Ten Years of Higgs Physics

Gavin Salam
Rudolf Peierls Centre for Theoretical Physics
\& All Souls College, University of Oxford

New Directions in Theoretical Physics 4, Edinburgh, January 2023

Science and Technology Facilities Council

The Higgs boson

The Higgs boson

©ATLAS

 $\frac{\text { LEXPERIMENT }}{\text { http://atlos.ch }}$

ATLAS and CMS collaborations at
CERN's Large Hadron Collider (LHC):

2012 discovery of a Higgs-like boson

Collide protons with protons
Select collision events with four electrons or muons ("leptons")

Add up their energies
(in their overall centre-of-mass frame) Plot distribution of that energy

ATLAS and CMS collaborations at
 CERN's Large Hadron Collider

(LHC):

2012 discovery of a Higgs-like boson

Collide protons with protons
Select collision events with four electrons or muons ("leptons")

Add up their energies
(in their overall centre-of-mass frame) Plot distribution of that energy

ATLAS and CMS collaborations at
 CERN's Large Hadron Collider
 (LHC):
 2012 discovery of a Higgs-like boson

Collide protons with protons
Select collision events with four electrons or muons ("leptons")

Add up their energies
(in their overall centre-of-mass frame)
Plot distribution of that energy

The Higgs boson (2012)

Success!

"The Standard Model is complete" ${ }^{\text {" }}$

The Higgs boson (2012)

Success!

"The Standard Model particle set is complete ${ }^{"}$
particles

https://www.piqsels.com/en/public-domain-photo-fargz
particles

https://www.piqsels.com/en/public-domain-photo-fqrgz

particles + interactions

https://commons.wikimedia.org/wiki/File:LEGO_Expert_Builder_948_Go-Kart.jpg, CC-BY-SA-4.0

what is the Standard Model?

particles

what is the Standard Model?

particles

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

Standard Model — knowable unknowns

These T-shirts come with a little explanation

This equation neatly sums up our current understanding of fundamental particles and forces.

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +i \neq X \psi \\
& +\psi_{i} y_{i j} \not \psi_{j} \phi+h c . \\
& +\left|D_{\mu} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

Standard Model — knowable unknowns

These T-shirts come with a little explanation
"understanding" = knowledge ?
"understanding" = assumption ?

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

What does it mean?

Quantum formulation of Maxwell's equations, (and their analogues for the weak and strong forces).

This equation neatly sums up our current understanding of fundamental particles and forces.

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +i \mp \not \subset \psi \\
& +\psi_{i} y_{i j} \psi_{j} \phi+h c . \\
& +\left|D_{\mu \phi}\right|^{2}-V(\phi)
\end{aligned}
$$

What does it mean?

$$
\begin{aligned}
& \psi=\text { fermion (e.g. electron) field } \\
& D \sim e A(=\text { photon field })+\cdots
\end{aligned}
$$

This equation neatly sums up our current understanding of fundamental particles and forces.

tells you there's an electron-photon interaction vertex

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +i \not \subset \not \subset \psi \\
& +\psi_{i} y_{i j} \psi_{j} \phi+h c . \\
& +\left|D_{\mu} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

This equation neatly sums up our current understanding of fundamental particles and forces.

What does it mean?
many experiments have probed these so-called "gauge" interactions (in classical form, they date back to 1860s)

Describe
electromagnetism, full electroweak theory \& the strong force.

They work to high precision (best tests go up to 1 part in 10^{8})

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +i F D \psi \\
& +\psi_{i} y_{i j} \psi_{j} \phi+h . c_{.} \\
& +\left|D_{\mu} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

Highs sector
until 10 years ago none of these terms had ever been directly observed.

This equation neatly sums up our current understanding of fundamental particles and forces.

