# New Directions in Theoretical Physics: Gravitational Waves



New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023

Laura Cadonati, Georgia Tech





# The EM sky



James Webb Space Telescope First Deep Field, galaxy cluster SMACS 0723 - Credits: NASA, ESA, CSA, STScI

New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023

# The GR sky





# Gravitational Waves: Ripples in Space-Time

Perturbations of the space-time metric produced by rapid changes in shape and orientation of massive objects.  $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ 

Gravitational waves carry information from the coherent, relativistic motion of large masses

Propagate at speed of lightTransverse waves2 polarizations (plus, cross)

Dimensionless strain:



 $h(t) = \frac{1}{R} \frac{2G}{c^4} \ddot{I}(t)$ 

New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023





Credits: R. Hurt - Caltech / JPL







# A New Probe for the Universe

## Some of the questions gravitational waves can help answer:

### **Physics**

- Is General Relativity the correct theory of gravity?
- How does matter behave under extreme gravity?
- What is the equation of state of neutron stars?

## **Astrophysics & Astronomy**

- What powers short gamma ray bursts, the brightest events in the universe?
- How do stars explode?
- How many stellar mass black holes are there in the universe?
- Do intermediate mass black holes exist?

## Cosmology

- Can we detect primordial gravitational waves?
- What is the value of the Hubble constant?  $\bigcirc$
- Do primordial black holes exist?

New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023

**Black Hole Merger and Ringdown** 

Image credit: W. Benger

### **Neutron Star Formation**



Supernovae

Image credit: Hubble



# MMMMMM Gravitation

## Milliseconds

## Minutes to Hours



LIGO/Virgo

LISA

New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023

Gravitational Wave Periods

## Years to Decades

## Billions of Years

Pulsar Timing Array

Cosmology Probes



# How to Detect Gravitational Waves

# Physically, gravitational waves are strains

and the second second



Deformation of a ring of free-falling particles due to the + and x polarization



# Suspended Mirrors as Test Masses



Goal: measure difference in length to one part in 1022, or 10-19 meters



# 



New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023



# An International Gravitational Wave observatory Network





LIGO Hanford (WA)



LIGO Livingston (LA)



Virgo, Pisa (Italy)



GEO600, Hannover (Germany)

# Ground-Based Observations from the Current Detectors



# Masses in the Stellar Graveyard





LIGO-Virgo-KAGRA | Aaron Geller | Northwestern





Observation of Gravitational Waves from a Binary Black Hole Merger – PRL 116:061102, 2016

# The First Black Holes: GWI 50914



# GWTC-3

### Gravitational-Wave Transient Catalog

Detections from 2015-2020 of compact binaries with black holes & neutron stars



GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run arXiv:2111.0360

# Masses: 1-100 M<sub>☉</sub>

- Lower Mass gap (between NS and BH): 3-5 M<sub>☉</sub>
- Upper Mass gap (pulsation pair instability supernovae): 50-120 M<sub>☉</sub>

# Spin orientation

- Expect align spins for isolated binary evolution
- Negative effective spin could point to dynamical formation

# Distance/redshift

- probe star formation rate at different points in the Universe evolution
- Probe of relative element abundance (a star's composition affects its evolution)

















## The most massive black hole collision observed to date (~142 $M_{\odot}$ )



[Image credit: D. Ferguson, K. Jani, D. Shoemaker, P. Laguna, Georgia Tech, MAYA Collaboration]

The extraordinarily large masses of the black holes that produced GW190521 challenge our understanding of black hole formation and serve as a unique laboratory to understand the fundamentals of how gravity works.





PRL 125, 101102 (2020)



Image credit: LIGO/Caltech/MIT/R. Hurt (IPAC).

New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023







# GW190412 Phys. Rev. D 102, 043015 (2020)



New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023

first GW observation from the merger of two black holes with very different masses Shows evidence for higher harmonics; mild evidence of precession?







