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Setting the scene

Much of our understanding of how
Nature works comes from
interpreting the outputs of
measurement processes.

To this end, we seek to understand
both

the mappings that underpin
measurements (are particular
outputs signals or noise?) and

the signals embedded therein. Unknowns Observables
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First-principles modelling

In essence, understanding requires reverse engineering:

Breaking up a system and putting the parts together to reconstruct
observations of interest

We look for a parsimonious set of propositions that organizes the parts to
produce the observations.

This is what I call a first-principles approach to modelling.
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First-principles modelling

More specifically,

We want to show that the validity of our propositions implies the
observations of interest

We also want to show how the propositions give rise to the
observations – i.e. the underlying rules.

An even more ambitious goal is to explain why the propositions give
rise to the observations.

To my mind, these are some of the most important goals in all of science.
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First-principles modelling

A proposition is in general only valid in a particular frame of reference

for our purposes, the reference frame is the scale of physical
organization of interest

It might be possible to deduce a proposition that applies to one scale from
propositions that apply at a smaller scale, although this is not always
desirable or more informative.
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First-principles modelling

Within this ”first principles” framework, how do we evaluate our
understanding?

Because we know how the rules that organize the parts generate
observations, we can tinker with those rules and/or alter the initial
conditions to produce new observations and then compare these to
reality.

Conversely, given new observations we can predict the underlying
organization of the parts and then check whether this prediction is
consistent with reality.
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Example: How J segment biases are generated in T cells

Figure: T cells use a segmented
receptor to detect pathogens
(Janeway Immunology)

Figure: Different mice exhibit similar
biases in the receptor’s J segments
(Ndifon et al. PNAS 2012)
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Example: How J segment biases are generated in T cells

Proposition

The biases are generated by the conformation of the region of chromatin
where the J segments are embedded
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Example: How J segment biases are generated in T cells

Question

Is our proposition that biases in J segments are generated by chromatin
conformation deductively valid?

Answer

It appears so!
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A mechanical model instantiating our proposition

P(Ji ) ∝ K
∑2

j=1 α
−3/2
i ,j e−2α−2

i,j , where αi ,j = (di ,j/b)(1− di/c)

b : DNA flexibility
c : DNA curvature
di ,j : genomic distance (in base pairs) between Ji and Dj

Fit of mechanical model to mouse data

Source: Ndifon et al. PNAS 2012
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Testing our understanding of what causes J segment biases

Fact: D − J segment distances differ between mice and humans

Question: If we use the D − J distances from humans, will we reproduce
the biases observed in humans?

Answer: We can predict 69% of the human biases!

Source: Ndifon et al. PNAS 2012

This example demonstrates the amazing power of first principles
modelling.
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Motivation for modelling DNA quantification

Wilfred Ndifon Modelling biology from first principles January 10, 2023 13 / 49



Polymerase chain reaction (PCR)

Kary Mullis (Nobel Prize ’93) invented the polymerase chain reaction
(PCR) in the 1980s to solve the DNA quantification problem.

Figure: Karry Mullis (wikipedia) Figure: Basic principle of PCR
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PCR

Despite the valiant efforts of many biologists and technologists, most
reported PCR data are quantitative only in a relative, rather than an
absolute, sense

The ratio of the amount of target DNA to that of a reference DNA is
frequently measured

Mostly (eg. during the response to COVID-19), only the PCR
quantification threshold (Ct), an indirect readout of the number of
DNA molecules, is measured

Existing mathematical solutions to this problem suffer from several
limitations, which I will discuss in the following
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Digital PCR

A recent modification of traditional PCR, called digital PCR, was
developed to facilitate the absolute quantification of DNA.

Source: wikipedia
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Digital PCR

However, the standard method used to interpret digital PCR data tends to
underestimate the number of input DNA molecules by several fold!

Source: Mojtahedi et al. Nucleic Acids Research 2014

In the following slides, we will use a new principled model of PCR to
explain why.
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A parsimonious mathematical model of PCR

Proposition

The PCR process is essentially a discrete-state, continuous-time Markov
process.

Rationale

Products of PCR reactions, DNA molecules, are countable

What happens in the next PCR cycle is conditionally independent of
what happened in the past given the present state of the reaction

In experiments, time is reported as a positive real number

The following results are a few logical consequences of this proposition.