Higgs field Φ [units of vacuum expectation value, Φ_{0}]

Higgs field Φ [units of vacuum expectation value, ϕ_{0}]

Higgs field Φ [units of vacuum expectation value, Φ_{0}]
$>\varphi$ is a field at every point in space (plot shows potential vs. 1 of 4 components, at 1 point in space)
$>$ Our universe sits at minimum of $\mathrm{V}(\varphi)$, at

$$
\phi=\phi_{0}=\frac{\mu}{\sqrt{2 \lambda}}
$$

$>$ Excitation of the φ field around φ_{0} is a Higgs boson ($\varphi=\varphi_{0}+\mathrm{H}$)
$\varphi=\varphi_{0}+\mathrm{H}$

Higgs field can be different at each point in space
A Higgs boson at a given point in space is a localised fluctuation of the field
$\varphi=\varphi_{0}+\mathrm{H}$

Higgs field can be different at each point in space
A Higgs boson at a given point in space is a localised fluctuation of the field

$\varphi=\varphi_{0}+\mathrm{H}$

established
(2012 Higgs boson discovery)

$\varphi=\varphi_{0}+\mathrm{H}$

established (2012 Higgs boson discovery)

$$
V(\phi)=-\mu^{2} \phi^{2}+\lambda \phi^{4}
$$

hypothesis

what terms are there in the Higgs sector?
 2. Gauge-Higgs term

$$
D_{\mu}=\left(\partial_{\mu}+Z_{\mu}+\ldots\right) \quad\left[\phi^{2}=\left(\phi_{0}+H\right)^{2}=\phi_{0}^{2}+2 \phi_{0} H+\ldots\right]
$$

what terms are there in the Higgs sector?
 2. Gauge-Higgs term

what terms are there in the Higgs sector?
 2. Gauge-Higgs term

Higgs similarly generates W-boson mass: affects temperature of stars like our sun

Higgs similarly generates W-boson mass: affects temperature of stars like our sun

what terms are there in the Higgs sector?
 3. Fermion-Higgs (Yukawa) term

$$
\psi_{i} y_{i j} \not \psi_{j} \varnothing \rightarrow y_{i j} \phi_{0} \psi_{i} \psi_{j}+y_{i j} H \psi_{i} \psi_{j}
$$

fermion
mass term
$m_{i}=y_{i i} \phi_{0}$

Higgs-fermion-fermion interaction term; coupling $\sim y_{i i}$

$$
\phi=\phi_{0}+H
$$

what terms are there in the Higgs sector? 3. Fermion-Higgs (Yukawa) term

$$
\psi_{i} y_{i j} \psi_{j} \phi
$$

Higgs-fermion-fermion interaction term;

$$
\text { coupling } \sim y_{i i}
$$

$$
\phi=\phi_{0}+H
$$

Yukawa interaction hypothesis

Yukawa couplings \sim fermion mass
first fundamental interaction that we probe at the quantum level where interaction strength $\left(\mathrm{y}_{\mathrm{ij}}\right)$ not quantised (i.e. no underlying unit of conserved charge across particles)

Why do Yukawa couplings matter?
 (1) Because, within SM conjecture, they're what give masses to all quarks

$$
\begin{aligned}
& \text { Up quarks (mass } \sim 2.2 \mathrm{MeV} \text {) are lighter than } \\
& \text { down quarks (mass } \sim 4.7 \mathrm{MeV}) \\
& \text { proton (up+up+down): } 2.2+2.2+4.7+\ldots=938.3 \mathrm{MeV} \\
& \text { neutron (up+down+down): } 2.2+4.7+4.7+\ldots=939.6 \mathrm{MeV}
\end{aligned}
$$

So protons are lighter than neutrons, \rightarrow protons are stable.

Which gives us the hydrogen atom,
chemistry and biology as we know it
Which gives us the hydrogen atom,
\& chemistry and biology as we know it

Why do Yukawa couplings matter?

