Pushing the accuracy of parton showers for hadron colliders

Silvia Ferrario Ravasio

2 June 2023

Mrinal Dasgupta Manchester/CERN

Frédéric Dreyer Oxford

Keith Hamilton Univ. Coll. London

Emma Slade

Oxford (PhD) \rightarrow GSK.ai

2018-20

Basem El-Menoufi Manchester

Alexander Karlberg

PanScales A project to bring logarithmic understanding and accuracy to parton showers

Melissa van Beekveld Oxford

Gavin Salam Oxford

since 2017

Grégory Soyez IPhT, Saclay/CERN

since

2020

Jack Helliwell Oxford

CERN

Rok Medves Oxford (PhD)

Ludovic Scyboz Oxford

Alba Soto-Ontoso CERN

Silvia Ferrario Ravasio CERN

Shower Monte Carlo Event Generators

 Parton Showers are at the core of Shower Mont to realistically describe complex collider events

• Reproduce much of the data from LHC and its predecessors

Unknown or poor formal accuracy, especially of the Parton Shower component

• Parton Showers are at the core of Shower Monte Carlo Generators, which contain all the ingredients

redecessors the Parton Shower component

How do we define how good is a Parton Shower?

- The aim of a Parton Shower is to evolve the system across a large span of scale: large logarithms L of the ratios of the scales involved in the process arise during this evolution
- We can use analytic resummation to classify the logarithmic accuracy of a Shower

$$\Sigma(\log O < L) = \exp\left(\underbrace{Lg_{LL}(\alpha_s L)}_{\text{leading logs}} + \underbrace{g_{\text{NLL}}(\alpha_s L)}_{\text{next-to LL}} + \dots\right)$$

E.g.
$$O = \frac{p_{\perp,Z}}{m_Z}$$
 and $p_{\perp,Z} \approx 1$ GeV, $|\alpha_s L| = m_Z$

0.55: Next-to-Leading Logarithms are $\mathcal{O}(1)$

How do we define how good is a Parton Shower?

- The aim of a Parton Shower is to evolve the system across a large span of scale: large logarithms L of the ratios of the scales involved in the process arise during this evolution
- We can use analytic resummation to classify the logarithmic accuracy of a Shower

$$\Sigma(\log O < L) = \exp\left(\begin{array}{c} Lg_{\text{LL}}(\alpha_s L) + g_{\text{NLL}}(\alpha_s L) + \dots\right)$$

leading logs next-to LL

E.g.
$$O = \frac{p_{\perp,Z}}{m_Z}$$
 and $p_{\perp,Z} \approx 1$ GeV, $|\alpha_s L| =$
Are the most widely used showers

• (Abridged) PanScales criteria to assess NLL accuracy:

0.55: Next-to-Leading Logarithms are $\mathcal{O}(1)$

NLL? If no, can we build NLL showers?

A. Fixed-order: emissions widely separated in angle, are independent from each other **B.** All-orders: the showers reproduces results from analytic resummation at NLL

• Parton showers describe the energy degradation of hard partons via a subsequent chain of $1 \rightarrow 2$ collinear splittings

• $\Phi_{rad} = \{v, z, \varphi\}$, where $v \in \{p_{\perp}, E\theta, ...\}$ acts as ordering scale, z is

``energy fraction'' scale, and ϕ is an azimuthal angle

- Parton showers describe the energy degradation of hard partons via a subsequent chain of $1 \rightarrow 2$ collinear splittings
- $\Phi_{rad} = \{v, z, \varphi\}$, where $v \in \{p_1, E\theta, ...\}$ acts as ordering scale, z is "`energy fraction" scale, and ϕ is an azimuthal angle

Herwig7 angular-ordered shower

• Emissions ordered in angle to describe correctly the soft limit

• The coherent branching formalism [Marchesini, Webber '88], [Gieseke, Stephens, Webber <u>hep-ph/0310083</u>] guarantees "by construction" NLL accuracy across a broad range of observables... provided the actual implementation of the recoil scheme to ensure momentum conservation leaves soft emissions untouched [G. Bewick, SFR, Richardson, Seymour, <u>1904.11866</u>, <u>2107.04051</u>]

- Parton showers describe the energy degradation of hard partons via a subsequent chain of $1 \rightarrow 2$ collinear splittings
- $\Phi_{rad} = \{v, z, \varphi\}$, where $v \in \{p_1, E\theta, ...\}$ acts as ordering scale, z is "`energy fraction" scale, and ϕ is an azimuthal angle