Ref: Degoot & Ndifon, ”Stochastics of DNA quantification”,
arxiv.org/pdf/2301.02149.pdf
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pgf for the number of molecules (pgf theorem)

Theorem

Let {X (t), t ∈ R} be a continuous-time Markov process with p phases
Ii , i = 1, 2, ..., p, a countable state space S ⊂ N+, phase-specific transition
rates ri , i ∈ {1, 2, . . . , p}, and state transition probability given by

P
(
X (t ′ +∆t) = x |X (t ′) = x ′

)
= δ(x ′ − x + 1)

p∑
i=1

ri1Ii (t
′), (1)

where 1(.) is the indicator function and δ(.) is the Kronecker delta
function. If the process starts with n molecules, the probability generating
function (pgf) for the number of molecules found at time t ∈ Ik , k ≤ p, is

G (s, t) =

 se−(rk t+
∑k−1

i=1 (ri−rk )τi)

1− s
(
1− e−(rk t+

∑k−1
i=1 (ri−rk )τi)

)
n

, τi = |Ii |. (2)

Wilfred Ndifon Modelling biology from first principles January 10, 2023 19 / 49



Proof of the pgf theorem

We will prove the pgf theorem by mathematical induction on k .

Case 1: k = 1:

In this case, the Chapman-Kolmogorov forward equation corresponding to
our process is given by:

∂P(X = x , t|X = x ′, t ′)

∂t
= r1(x − 1)P(X = x − 1, t|X = x ′, t ′)−

r1xP(X = x , t|X = x ′, t ′),
(3)

where we have set t = t ′ +∆t, and r1 is the replication rate associated
with the first phase of the PCR process.

To simplify our notation, we abbreviate P(X = x , t|X = x ′, t ′) by P(x , t).

Wilfred Ndifon Modelling biology from first principles January 10, 2023 20 / 49



Proof of the pgf theorem

Recall that the pgf of P(x , t) is defined as:

G (s, t) =
∞∑
x=0

sxP(x , t).

Multiplying both sides of (3) by sx and summing over all x yields:

∞∑
x=0

sx
∂P(x , t)

∂t
= r1

∞∑
x=0

(x − 1)sxP(x − 1, t)− r1

∞∑
x=0

xsxP(x , t)

= r1s
2

∞∑
x=0

(x − 1)sx−2P(x − 1, t)− r1s
∞∑
x=0

xsx−1P(x , t)

= r1s

[
s

∞∑
x=0

(x − 1)sx−2P(x − 1, t)−
∞∑
x=0

xsx−1P(x , t)

]
. (4)
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Proof of the pgf theorem

Using

∂G (s, t)

∂s
=

∞∑
x=0

xsx−1P(x , t) and

∂G (s, t)

∂t
=

∞∑
x=0

sx
∂P(x , t)

∂t
, (5)

we simplify (4) to obtain

∂G (s, t)

∂t
= r1s(s − 1)

∂G (s, t)

∂s
, (6)

which is a partial differential equation (pde) in G (s, t).

Wilfred Ndifon Modelling biology from first principles January 10, 2023 22 / 49



Proof of the pgf theorem

By defining new variables u = u(s, t) = t and v = v(s, t) = c, with c an
arbitrary constant, using the method of characteristics, we transform

∂G (s, t)

∂t
= r1s(s − 1)

∂G (s, t)

∂s

into an easy to solve ode, yielding the general solution

G (s, t) = Ψ

(
s − 1

s
er1t
)
. (7)
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Proof of the pgf theorem

Because there are n molecules at the start of the PCR process (t = 0),
p(x , 0) = 1 if x = n and 0 otherwise, so

G (s, 0) = Ψ

(
s − 1

s

)
=

∞∑
x=0

sxP(x , 0) = sn. (8)

Observe that the argument y of Ψ (y) maps onto ( 1
1−y )

n, implying that

G (s, t) = Ψ

(
s − 1

s
er1t
)

=

(
1

1− s−1
s er1t

)n

=

[
se−r1t

1− s (1− e−r1t)

]n
. (9)

Equation (9) matches the pgf when k = 1.
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Proof of the pgf theorem

Note: It can be readily shown that

G (s, t) =

[
se−r1t

1− s (1− e−r1t)

]n
solves

∂G (s, t)

∂t
= r1s(s − 1)

∂G (s, t)

∂s

by differentiating the latter equation with respect to s and t.
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Proof of the pgf theorem

Case 2: k = 2:

There are two amplification phases with rates r1 and r2:

The first one runs from t = 0 to t = τ1.

The second runs from t = t1 to t = τ1 + τ2.