(2) Because, within SM conjecture, they're what give masses to all leptons

Bohr radius

$$
a_{0}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} e^{2}}=\frac{\hbar}{m_{e} c \alpha} \propto \frac{1}{y_{e}}
$$

electron mass determines size of all atoms
it sets energy levels of all chemical reactions

1st generation (us) has low mass because of weak interactions with Higgs field (and so with Higgs bosons):
too weak to test today

1st generation (us) has low mass because of weak interactions with Higgs field (and so with Higgs bosons):
too weak to test today

3rd generation (us) has high mass because of strong interactions with Higgs field (and so with Higgs bosons): can potentially be tested

what underlying processes tell us about Yukawa interactions?

$9 \ldots \infty$

9 top-quark
pair: quantum fluctuation not
actually seen
in detector

Expected to happen once for every
~ 2 billion inelastic proton-proton collisions

LHC data consistent with that already at discovery in 2012
https://cern.ch/gsalam/higgs

a \&

https://cern.ch/gsalam/higgs 577

luon

 Hig91 field in 1

H

ratio to SM
$=1.04 \pm 0.10$

but how can you be sure the Higgs boson is really being

 radiated off a top-quark, i.e. that you're actually seeing a Yukawa coupling?gluon in from proton 1
Higgs production: the tth channel

If SM top-Yukawa hypothesis is correct, expect 1 Higgs for every 1600 top-quark pairs.
(rather than 1 Higgs for every 2 billion pp collisions)
https://cern.ch/gsalam/higgs

व

 c 1 व

since 2018: ATLAS \& CMS see events with top-quarks \& Higgs simultaneously

across all events

in events with top quarks

enhanced fraction of Higgs bosons in events with top quarks
\rightarrow direct observation of Higgs interaction with tops

Discovery of 3rd generation Yukawa interactions by ATLAS \& CMS

Discovery $\equiv 5 \sigma \simeq \pm 20 \%$
†in part with approach from Butterworth, Davison, Rubin \& GPS ‘08

Discovery of 3rd generation Yukawa interactions by ATLAS \& CMS

$$
\text { Discovery } \equiv 5 \sigma \simeq \pm 20 \%
$$

[^0]
Discovery of 3rd generation Yukawa interactions by ATLAS \& CMS

$$
\text { Discovery } \equiv 5 \sigma \simeq \pm 20 \%
$$

[^1]
Discovery of 3rd generation Yukawa interactions by ATLAS \& CMS

$$
\text { Discovery } \equiv 5 \sigma \simeq \pm 20 \%
$$

[^2]
what's the message?

The $>5 \sigma$ observations of the ttH process and of $\mathrm{H} \rightarrow \mathrm{t} \mathrm{\tau}$ and $\mathrm{H} \rightarrow \mathrm{bb}$ decays, independently by ATLAS and CMS, firmly establish the existence of a new kind of fundamental interaction, Yukawa interactions.

Yukawa interactions are important because they are:
(1) qualitatively unlike any quantum interaction probed before (effective charge not quantised, not conserved)
(2) hypothesized to be responsible for the stability of hydrogen, and for determining the size of atoms and the energy scales of chemical reactions.

Equivalently this is a fifth force, the "Higgs force"

Higgs potential, keystone of the SM - what can we observe experimentally?

NB: realistic alternative models tend to involve additional Higgs-like fields; plot adapted from Nature perspective with Wang \& Zanderighi

Higgs potential, keystone of the SM - what can we observe experimentally?

NB: realistic alternative models tend to involve additional Higgs-like fields; plot adapted from Nature perspective with Wang \& Zanderighi

Higgs potential, keystone of the SM — what can we observe experimentally?

NB: realistic alternative models tend to involve additional Higgs-like fields; plot adapted from Nature perspective with Wang \& Zanderighi

Higgs potential, keystone of the SM — what can we observe experimentally?

NB: realistic alternative models tend to involve additional Higgs-like fields; plot adapted from Nature perspective with Wang \& Zanderighi

Higgs potential, keystone of the SM — what can we observe experimentally?