Herwig7 angular-ordered shower

• Emissions ordered in angle to describe correctly the soft limit

• The coherent branching formalism [Marchesini, Webber '88], [Gieseke, Stephens, Webber <u>hep-ph/0310083</u>] guarantees "by construction" NLL accuracy across a broad range of observables... provided the actual implementation of the recoil scheme to ensure momentum conservation leaves soft emissions untouched [G. Bewick, SFR, Richardson, Seymour, <u>1904.11866</u>, <u>2107.04051</u>]

- Angular-ordering arises after azimuthal average: this formalism cannot describe nonglobal observables, which are sensitive to the full angular distribution of soft emsn, at NLL [Banfi, Corcella, Dasgupta, hep-ph/0612282]
- Matching/merging beyond the hardest emission is very difficult (see e.g. <u>1604.04948</u>), and we are currently limited to NLO!

- Parton showers describe the energy degradation of hard partons via a subsequent chain of $1 \rightarrow 2$ collinear splittings
- $\Phi_{rad} = \{v, z, \varphi\}$, where $v \in \{p_1, E\theta, ...\}$ acts as ordering scale, z is "`energy fraction" scale, and ϕ is an azimuthal angle

Herwig7 angular-ordered shower

• Emissions ordered in angle to describe correctly the soft limit

• The coherent branching formalism [Marchesini, Webber '88], [Gieseke, Stephens, Webber <u>hep-ph/0310083</u>] guarantees "by construction" NLL accuracy across a broad range of observables... provided the actual implementation of the recoil scheme to ensure momentum conservation leaves soft emissions untouched [G. Bewick, SFR, Richardson, Seymour, 1904.11866, 2107.04051]

Angular-ordering arises after azimuthal average: this formalism cannot describe nonclobal abcorvables, which are consitive to the full angular distribution of coft omsn. The dipole formalism overcomes both problems! But retaining NLL is more difficult! <u>04948</u>, and we are currently limited to NLO!

Dipole showers in a nutshell

The most popular showers are <u>dipole showers</u>.
 [Gustafson, Pettersson, '88]

 New partons are emitted from a dipole, which is a pair of colour-connected partons: full angular dependence of soft emissions is retained!

Dipole showers in a nutshell

• The original dipole leg closer in angle (in the dipole frame) to the new emission takes the p_T recoil, and is tagged as emitter

$$p_{3} = z_{1}\tilde{p}_{1} + z_{2}\tilde{p}_{2} + k_{\perp}$$

$$P_{1,2\to1,2,3} \approx P_{1\to1,3}(z_{1})\Theta(\theta_{13}^{dip} > \theta_{23}^{dip}) + P_{2\to2,3}(z_{2})\Theta(\theta_{23}^{dip} > \theta_{13}^{dip})$$

1 is the emitter

• The most popular showers are <u>dipole showers</u>. [Gustafson, Pettersson, '88]

New partons are emitted from a dipole, which is a pair of colour-connected partons: full angular dependence of soft emissions is retained!

2 is the emitter

Dipole showers in a nutshell

• The original dipole leg closer in angle (in the dipole frame) to the new emission takes the p_T recoil, and is tagged as emitter

$$P_{1,2\rightarrow 1,2,3} \approx \underbrace{P_{1\rightarrow 1,3}(z_1)\Theta(\theta_{13}^{\mathrm{dip}} > \theta_{23}^{\mathrm{dip}})}_{\mathbf{1} \text{ is the emitter}} + \underbrace{P_{2\rightarrow 2,3}(z_2)\Theta(\theta_{23}^{\mathrm{dip}} > \theta_{13}^{\mathrm{dip}})}_{\mathbf{2} \text{ is the emitter}}$$

order (NLO or NNLO) calculations, as we can just correct the first (=hardest)

• The most popular showers are <u>dipole showers</u>. [Gustafson, Pettersson, '88]

New partons are emitted from a dipole, which is a pair of colour-connected partons: full angular dependence of soft emissions is retained!

• Emissions are ordered in transverse momentum (or virtuality): this simplifies matching with higher

- Initial-state radiation: we cannot assign the p_T recoil to the incoming parton (q_0)
- In $pp \rightarrow Z$ the Z boson must absorb the p_T recoil for each initial-state emission.