In phase two, the pgf has the same general functional form as in phase
one, albeit with a different initial condition, that is

G (s, t) = Ψ

(
s − 1

s
er2(t−τ1)

)
,

with the initial condition (at time t = τ1)

G (s, t1) = Ψ

(
s − 1

s

)
=

[
se−r1t1

1− s (1− e−r1τ1)

]n
.
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Proof of the pgf theorem

Using the same procedure as before, we obtain

G (s, t) = Ψ

(
s − 1

s
er2(t−τ1)

)

=

(
1

1− s−1
s

er2(t−τ1)

)n

e−nr1t1[
1−

(
1

1− s−1
s

er2(t−τ1)

)
(1− e−r1τ1)

]n
=

sne−n[r2t+(r1−r2)τ1][
1− s

(
1− e−[r2t+(r1−r2)τ1]

)]n . (10)

The right hand side of (10) matches the pgf when k = 2, as expected.
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Proof of the pgf theorem

Case 3: We assume the statement is true for an arbitrary k , that is

G (s, t) =

[
se−z

1− s(1− e−z)

]n
where z = rkt +

∑k−1
i=1 (ri − rk)τi , and we prove it for k + 1.

As before, in phase k + 1, the generating function has the functional form

G (s, t) = Ψ

(
s − 1

s
erk+1(t−

∑k
i=1 τi )

)
.
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Proof of the pgf theorem

At time t =
∑k−1

i=1 τi , by the induction step, we have

G (s, t) = Ψ

(
s − 1

s

)
=

[
se−z

1− s(1− e−z)

]n
.

Using the same arguments as before, we find that, for tk+1,

G (s, t) = Ψ(
s − 1

s
erk+1(t−

∑k
i=1 τi ))

=


1

1− s−1
s

e
rk+1(t−

∑k
i=1

τi )
e−z

1− 1

1− s−1
s

e
rk+1(t−

∑k
i=1

τi )
(1− e−z)


n

=
sne−n[rk+1t+

∑k
i=1(ri−rk )τi ][

1− s
(
1− e−[rk+1t+

∑k
i=1(ri−rk )τi ]

)]n , (11)

and this ends the proof of the pgf theorem.
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pgf for PCR process with Poisson-distributed initial state

Theorem

Let {X (t), t ∈ R} be the discrete-state, continuous-time Markov process
described in the pgf theorem. If the initial state of the process is
Poisson-distributed with mean λ, then the pgf for the state of the process
at time t ∈ Ik , k ≤ p, is given by

G (s, t) = e

 λ(s−1)

1−s

1−e
−(rk t+

∑k−1
i=1

(ri−rk )τi)



. (12)
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Probability distribution of the number of molecules

Corollary

Let {X (t), t ∈ R} be the discrete-state, continuous-time Markov process
described in the pgf theorem. If the initial state of the process is
Poisson-distributed with mean λ, then the probability that there are x
molecules at time t ∈ Ik , k ≤ p, is given by

P(x |λ, r⃗ , t, τ⃗) = e−λ
(
1− e−z

)x x∑
i=1

(x−1
i−1

)
i

(
λe−z

1− e−z

)i

, (13)

where

z = rkt +
k−1∑
i=1

(ri − rk)τi and τ⃗ = (τ1, τ2, ..., τk−1).
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Probability density function (pdf) of the Ct value

Let t be the Ct value of a PCR process with up to p phases with
lengths τ⃗ = (τ1, τ2, . . . , τk) and replication rates r⃗ = (r1, r2, . . . , rk).

By definition, the Ct value t is the time at which the number of molecules
reaches the quantification threshold, denoted x .

By Bayes’ theorem, the probability density of t is given by

P(t|λ, r⃗ , τ⃗ , x) =
P(λ, r⃗ , τ⃗ , x |t)P(t)

P(λ, r⃗ , τ⃗ , x)
. (14)
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pdf of the Ct value

Because λ is independent of r⃗ , t, and τ⃗ , and r⃗ is also independent of both
s and the entries of τ⃗ , we simplify P(t|x , r⃗ , τ⃗ , λ) as follows:

P(t|λ, r⃗ , t⃗, x) =
P(x |λ, r⃗ , t, τ⃗)P(λ)P(r⃗)P(τ⃗)P(t|τ⃗)

P(x |λ, r⃗ , τ⃗)P(λ)P(r⃗)P(τ⃗)

=
P(x |λ, r⃗ , t, τ⃗)P(t|τ⃗)

P(x |λ, r⃗ , τ⃗)

=
P(x |λ, r⃗ , t, τ⃗)P(t|τ⃗)∫∞∑k−1

i=1 (ri−rk )τi
P(x |λ, r⃗ , s, τ⃗)P(s|τ⃗)ds

. (15)

In the next slides, we will use Eqn. (15) to derive the pdf for a single-phase
PCR process, other key statistical features of which we will also compute.
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pdf of the Ct value for a single-phase PCR process

By assuming a uniform prior for t, we obtain the following pdf for t:

P(t|x , λ, r1) =
r1λxe

−r1t(1− e−r1t)x−1
1F1

(
1− x , 2, −λe−r1t

1−e−r1t

)
eλ − 1

,

(16)

where 1F1 is the hypergeometric function, i.e.

