

- Active phase separation
- Classical nucleation theory in equilibrium
- Classical nucleation theory without detailed balance¹
- Phase separation with birth and death of particles
- Population dynamics for global density
- Effect of phase separation on density dynamics
 - Limit cycles²
 - Extinction rates³
- Conclusions
- 1. C Nardini + MEC arXiv:2210.05263
- 2. T Grafke et al PRL 119 188003 (2017)
- 2. Y I Li + MEC JSTAT 053206 (2020)
- 3. J Schuettler, R Jack + MEC in progress

- Active phase separation
- Classical nucleation theory in equilibrium
- Classical nucleation theory without detailed balance¹
- Phase separation with birth and death of particles
- Population dynamics for global density
- Effect of phase separation on density dynamics
 - Limit cycles²
 - Extinction rates³
- Conclusions

1. C Nardini + MEC arXiv:2210.05263 2. T Grafke et al PRL 119 188003 (2017) 2. Y I Li + MEC JSTAT 053206 (2020) 3. J Schuettler, R Jack + MEC in progress

Active Phase Separation of Self-Propelled Colloids

Motility-Induced Phase Separation (MIPS)

Janus particles in peroxide, light activated catalysis J Palacci et al, Science 2013

Motility-Induced Phase Separation (MIPS)

coexisting densities $\rho = \rho_{c} \pm \phi_{b}$

purely repulsive active Brownian particles (ABPs)

> *MEC + J Tailleur, Ann Rev CMP 2015*

movie: J Stenhammar

- Active phase separation
- Classical nucleation theory in equilibrium
- Classical nucleation theory without detailed balance¹
- Phase separation with birth and death of particles
- Population dynamics for global density
- Effect of phase separation on density dynamics
 - Limit cycles²
 - Extinction rates³
- Conclusions

1. C Nardini + MEC arXiv:2210.05263 2. T Grafke et al PRL 119 188003 (2017) 2. Y I Li + MEC JSTAT 053206 (2020) 3. J Schuettler, R Jack + MEC in progress

Field Theory of Phase Separation

$$\dot{\phi} = -\nabla J$$

$$\mathbf{J} = -\nabla \mu + \sqrt{2D}\Lambda$$

$$\mu = a\phi + b\phi^3 - \kappa \nabla^2 \phi$$

 Λ = unit white noise D = k_BT M M = 1 mobility

MODEL B $\mu = \delta \mathcal{F} / \delta \phi$ $\mathcal{F} = \int dV [f(\phi) + \frac{\kappa}{2} (\nabla \phi)^2]$ $f(\phi) = \frac{a}{2} \phi^2 + \frac{b}{4} \phi^4$

phase equilibria: common tangent

 $\mu_1 = \mu_2$ $P_1 = P_2$

where $P = \mu \phi - f$

Field Theory of Phase Separation

$$\dot{\phi} = -\nabla J$$
$$\mathbf{J} = -\nabla \mu + \sqrt{2D}\Lambda$$
$$\mu = a\phi + b\phi^3 - \kappa \nabla^2 \phi$$

 Λ = unit white noise D = k_BT M M = 1 mobility

MODEL B

Model B has Time Reversal Symmetry: Forward and backward dynamics statistically identical once steady state is achieved

Thermodynamics of the Density Field

For global density $\overline{\phi}$ obeying $-\phi_{\rm b} < \overline{\phi} < +\phi_{\rm b}$:

- phase separation reduces overall free energy ${\cal F}$
- resulting \mathcal{F}/V lies on convex hull of $f(\phi) = \text{common tangent}$
- Locally stable between binodal and spinodal: instanton required

Classical Nucleation Theory

Nucleation and growth (3 dimensions) $\mathcal{F} = \gamma 4\pi R^2 - (2 \phi_b \delta f''(\phi_b)) 4\pi R^3/3$

γ (a,b,κ) = interfacial tension
competes with bulk free energy gain

Classical Nucleation Theory

Nucleation and growth (3 dimensions) $\mathcal{F} = \gamma 4\pi R^2 - (2 \phi_b \delta f''(\phi_b)) 4\pi R^3/3$

$$\dot{\phi} = -\nabla J$$
$$\mathbf{J} = -\nabla \mu + \sqrt{2D}\Lambda$$
$$\mu = a\phi + b\phi^3 - \kappa \nabla^2 \phi$$

quasi stationary solution for radially symmetric interfacial profile $\phi(r) = \tilde{\phi}(r/R)$, expand in powers of 1/R resulting $J(R^+)$ gives $\dot{R}(R)$ as:

$$\dot{R} = \frac{1}{2\phi_b} \left(\frac{f''(\phi_b)}{R} \left(\delta - \frac{\gamma}{f''(\phi_b)\phi_b R} \right) \right) + (8\pi D\phi_b^2 R^3)^{-1/2} \Lambda + \dots$$
unit white

$$\dot{R} = \frac{1}{2\phi_b} \left(\frac{f''(\phi_b)}{R} \left(\delta - \frac{\gamma}{f''(\phi_b)\phi_b R} \right) \right) + (8\pi D\phi_b^2 R^3)^{-1/2} \Lambda + \dots$$
equivalently: $\dot{R} = -\mathcal{M}(R) \frac{d\mathcal{F}}{dR} + \sqrt{2\mathcal{M}(R)D} \Lambda + \mathcal{O}(R^{-3})$

$$\mathcal{M}(R) = 1/(16\pi\phi_b^2 R^3) \quad = \text{mobility of reaction coordinate R}$$

equivalently: $\dot{R} = -\mathcal{M}(R) \frac{d\mathcal{F}}{dR} + \sqrt{2\mathcal{M}(R)D} \Lambda + \mathcal{O}(R^{-3})$ $\mathcal{M}(R) = 1/(16\pi \phi_b^2 R^3)$ = mobility of reaction coordinate R

With only one coordinate, read off from $\dot{R}(R)$:

- Mobility \mathcal{M} (via noise)
- Hence effective force $d\mathcal{F}/dR$
- Integrate to give barrier $\mathcal{F}_{\rm c}$ and nucleation rate \propto exp[- $\mathcal{F}_{\rm c}$ /D]
- Noise term: sum random currents over surface of sphere

Kinetic approach via $\dot{R}(R)$ does not require \mathcal{F} = a free energy... ... but with one degree of freedom, it discovers one

- Active phase separation
- Classical nucleation theory in equilibrium
- Classical nucleation theory without detailed balance¹
- Phase separation with birth and death of particles
- Population dynamics for global density
- Effect of phase separation on density dynamics
 - Limit cycles²
 - Extinction rates³
- Conclusions

1. C Nardini + MEC arXiv:2210.05263

- 2. T Grafke et al PRL 119 188003 (2017)
- 2. Y I Li + MEC JSTAT 053206 (2020)
- 3. J Schuettler, R Jack + MEC in progress

Field Theory of Phase Separation

$$\dot{\phi} = -\nabla J$$
$$J = -\nabla \mu + \sqrt{2D}\Lambda$$
$$\mu = a\phi + b\phi^3 - \kappa \nabla^2 \phi$$

 Λ = unit white noise D = k_BT M M = 1 mobility

MODEL B

 $\mu = \delta \mathcal{F} / \delta \phi$ $\mathcal{F} = \int dV [f(\phi) + \frac{\kappa}{2} (\nabla \phi)^2]$ $f(\phi) = \frac{a}{2} \phi^2 + \frac{b}{4} \phi^4$

Active Field Theory of Phase Separation

$$\dot{\phi} = -\nabla J$$

$$\mathbf{J} = -\nabla \hat{\mu} + \sqrt{2D}\Lambda + \zeta (\nabla^2 \phi) \nabla \phi$$

$$\hat{\mu} = a\phi + b\phi^3 - \kappa \nabla^2 \phi + \lambda (\nabla \phi)^2$$

ACTIVE MODEL B

$$\lambda(
abla \phi)^2
eq \delta \mathcal{F}/\delta \phi$$
 for any \mathcal{F}

= **minimal** violation of TRS

ACTIVE MODEL B+

Expansion of active currents to order $abla^3$, ϕ^2

 $\zeta\;\; {\rm term}: {\rm strong}\; {\rm effects}\; {\rm at}\; {\rm curved}\; {\rm interfaces}; \, {\rm elsewhere}\; \lambda \to \lambda'$

R Wittkowski et al, Nat Comms 2014

C Nardini et al, PRX 2017; E Tjhung et al, PRX 2018

Active Field Theory of Phase Separation

Uncommon tangent construction

(not convex hull)

offset $\Delta = \Delta(\lambda - \zeta/2)$

Calculation Method:

(a) quasi-1D flat interface between phases

(b) seek J = 0 solutions with $\partial_x \phi = 0\,$ at $\,x = \pm\infty$

- Binodals are shifted
- Spinodals are not
- Between these lies an <u>active</u> nucleation regime

R Wittkowski et al, Nat Comms 2014 A Solon et al, PRE 2018

$$\dot{\phi} = -\nabla J$$
$$\mathbf{J} = -\nabla \mu + \sqrt{2D}\Lambda$$
$$\mu = a\phi + b\phi^3 - \kappa \nabla^2 \phi$$