The parton extracted from the proton must stay aligned with the beam direction

Expectation : $\tilde{p}_{TZ} \rightarrow |\vec{\tilde{k}}_{T1} + \vec{k}_{T2}|$

- Initial-state radiation: we cannot assign the p_T recoil to the incoming parton
- In $pp \rightarrow Z$ the Z boson must absorb the p_T recoil for each initial-state emission.
- But in common dipole showers, emissions from Initial-Final dipoles always make the final state leg recoil!
- Known to yield wrong $p_{T,Z}$ at NLL! [Parisi, Petronzio NPB 154 (1979) 427-440, Nagy, Soper 0912.4534]

• Initial-state radiation: we cannot assign the p_T recoil to

Known to yield wrong $p_{T,Z}$ at NLL! [Parisi, Petronzio NPB 154 (1979) 427-440, Nagy, Soper JHEP 03 (2010) 097]

Possible solution: assign the p_T recoil to the incoming parton, and then boost everything to realign it with the beam axis [Platzer, Gieseke <u>0909.5593</u>]

 p_i

How does a **second** emission affect the **first** emission's momentum?

van Beekveld, S.F.R., Salam, Soto-Ontoso, Soyez, Verheyen, <u>2205.02237</u>

How does a **second** emission affect the **first** emission's momentum?

Transverse momentum of

van Beekveld, S.F.R., Salam, Soto-Ontoso, Soyez, Verheyen, <u>2205.02237</u>

How does a **second** emission affect the **first** emission's momentum?

Transverse momentum of

van Beekveld, S.F.R., Salam, Soto-Ontoso, Soyez, Verheyen, <u>2205.02237</u>

Dipole- k_t (global)

the **first** emission's momentum?

dipole separation

Soyez, Verheyen, <u>2205.02237</u>

Dipole- k_t (global)

NLL PanScales showers for hadron collision: PanLocal

- Kinematic map with the global boost for ISR

PanLocal for FSR: Dasgupta, Dreyer, Hamilton, Monni,

NLL PanScales showers for hadron collision: PanLocal

- Kinematic map with the global boost for ISR

PanLocal for FSR: Dasgupta, Dreyer, Hamilton, Monni,

- The p_T recoil is always taken by the Z boson

PanGlobal for FSR: Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez, <u>2002.11114</u>

van Beekveld, S.F.R., Salam, Soto-Ontoso, Soyez, Verheyen, <u>2205.02237</u>

NLL PanScales showers for DIS

The PanScales showers for DIS differ from the one for *pp* in their treatment of ISR, and in the choices of the invariants to preserve.

- Global boost that assignes the k_{\perp} recoil due to ISR mainly to partons that carry a large fraction of the original struck quark momentum
- We preserve the t-channel momentum transferred q^{μ}

van Beekveld, S.F.R., <u>2305.08645</u>

NLL PanScales showers for DIS

The PanScales showers for DIS differ from the one for pp in their treatment of ISR, and in the choices of the invariants to preserve.

- quark momentum

NLL PanScales showers for DIS and VBF

The PanScales showers for DIS differ from the one for *pp* in their treatment of ISR, and in the choices of the invariants to preserve.

- Global boost that assignes the k_{\parallel} recoil due to ISR mainly to partons that carry a large fraction of the original struck quark momentum
- We preserve the t-channel momentum transferred q^{μ}

We treat Higgs production in Vector Boson **Fusion** as a double copy of **DIS**: the two hadronic sectors are showered independently. We miss non-factorisable corrections, which are subleading-colour NLL contributions that appear at NNLO, and are typically very small after VBF cuts (see Christian Brønnum-Hansen's talk)

van Beekveld, S.F.R., <u>2305.08645</u>

NLL checks for popular global observables in DY and DIS

 $\Sigma(O < e^{L}) = \exp\left(Lg_{LL}(\alpha_{s}L) + g_{NLL}(\alpha_{s}L) + \alpha_{s}g_{NNLL}(\alpha_{s}L) + \dots\right)$

NLL accuracy means $\lim_{\alpha_s \to 0} \frac{\sum_{\mathsf{PS}}(\alpha_s, \log V < L)}{\sum_{\mathsf{NIII}} (\alpha_s, \log V < L)} = 1 \quad \text{at fixed } \lambda = \alpha_s L$

NLL checks for popular global observables in DY and DIS

 $\Sigma(O < e^{L}) = \exp\left(Lg_{LL}(\alpha_{s}L) + g_{NLL}(\alpha_{s}L) + \alpha_{s}g_{NNLL}(\alpha_{s}L) + \dots\right)$