1F1
(
a; b; c

)
=

∞∑
k=0

(a)k
(b)k

ck

k!
,

and (a)k is the rising factorial, i.e. (a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1)
with (a)0 = 1.
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Mean and variance of the Ct value

Mean

E(t) =
ψ(x + 1)

r1
−
∑∞

i=1
λi

i! ψ(i)

r1 (eλ − 1)
, (17)

where ψ(·) is the first polygamma function.

Variance

Var(t) =

(
eλ − 1

)∑x
j=1

λj

j!

[
ψ1(j) + ψ(j)2

]
−
[∑x

j=1
λj

j! ψ(j)
]2

(r1(eλ − 1))
2

−

ψ1(x + 1)

r21
, (18)

where ψ1(·) is the second polygamma function.
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Cumulative density function (cdf) of the Ct value

The cdf is given by

F (t) = 1−
∑x

i=1
(xi )

(i−1)!λ
iBe−r1t (i , x − i + 1)

eλ − 1
, (19)

where Be−r1t (i , x − i + 1) is the incomplete Beta function.
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Shape of the pdf
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Revisiting digital PCR: standard way of estimating fraction
of positive droplets

The standard method of interpreting digital PCR data calculates the
expected fraction of positive droplets as

f̂ = 1− e−λ, (20)

from which λ is estimated as

λ̂ = − ln(1− f̂ ).
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Revisiting digital PCR: a new way of estimating fraction of
positive droplets

However, the model described here indicates that a much more accurate
expression for the expected fraction of positive droplets is:

f̂ = F (T ) = 1−
∑x

i=1
(xi )

(i−1)!λ
iBe−r1T (i , x − i + 1)

eλ − 1
, (21)

where T is the maximum practical duration of PCR.
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Standard way over-estimates fraction of positive droplets
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Over-estimation of fraction of positive droplets leads to
under-estimation of λ
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Limit of detection (LoD) and limit of quantification (LoQ)

LoD and LoQ are two of the most important operating characteristics of a
PCR process.

Both LoD and LoQ are frequently estimated by using ad-hoc
mathematical techniques, eg.

LoD estimated based on receiver-operator-characteristic curves

LoQ estimated as value of λ for which the coefficient of variation of
the Ct value exceeds an arbitrary threshold

Our model permits the development and execution of
mathematically precise statements of the estimation problem.
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LoD

Definition

The LoD is the smallest number of molecules that can be detected with a
failure rate not exceeding a threshold α. Specifically,

LoD = min λ

s.t. F (T |λ, r⃗ , s⃗, x) > 1− α, (22)

where T is the maximum practical duration of PCR.
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LoQ

Definition

Suppose that a Ct value t, generated by some PCR process, is used to

obtain an estimate, denoted λ̂, of λ. Let P
(
λ/β ≤ λ̂ ≤ βλ | λ, r⃗ , τ⃗ , x

)
denote the probability that, for any data t generated by the same process,
λ̂ will not differ from λ by more than a factor β, β ≥ 1. We define the
LoQ as

LoQ = min λ

s.t. P
(
λ/β ≤ λ̂ ≤ βλ | λ, r⃗ , τ⃗ , x

)
> 1− α. (23)
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Calculating the LoD: examples
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Summary

I have highlighted the importance of first principles modelling

The starting point is a parsimonious set of propositions that is
postulated to organize a system’s parts to generate observations of
interest

The propositions are instantiated in a model that permits assessment
of their deductive validity

Further testing is done by using out-of-sample data

I described how a first-principles model we developed for
reverse-engineering PCR data allows to correct estimation errors
produced by a purely statistical model
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Next steps

Use existing data to compare the accuracy and precision of the new
model vs. existing models, which are mostly phenomenological

Investigate the new model’s power to inform the design of more
efficient experiments

Apply the new model to improve on the state of the art in pool testing
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Thank you!
wndifon@aims.ac.za
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