NB: realistic alternative models tend to involve additional Higgs-like fields; plot adapted from Nature perspective with Wang E Zanderighi

H interaction not yet seen

Are Yukawa interactions responsible for all fermion masses?

Do these interactions follow the Standard Model to better than current $\sim 10 \%$ accuracy?

Some answers will come with more data

LHC has delivered only 5% of its collisions Future colliders could produce ~ 200x more Higgses than the LHC

But nothing will be learnt without QCD ...

Are Yukawa interactions
responsible for all
fermion masses?

W boson
Do these interactions follow the Standard Model to better than current 10% accuracy?

UNDERLYING
THEORY

What is the origin of the vast range of quark and lepton masses in the Standard Model?

- Are there modified interactions to the Higgs boson and known particles?
- Does the Higgs decay into pairs of quarks and leptons with distinct flavours (for example, $\mathrm{H} \rightarrow \mu^{+} \tau^{-}$)?

What is dark matter?

- Can the Higgs provide a portal to dark matter or a dark sector?
- Is the Higgs lifetime consistent with the Standard Model?
- Are there new decay modes of the Higgs?

What is the origin of the

 early-universe inflation?- Is the Higgs connected to the mechanism that drives inflation?
- Are there any imprints in cosmological observations?
adapted from Nature perspective with Wang \mathcal{E} Zanderighi

Why is the electroweak interaction so much stronger than gravity?

- Are there new particles close to the mass of the Higgs boson?
- Is the Higgs boson elementary or made of other particles?
- Are there anomalies in the interactions of the Higgs with the W and Z ?

Why is there more

 matter than antimatter in the universe?- Are there charge-parity violating Higgs decays?
- Are there anomalies in the Higgs self-coupling that would imply a strong firstorder early-universe electroweak phase transition?
- Are there multiple Higgs sectors?

outlook

Outlook

> Higgs discovery has opened a new chapter in particle physics
> Interaction with $\mathrm{W} \& \mathrm{Z}$ bosons is the raison d'être for the Higgs mechanism (Nobel prize)
> But also involves qualitatively new kind of interaction - Yukawa interactions ("fifth force")
> critical to the world as we know it

- so far probed only to $10-20 \%$, for a subset of the fermions
> and in only a corner of phase space (low momenta)
> Huge experimental progress still to come, from (HL)LHC and possible future colliders (e.g. CERN's Future Circular Collider project)
- We may find clues to some of the big mysteries of particles physics and cosmology (dark matter, hierarchy problem, early-universe phase transitions)
- or we may confirm the SM in its remarkable minimality
backup

$\mathrm{H} \rightarrow \mathrm{\gamma} \mathrm{\gamma}$, an indirect probe of the top Yukawa, HWW and contact ggH couplings

extrapolation of μ_{YY} or $\sigma / \sigma_{\mathrm{SM}}$ precision from $7+8 \mathrm{TeV}$ results

$H \rightarrow \gamma \gamma$, an indirect probe of the top Yukawa, HWW and contact ggH couplings

extrapolation of μ_{YY} or $\sigma / \sigma_{\mathrm{SM}}$ precision from $7+8 \mathrm{TeV}$ results

$\mathrm{H} \rightarrow \mathrm{\gamma} \mathrm{\gamma}$, an indirect probe of the top Yukawa, HWW and contact ggH couplings

extrapolation of μ_{YY} or $\sigma / \sigma_{\mathrm{SM}}$ precision from $7+8 \mathrm{TeV}$ results

$\mathrm{H} \rightarrow \mathrm{\gamma} \mathrm{\gamma}$, an indirect probe of the top Yukawa, HWW and contact ggH couplings

extrapolation of μ_{YY} or $\sigma / \sigma_{\mathrm{SM}}$ precision from $7+8 \mathrm{TeV}$ results