NLL accuracy means $\lim_{\alpha_s \to 0} \frac{\sum_{\mathsf{PS}}(\alpha_s, \log V < L)}{\sum_{\mathsf{NIII}} (\alpha_s, \log V < L)} = 1 \quad \text{at fixed } \lambda = \alpha_s L$

Selection of NLL accuracy tests for e^+e^- , DY, ggH and DIS

NLL dipole showers in the literature

Several NLL showers for e^+e^- have been developed also by other groups. NLL accuracy is achieved thanks to a careful choice of the ordering scale and of the recoil: $p_k = z_+ n_+ + z_- n_- + k_+$

PanLocal

 $k_t \sqrt{\theta}$ ordered

Recoil \perp : local +: local -: local

Tests analytical + explicit numerical for many global and non global observables, for e^+e^- , <u>ggH, DY</u>, <u>DIS</u>

PanGlobal

 k_t or $k_t \sqrt{\theta}$ ordered

Recoil ⊥: global +: local -: local

Tests analytical + explicit numerical for many global and non global observables, for e^+e^- , <u>ggH, DY</u>, <u>DIS</u>

 e^+e^- : Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez <u>2002.11114</u> *pp*: van Beekveld, SFR, Hamilton, Soto-Ontoso, Salam, Soyez, Verheyen, *2205.02237;* **DIS/VBF**: van Beekveld, SFR <u>2305.08645</u>

Deductor

 $k_t \theta$ (" Λ ") ordered

Recoil \perp : local +: local -: global

Tests analytical /numerical for thrust in e^+e^-

Nagy & Soper <u>2011.04777</u> (+past decade)

F	F	H	P

 k_t ordered

Recoil ⊥: global +: local -: global

Tests analytical for thrust & multiplicity in e^+e^-

Forshaw, Holguin, *Plätzer: 2003.06400* Alaric

 k_t ordered

Recoil

- ⊥: global
- +: local
- -: global

Tests analytical + explicit numerical for some event shapes in e^+e^-

Herren, Hoche, Krauss, Reichelt, Shoenner: 2208.06057

NLL dipole showers in the literature

Several NLL showers for e^+e^- have been developed also by other groups. NLL accuracy is achieved thanks to a careful choice of the ordering scale and of the recoil: $p_k = z_+n_+ + z_-n_- + k_\perp$

PanLocal

 $k_t \sqrt{\theta}$ ordered

Recoil ⊥: local +: local -: local

PanGlobal

 k_t or $k_t \sqrt{\theta}$ ordered

Recoil ⊥: global +: local

-: local

Tests analytical + explicit

Tests analytical + explicit

nu
globOnly showers that can do Deep Inelasticy
alglobScattering, colour-singlet production in
pp collisions (e.g. Drell Yan, gluon fusion)
and Vector Boson Fusion at NLLy
and Vector Boson Fusion at NLL

e⁺e⁻ :Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez <u>2002.11114</u> pp : van Beekveld, SFR, Hamilton, Soto-Ontoso, Salam, Soyez, Verheyen, <u>2205.02237</u>; **DIS/VBF**: van Beekveld, SFR <u>2305.08645</u> Can handle hadronhadron collisions, but not DIS. Formal accuracy only investigated for e^+e^-

Deductor

 $k_t \theta$ (" Λ ") ordered

Recoil ⊥: local +: local

-: global

Tests

Nagy & Soper <u>2011.04777</u> (+past decade)

F	ŀ	H	P

 k_t ordered

Recoil ⊥: global +: local -: global

Tests analytical for thrust & multiplicity in e^+e^- Alaric

 k_t ordered

Recoil

- ⊥: global
- +: local
- -: global

Tests analytical + explicit numerical for some event

Limited to final state radiation

Forshaw, Holguin, Plätzer: <u>2003.06400</u> Herren, Hoche, Krauss, Reichelt, Shoenner: <u>2208.06057</u>

Exploratory phenomenology: azimuthal correlations in DY

van Beekveld, S.F.R., Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen, <u>2207.09467</u>

Exploratory phenomenology: azimuthal correlations in DY

> Impossible to tune a LL shower to reproduce a NLL across several energy scales (at 91 GeV subleading effects are more sizeable and the shower is more tunable than at 500 GeV!)

