop numerical unitarity method is ready to tackle further calculations
- Future directions include radiation effects, higher spins, finite-size effects, and higher loops

Outlook

- QFT techniques developed for collider phenomenology playing a key role in improving the description of compact binary mergers
- We presented the conservative potential for compact binary systems with a spinning black hole at $\mathcal{O}(G^3)$ and to all orders in velocity and including up-to S^2 terms
- The multi-loop numerical unitarity method is ready to tackle further calculations
- Future directions include radiation effects, higher spins, finite-size effects, and higher loops

Thanks!