$H \rightarrow \gamma \gamma$, an indirect probe of the top Yukawa, HWW and contact ggH couplings

extrapolation of μ_{YY} or $\sigma / \sigma_{\mathrm{SM}}$ precision from $7+8 \mathrm{TeV}$ results

We are (indirectly) searching for new physics

Ellis, Madigan, Mimasu, Sanz, You, 2012.02779

We are (indirectly) searching for new physics

Current $\sim 10 \%$ agreement with SM places constraint on new physics

We are (indirectly) searching for new physics
Current $\sim 10 \%$ agreement with SM places constraint on new physics

We are (indirectly) searching for new physics
Future ~ 2\% measurements at LHC will place stronger constraint on (or discover) new physics

Phase space: two key variables (+ azimuth)

$\Delta R($ or just $\Delta)$

$$
k_{t}=p_{t} \Delta
$$

opening angle of a splitting
p_{t} (or p_{\perp}) is transverse momentum wrt beam
k_{t} is \sim transverse
momentum wrt jet axis
jet with $R=0.4, p_{t}=200 \mathrm{GeV}$

jet with $R=0.4, p_{t}=200 \mathrm{GeV}$

jet with $R=0.4, p_{t}=200 \mathrm{GeV}$

Lund plane measurement

W-boson (~H-boson) v. normal jets

Cogan, Kagan, Strauss, Schwartzman, 1407.5674

can we trust machine learning? A question of confidence in the training...

Unless you are highly confident in the information you have about the markets, you may be better off ignoring it altogether

- Harry Markowitz (1990 Nobel Prize in Economics) [via S Gukov]

Two emissions in dipole showers (Dire / Pythia8)

Two emissions in dipole showers (Dire / Pythia8)

Two emissions in dipole showers (Dire / Pythia8)

Two emissions in dipole showers (Dire / Pythia8)

Two emissions in dipole showers (Dire / Pythia8)

Two emissions in dipole showers (Dire / Pythia8)

Two emissions in dipole showers (Dire / Pythia8)

Two emissions in dipole showers (Dire / Pythia8)

also noticed in 1992 by Andersson, Gustafson \mathcal{E} Sjogren \rightarrow special "fudge" in Ariadne

in equations

1. $\bar{q}\left[g_{1}\right] \rightarrow \bar{q} g_{2}\left[g_{1}\right]:$

$$
\boldsymbol{p}_{\perp, g_{1}}=\widetilde{\boldsymbol{p}}_{\perp, g_{1}},
$$

$$
\eta_{g_{1}}=\widetilde{\eta}_{g_{1}}
$$

2. $g_{1}[\bar{q}] \rightarrow g_{1} g_{2}[\bar{q}]:$
$\boldsymbol{p}_{\perp, g_{1}}=\widetilde{\boldsymbol{p}}_{\perp, g_{1}}-\boldsymbol{p}_{\perp, g_{2}}$,
$\boldsymbol{p}_{\perp, g_{1}}=\widetilde{\boldsymbol{p}}_{\perp, g_{1}}-\boldsymbol{p}_{\perp, g_{2}}$,
$\eta_{g_{1}}=\widetilde{\eta}_{g_{1}}+\ln \frac{\left|\boldsymbol{p}_{\perp, g_{1}}\right|}{\left|\tilde{\boldsymbol{p}}_{\perp, g_{1}}\right|}$,
3. $q\left[g_{1}\right] \rightarrow q g_{2}\left[g_{1}\right]:$
$\boldsymbol{p}_{\perp, g_{1}}=\widetilde{\boldsymbol{p}}_{\perp, g_{1}}$,
$\eta_{g_{1}}=\widetilde{\eta}_{g_{1}}$

With/without tilde: momentum before/after emission of gluon 2

[^0]: in part with approach from Butterworth, Davison, Rubin \& GPS ‘08

[^1]: †in part with approach from Butterworth, Davison, Rubin \& GPS ‘08

[^2]: in part with approach from Butterworth, Davison, Rubin \& GPS ‘08