> van Beekveld, S.F.R., Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen, 2207.09467

Exploratory phenomenology: azimuthal correlations in DY

Impossible to tune a LL shower to reproduce a NLL across several energy scales (at 91 GeV subleading effects are more sizeable and the shower is more tunable than at soo GeV!) Difference among PS should be done to estimate PS uncertainties, but more analytic understanding is required (i.e. PS differences might not be enough)

> van Beekveld, S.F.R., Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen, <u>2207.09467</u>

Towards a complete public NLL shower

Going beyond NLL

Next steps

Towards a complete public NLL shower

Interface to Pythia work in progress

uncertainty estimates

Next steps

hadron collisions:

more complex processes & associated tests

Heavy quarks Essential for phenomenology

Matching to hard matrix elements

Essential for phenomenology, must be done in way that retains NLL accuracy, and possibly augments it. Already achieved for e^+e^- [Karlberg, Hamilton, Salam, Scyboz, Verheyen, <u>2301.09645</u>], work in progress for e^+e^- with massive quarks, DY, ggH, DIS, VBF

BACKUP

Why do we need to improve Parton Showers?

The dominant uncertainty in the Jet Energy Scale is fro the showers' modelling

- \rightarrow It enters all the measurements involving jets
- \rightarrow Contributes to the 70% of uncertainty of precise top mass determinations

	Source	Uncertainty [Ge	V]
-	Trigger	0.02	
	Lepton ident./isolation	0.02	
	Muon momentum scale	0.03	
	Electron momentum scale	0.10	
	Jet energy scale	0.57	
	Jet energy resolution	0.09	
	b tagging	0.12	
	Pileup	0.09	
	t ī ME scale	0.18	
	tW ME scale	0.02	
	DY ME scale	0.06	Т
	NLO generator	0.14	IC
	PDF	0.05	
	$\sigma_{{ m t}{ar t}}$	0.09	
	Top quark $p_{\rm T}$	0.04	m
	ME/PS matching	0.16	
	UE tune	0.03	
	t ī ISR scale	0.16	
	tW ISR scale	0.02	
	tŧ FSR scale	0.07	
	tW FSR scale	0.02	
	b quark fragmentation	0.11	
	b hadron BF	0.07	
m	Colour reconnection	0.17	
	DY background	0.24	
	tW background	0.13	
	Diboson background	0.02	
	W+jets background	0.04	
	t ī background	0.02	
	Statistical	0.14	
	MC statistical	0.36	
	Total m_{t}^{MC} uncertainty	+0.68	
		-0.73	

Top quark mass from CMS, 2019 [<u>1812.10505</u>] $m_t = 172.33$ ± 0.14 (stat) +0.66 -0.72(syst) GeV

Angular-ordered Parton Showers

- emissions

Herwig7 angular-ordered shower

- Derived in the collinear limit (1 \rightarrow 2 splittings)
- Emissions ordered in angle . . .
- . . . to describe correctly the soft limit

 Parton showers describe the energy degradation of hard partons via a subsequent chain of soft (small energy) and collinear (small θ)

• $\Phi_{rad} = \{v, z, \varphi\}$, where $v \in \{p_{\perp}, E\theta, ...\}$ acts as ordering scale, z is "`energy fraction" scale, and ϕ is an azimuthal angle

Logarithmic Accuracy of Angular-ordered Showers

- Such calculations implicitly assume emissions widely separated in angle are independent from each others: practical implementation of the shower recoil scheme must also satisfy this requirement [G. Bewick, SFR, Richardson, Seymour, <u>1904.11866</u>]

• Ordering a parton shower in angle easily enable to have <u>colour coherence</u>, formalism used to make several NLL calculations [Marchesini, Webber '88], [Gieseke, Stephens, Webber hep-ph/0310083]

Logarithmic Accuracy of Angular-ordered Showers

- Such calculations implicitly assume emissions widely separated in angle are independent from each others: practical implementation of the shower recoil scheme must also satisfy this requirement [G. Bewick, SFR, Richardson, Seymour, <u>1904.11866</u>] +Initial-State Radiation in 2107.04051
- Assinging the k_{\parallel} recoil is non-trivial when incoming partons are present [Platzer, Richardson]

absorbs the k_{\perp} recoil for all the ISR emissions

• Ordering a parton shower in angle easily enable to have <u>colour coherence</u>, formalism used to make several NLL calculations [Marchesini, Webber '88], [Gieseke, Stephens, Webber hep-ph/0310083]

the k_{\perp} recoil for all the ISR emissions

Limitations of Angular-Ordered Showers

- Life is not just made by logarithms: fixedorder corrections are crucial to model hard jets!
- Going beyond NLO is very challenging, but it seems necessary!