14





A highly asymmetric system of ambiguous nature, corresponding to the merger of a 23 solar mass black hole with a 2.6 solar mass compact object, making the latter either the lightest black hole or heaviest neutron star observed in a compact binary



Artistic rendition. Credit: Carl Knox (OzGrav)

# GW 908 4

## ApJL 896 (2020) L2

Updated 2020-05-16 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Insufficient SNR for tidal deformability analysis

No EM counterpart

Challenges understanding of formation mechanisms

18.5 deg<sup>2</sup> 240 Mpc q=0.1 1-23/Gpc<sup>3</sup>/y







## ApJL 915 (2021) L5 NSBH: GW200105 and GW200115 GW200115: 5.7+1.5 M<sub>☉</sub> GW200105: 8.9+1.9 M<sub>☉</sub> No EM counterpart found



New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023





6

# GWI708I7 Binary Neutron Star Merger



Credits: LIGO/Fermi

New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023



Multi-messenger Observations of a Binary Neutron Star Merger The Astrophysical Journal Letters, 848:L12, 2017





# Multi-messenger Astronomy with Gravitational Waves



### Gravitational Waves



Visible/Infrared Light



Radio Waves

### **Binary Neutron Star Merger**





Neutrinos

# Multi-Messenger Science from GWI708I7





### Neutron star mergers and Gamma Ray Bursts

### Measuring the Hubble Constant

New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023



### Neutron star mergers and Kilonovae

|      |          | 2 He     |
|------|----------|----------|
| 8    | e        | 10       |
| 0    | F        | Ne       |
| 18-0 | 17<br>CI | 18<br>Ar |
| 34   | 35       | 26       |
| 6e   | Br       | Kr       |
| 52   | 53       | 54       |
| Te   | 1        | Xo       |
| 84   | 85       | 86       |
| Po   | A:       | Rn       |





## Observation of a compact binary coalescence with total mass ~3.4 M<sub>☉</sub>



## Map uses data from LIGO Livingston and Virgo

### Initial Alert (solid line)

43 minute latency BNS w/ >99% probability 90% region: **10,200 sq. deg.** Distance: **110 – 200 Mpc** 

# GW 190425

### ApJL 892 (2020) L3

### BNS = Binary Neutron Stars



## 5-sigma outlier of observed galactic BNS population









## BNS range: how far can we see a binary neutron star merger? (1 Mpc = 3 million light years)



https://observing.docs.ligo.org/plan/

Reach: ~ 3x O3 ~500-1000 BBH/year ~10 NS-BH/year ~200-300 BNS/year

- ~100 BBH/year (z≲2)
- ~1-2 NS-BH/year
- ~ 10-30 BNS/year (z≲0.1)

38-44% (12-16%) events with 90% credible region smaller than 20 deg2 (5 deg<sup>2</sup>).





New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023

# The Next Generation 2030's





# Third Generation ~10^5 binary coalescences per year (circa 2035)

# Cosmic Explorer



- NSF-funded US conceptual design study well under way
- 40km surface Observatory baseline
- Signal grows with length not most noise sources
- Stage 1(~2035) Extension of A+ technologies
- Stage 2 (~2045) Cryogenics, new material for test masses Site selection ~2023 and coatings

# Einstein Telescope



- European conceptual design study
- Multiple instruments in xylophone configuration
- underground to reduce newtonian background
- 10 km arm length, in triangle





arXiv:1903.04615



New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023

Table 1: Expected detections per year (*N*), number detected with a resolution of < 1, < 10 and < 100sq. deg. ( $N_1$ ,  $N_{10}$  and  $N_{100}$ , respectively) and median localization error (*M* in sq. deg.), in a network consisting of LIGO-Hanford, LIGO-Livingston and Virgo (HLV), HLV plus KAGRA and LIGO-India (HLVKI) and 1 Einstein Telescope and 2 Cosmic Explorer detectors (1ET+2CE).

| Network          | N    | $N_1$ | $N_{10}$ | $N_{100}$ | М  |  |
|------------------|------|-------|----------|-----------|----|--|
| HLV              | 48   | 0     | 16       | 48        | 19 |  |
| HLVKI            | 48   | 0     | 48       | 48        | 7  |  |
| 1ET+2CE          | 990k | 14k   | 410k     | 970k      | 12 |  |
| arXiv:1903.09277 |      |       |          |           |    |  |

Formation and evolution of compact binaries Heavy element nucleosynthesis Jet physics Cosmology Multi-band gravitational wave astronomy





New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023







ASTRO2020 Decadal Survey: Pathways to Discovery in Astronomy and Astrophysics for the 2020s - PAG report, pp 440-463 (2021)

New Directions in Theoretical Physics - Edinburgh, Jan 10-12 2023

# Pathways To Discovery

![](_page_26_Picture_5.jpeg)