Passive Model B+

quasi stationary solution for radially symmetric interfacial profile $\phi(r) = \tilde{\phi}(r/R) + \text{noise}$, expand in powers of 1/Rresulting $J(R^+)$ gives $\dot{R}(R)$ as:

$$\dot{R} = \frac{1}{2\phi_b} \left(\frac{f''(\phi_b)}{R} \left(\delta - \frac{\gamma}{f''(\phi_b)\phi_b R} \right) \right) + (8\pi D\phi_b^2 R^3)^{-1/2} \Lambda + \dots$$

equivalently:
$$\dot{R} = -\mathcal{M}(R) \frac{d\mathcal{F}}{dR} + \sqrt{2\mathcal{M}(R)D} \Lambda + \mathcal{O}(R^{-3})$$

 $\mathcal{M}(R) = 1/(16\pi\phi_b^2 R^3)$ = mobility of reaction coordinate R

$$\dot{\phi} = -\nabla J$$

$$\mathbf{J} = -\nabla \mu + \sqrt{2D}\Lambda + \zeta (\nabla^2 \phi) \nabla \phi$$

$$\mu = a\phi + b\phi^3 - \kappa \nabla^2 \phi + \lambda (\nabla \phi)^2$$

Active Model B+

quasi stationary solution for radially symmetric interfacial profile $\phi(r) = \tilde{\phi}(r/R) + \text{noise}$, expand in powers of 1/R resulting $J(R^+)$ gives $\dot{R}(R)$ as:

$$\dot{R} = -\frac{\mathcal{A}(a, b, \kappa, \lambda, \zeta)}{R^2} + \frac{\mathcal{B}(a, b, \kappa, \lambda, \zeta)}{R} + (8\pi D\phi_b^2 R^3)^{-1/2}\Lambda + \dots$$
noise term unchanged

equivalently:
$$\dot{R} = -\mathcal{M}(R) \frac{d\mathcal{F}}{dR} + \sqrt{2\mathcal{M}(R)D} \Lambda + \mathcal{O}(R^{-3})$$

 $\mathcal{M}(R) = 1/(16\pi\phi_b^2 R^3) = \text{mobility of reaction coordinate R}$

equivalently: $\dot{R} = -\mathcal{M}(R) \frac{d\mathcal{F}}{dR} + \sqrt{2\mathcal{M}(R)D} \Lambda + \mathcal{O}(R^{-3})$ $\mathcal{M}(R) = 1/(16\pi\phi_b^2 R^3)$ = mobility of reaction coordinate R

With only one coordinate, read off from $\dot{R}(R)$:

- Mobility \mathcal{M} (via noise)
- Hence effective force $d\mathcal{F}/dR = 16 \pi^2 \phi_b^2 (\mathcal{A} R \mathcal{B} R^2)$
- Integrate to give barrier \mathcal{F}_{c} and nucleation rate \propto exp[- \mathcal{F}_{c} /D]

Effective barrier height $\mathcal{F}_c(a, b, \kappa, \lambda, \zeta) = 16\pi^2 \phi_b^2 \mathcal{A}^3 / 3\mathcal{B}^2$

Everything calculable for large $\rm R_{c} \leftrightarrow modest$ supersaturation

C Nardini + MEC arXiv:2210.05263

Comments:

Noise terms and hence mobility $\mathcal{M}(R)$ unaffected by κ, ζ $\mathcal{A}(a,b,\kappa,\lambda,\zeta) \propto pseudo-interfacial tension strongly affected$ $\mathcal{B}(a,b,\kappa,\lambda,\zeta) \propto pseudo-chemical-potential-difference likewise$ Resulting \mathcal{F}_{c} can be larger or smaller than the passive model Complete large deviation theory $\dot{a} la$ CNT whenever \mathcal{F}_{c} large $\mathcal{F}(R)$ = quasipotential governing instanton + rates

C Nardini + MEC arXiv:2210.05263

Interfacial Tension in Active Systems

In thermodynamic equilibrium

- $\gamma_{\rm F}$ [mechanical energy]
- γ_L [Laplace pressure at curved interface]
- γ_{C} [capillary waves]
- γ_{S} [integral of deviatoric stress]

In active systems, these all differ (even in sign)

 $\mathcal{F}(R)$ via 1/R expansion solely involves γ_L

large ζ activity: $\gamma_L < 0$, expansion fails.... micro-nuclei?

larger ζ activity: $\gamma_{L,C} < 0$ instanton pathway totally unclear

G Fausti et al PRL 127 068001 (2021)

C Nardini + MEC arXiv:2210.05263

all the same

- Active phase separation
- Classical nucleation theory in equilibrium
- Classical nucleation theory without detailed balance¹
- Phase separation with birth and death of particles
- Population dynamics for global density
- Effect of phase separation on density dynamics
 - Limit cycles²
 - Extinction rates³
- Conclusions