Limitations of Angular-Ordered Showers

- Life is not just made by logarithms: fixedorder corrections are crucial to model hard jets!
- Going beyond NLO is very challenging, but it seems necessary!

<u>0612282</u>]

• Angular-ordering arises after azimuthal average: this formalism cannot describe non-global observables, which are sensitive to the full angular distribution of soft emsn, at NLL [Banfi, Corcella, Dasgupta, hep-ph/

Limitations of Angular-Ordered Showers

- Life is not just made by logarithms: fixedorder corrections are crucial to model hard jets!
- Going beyond NLO is very challenging, but it seems necessary!

<u>0612282</u>

• Angular-ordering arises after azimuthal average: this formalism cannot describe non-global observables, which are sensitive to the full angular distribution of soft emsn, at NLL [Banfi, Corcella, Dasgupta, hep-ph/

It's time for better Parton Showers!

Silvia Ferrario Ravasio

Radcor, backup slides

Slide from G. Salam

20	00	2010	20	20
0	NLO	Ν	NLO []	[N3LO
xed-ord	er matchin	ig of partor	n showers	
f NLL]	
(many of t	oday's widely-	used showers	only LL@leading	-colour)
	NNLL[]		N3LL	
summati	ion (DY&H	iggs)		
	NNLO		[parts o	f N3LC
	• • • • •]		N3LO	
ron coll	iders			
	:			

D]

44

PanScales status: $e^+e^- \rightarrow jets$, $pp \rightarrow Z/W/H$, DIS, VBF (structure function approx) (w. massless quarks)						
phase space region	critical ingredients	observables	accuracy	colour		
soft collinear	no long-distance recoil	global event shapes	NLL	full		
hard collinear	DGLAP split-fns + amplitude spin- correlations	fragmentation functions & special azimuthal observables	NLL	full		
soft commensurate angle	large-N _c dipoles	energy flow in slice	NLL	full up to 2 emsns, then LC		
soft, then hard collinear	soft spin correlations	special azimuthal observables	NLL	full up to 2 emsns, then LC		
all nested		subjet and/or particle multiplicity	NDL	full		
Ferrario Ravasio		Radcor, backup slides	Slide	from G. Salam		

how large are the logarithms?

$Q \; [{ m GeV}]$	$\alpha_s(Q)$	$p_{t,\min} \; [\text{GeV}]$	$\xi = \alpha_s L^2$	$\lambda = \alpha_s L$	au
91.2	0.1181	1.0	2.4	-0.53	0.27
91.2	0.1181	3.0	1.4	-0.40	0.18
91.2	0.1181	5.0	1.0	-0.34	0.14
1000	0.0886	1.0	4.2	-0.61	0.36
1000	0.0886	3.0	3.0	-0.51	0.26
1000	0.0886	5.0	2.5	-0.47	0.22
4000	0.0777	1.0	5.3	-0.64	0.40
4000	0.0777	3.0	4.0	-0.56	0.30
4000	0.0777	5.0	3.5	-0.52	0.26
20000	0.0680	1.0	6.7	-0.67	0.45
20000	0.0680	3.0	5.3	-0.60	0.34
20000	0.0680	5.0	4.7	-0.56	0.30

Table 1: Values of $\xi = \alpha_s L^2$, $\lambda = \alpha_s L$ and τ (defined in Eq. (7.10)) for various upper (Q) and lower $(p_{t,\min})$ momentum scales. The coupling itself is in a 5-loop variable flavour number scheme [45–48], while τ is evaluated for 1-loop evolution with $n_f = 5$.

Radcor, backup slides

Collinear spin-correlations in showers

Soft and collinear spin in PanScales

Since it does not modify the spin of *i* and *j*, it is possible to **interleave soft spin-correlations** (at leading colour) with **collinear ones** (at full colour), using the eikonal matrix element to update the spin-density tree for soft gluon emissions. [Karlberg, Hamilton, Salam, Scyboz, Verheyen, '21]

Also for hadron collisions [van Beekveld, SFR, Salam, Soto-Ontoso, Soyez, Verheyen '22]

Silvia Ferrario Ravasio

Karlberg, Salam, Scyboz, Verheyen, <u>2011.10054</u> [collinar spin in FSR] Karlberg, Hamilton, Salam, Scyboz, Verheyen, <u>2111.01161</u> [soft spin in FSR] van Beekveld, SFR, Salam, Soto-Ontoso, Soyez, Verheyen [generalisation to ISR]

We can have also azimuthal modulations due to the emission of a **soft gluon** $\mathcal{M} \approx \left(\frac{p_i}{p_i \cdot k} - \frac{p_j}{p_i \cdot k}\right) \epsilon_k$

Radcor, backup slides

Colour in the PanScales showers

Hamilton, Medves, Salam, Scyboz, Soyez, <u>2011.10054</u> [FSR] van Beekveld, SFR, Salam, Soto-Ontoso, Soyez, Verheyen [generalisation to ISR]

Segment: colour decided looking to which Lund plane the emission belongs: as good as an angular-ordered shower

 $\ln k_t$ $_{\bar{q}}[-\infty, \boldsymbol{C}_{\boldsymbol{F}}, \eta_1^L, \boldsymbol{C}_{\boldsymbol{A}}, \eta_2^L, +\infty]_{g_2}$ $- C_A/2$ $_{g_2}[-\infty, \boldsymbol{C}_{\boldsymbol{A}}, \eta_2^{\boldsymbol{R}}, \boldsymbol{C}_{\boldsymbol{A}}, +\infty]_{g_1}$ $_{g_1}[-\infty, \boldsymbol{C}_{\boldsymbol{A}}, \eta_1^R, \boldsymbol{C}_{\boldsymbol{F}}, +\infty]_q$ $\eta_L = \max(0,\eta), \quad \eta_R = \min(0,\eta)$ $g_2 q_1 q_1$

NODS: nested (double soft) matrix element corrections assuming last emission is the softest

 $\int C_A - 2C_F$ $p(g_5 \mid g_2, g_3) \approx 1$

49

Next steps

Underlying Calculations We need (a) reference results soft & collinear limits

Other groups' work (prior to our NLL understanding): Jadach et al <u>1103.5015</u> & <u>1503.06849</u>, Li & Skands <u>1611.00013</u>, Höche & Prestel <u>1705.00742</u>, +Krauss <u>1705.00982</u>, +Dulat <u>1805.03757</u>,

Radcor, backup slides

Next steps

Underlying Calculations We need (a) reference results and (b) understanding of NNLL logs in **soft** & **collinear** limits

Next-to-leading non-global logarithms in QCD Banfi, Dreyer and Monni, 2104.06416

Lund and Cambridge multiplicities Medves, Soto-Ontoso, Soyez, 2205.02861, 2212.05076

Groomed jet mass as a direct probe of collinear parton dynamics Anderle, Dasgupta, El-Menoufi, Guzzi, Helliwell, 2007.10355 [see also SCET work, Frye, Larkoski, Schwartz & Yan, 1603.09338 + ...]

Dissecting the collinear structure of quark splitting at NNLL Dasgupta, El-Menoufi, <u>2109.07496</u>

51

e+e- thrust

First comparisons to data

- > we're starting with e^+e^- data
- aiming to understand nature of residual perturbative shower uncertainties
- and interplay with non-perturbative tuning
- plot includes preliminary treatment of heavy-quark masses

Medium term: making proper use of LEP data for tuning almost certainly requires NLO 3-jet accuracy.

Slide from G. Salam

NLL PanScales showers for hadron collision: PanLocal

- Kinematic map with the global boost for ISR

- ... but we restore to p_T ordering for very collinear

van Beekveld, S.F.R., Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen, <u>2207.09467</u>

Exploratory phenomenology for VBF at 13.6 TeV

> For inclusive observables, differences have the same size of NLO corrections. LL shower lies between the NLL predictions.

LO events obtained thanks to our Pythia8.3 [2203.11601] interface!

van Beekveld, S.F.R., <u>2305.08645</u>

Exploratory phenomenology for VBF at 13.6 TeV

> For inclusive observables, differences have the same size of NLO corrections. LL shower lies between the NLL predictions. > For exclusive observables, the LL shower lies outside the band spanned by the NLL showers

van Beekveld, S.F.R., <u>2305.08645</u>

suppressed regime

Soto-Ontoso, Soyez, Verheyen, <u>2207.09467</u>

Transverse momentum of the colour-singlet in the powersuppressed regime

van Beekveld, S.F.R., Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen, <u>2207.09467</u>