1. C Nardini + MEC arXiv:2210.05263 2. T Grafke et al PRL 119 188003 (2017) 2. Y I Li + MEC JSTAT 053206 (2020) 3. J Schuettler. R Jack + MEC in proaress

Phase Separation with Birth and Death

Motivation: Bacterial colonies

- population dynamics: growth at low density, decline at high
- quorum sensing: seek strength in numbers to attack or defend

E.g.: planktonic – colonial life cycle

image: A Penesyan et al NPJ Biofilms and Microbiomes (2021)

Population Dynamics in Uniform State

global density $\rho(t)$ not conserved

 $\dot{\rho} = -\mathcal{M}(\rho)f'(\rho) + \sqrt{2D\mathcal{M}(\rho)} \Lambda$

Population Dynamics in Uniform State

global density $\rho(t)$ not conserved

 $\dot{\rho} = -\mathcal{M}(\rho)f'(\rho) + \sqrt{2D\mathcal{M}(\rho)} \Lambda$

- Active phase separation
- Classical nucleation theory in equilibrium
- Classical nucleation theory without detailed balance¹
- Phase separation with birth and death of particles
- Population dynamics for global density
- Effect of phase separation on density dynamics
 - Limit cycles²
 - Extinction rates³
- Conclusions

C Nardini + MEC arXiv:2210.05263
 T Grafke et al PRL 119 188003 (2017)
 Y I Li + MEC JSTAT 053206 (2020)
 J Schuettler, R Jack + MEC in progress

suppose $\rho*$ lies within nucleation regime for Model B dynamics

except for nucleation: PS fast compared to Birth/Death

suppose $\rho *$ lies within nucleation regime for Model B dynamics except for nucleation: PS fast compared to Birth/Death

suppose ρ* lies within nucleation regime for Model B dynamics except for nucleation: PS fast compared to Birth/Death

suppose $\rho*$ lies within nucleation regime for Model B dynamics except for nucleation: PS fast compared to Birth/Death

slow manifold: $V_{drop}(R)$, ρ

Effects of Phase Separation: Extinction

suppose PS region lies in (0, ρ^*) and even nucleation is fast

$$\dot{\rho}(\rho, V) = -\mathcal{M}(\rho)f'(\rho) + \sqrt{2D\mathcal{M}(\rho)} \Lambda$$

Effects of Phase Separation: Extinction

suppose PS region lies in (0, ρ^*) and even nucleation is fast slow manifold now fully one-dimensional: $\rho(t)$ global equation of motion becomes $\dot{\rho}(\rho, V) = -\mathcal{M}_C(\rho)\mathcal{F}'(\rho) + \sqrt{2D\mathcal{M}_C(\rho)} \Lambda$

 $\mathcal{F}(\rho)$ knows about f(ρ), $\mathcal{M}(\rho)$ at and outside binodals only

- $\mathcal{F}(\rho)$ = exact quasipotential
- $\mathcal{M}_{c}(\rho)$ = composite mobility across PS region
- $\mathcal{F}(\rho) \neq$ state function

Extinction rate $\propto \exp[-[Max(\mathcal{F})-\mathcal{F}(\rho^*)]/D]$

J Schuettler, R Jack + MEC in progress

Effects of Phase Separation: Extinction

Extinction rate $\propto \exp[-[Max(\mathcal{F})-\mathcal{F}(\rho^*)]/D]$

J Schuettler, R Jack + MEC in progress

- Active phase separation
- Classical nucleation theory in equilibrium
- Classical nucleation theory without detailed balance¹
- Phase separation with birth and death of particles
- Population dynamics for global density
- Effect of phase separation on density dynamics
 - Limit cycles²
 - Extinction rates³
- Conclusions

1. C Nardini + MEC arXiv:2210.05263 2. T Grafke et al PRL 119 188003 (2017) 2. Y I Li + MEC JSTAT 053206 (2020) 3. J Schuettler. R Jack + MEC in progress

Instantons: temporally isolated rare events at low noise

- Passive fields: CNT for phase separation: free energy $\mathcal{F}(R)$
- Active fields: Kinetic CNT still applicable \Rightarrow quasipotential $\mathcal{F}(R)$
- Add birth and death:
 - Limit cycles: slow manifold (R, ρ) \Rightarrow difficult (2D)
 - Extinction with very fast PS: $R = R(\rho) \Rightarrow$ again simple (1D)

C Nardini + MEC arXiv:2210.05263 T Grafke et al PRL 119 188003 (2017) Y I Li + MEC JSTAT 053206 (2020) J Schuettler, R Jack + MEC in progress

