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A cross-disciplinary journey (2017-2023)

Study of interactions:

Part 1: Using a neural network to estimate interactions in Ising model

Part 2: model-independent estimation of interactions directly from data

Part 3: Biological interpretation of interactions and application in biomedicine




Forward vs inverse problem

Forward problem (Statistical Physics): The goal is to provide a macroscopic

description of Nature by deriving observable quantities from underlying laws.

- Ising model forward problem: Obtain observables such as magnetisation,
energy and correlations, given the Hamiltonian and its parameters

Inverse problem: Starting point are observations (data), the goal is to infer

microscopic properties of the system

- Estimate Ising interactions directly from data



Interactions

Elementary Particles

Standard Model of Elementary Particles

interactions / force carriers

three generations of matter
(fermions)
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Part 1
Interactions: The Ising model & RBM




Ising Model
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Restricted Boltzmann Machine (RBM)

Eg(v, h) = — S: D W,:,'h,'\/j — Z C,'h,' — Z bJVJ
i=1 j=1 i=1 j=1
1 Eyuh)
Prem(V, h|0) = e
Zrem

Dut. (Qdata(V)HpRBM(V|9)> =) qaata(v)log ( Gdata(V) )

preM(V|0)

— Z (Qdata(v) log (Qdata) o Qdata(v) log (pRBM (V‘H)) )

Max likelihood <——> Min KL divergence

Ising configuration training data



Observables




RBM: Observables

Magnetisation vs number of epochs
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6 variables
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RBM: Estimation of interactions

Z bjv; — (S‘ /1(1)sz> 3 Z (Z I€(2)Wszm) VU + -

gk (

Beyond pairwise, higher-order couplings

Possible to re-sum the entire series to obtain 2-point coupling!!

For binary data, using cumulant generating function ...

finite sum

12



RBM: Estimation of interactions

ZUESO IS o] RN PR o] 0 ST PR
J j i

ik i
Beyond pairwise, higher-order couplings

Possible to re-sum the entire series to obtain 2-point coupling!!

For binary data, using cumulant generating function ... P =wv; , neZ"

. . finite sum
e.g., 2-point interaction:

Closed form expression!

Hy,, = Ly (LEE ot W14 )
J1J2 8 i (1 + €Ci+Wij1 )(1 —+ ec’i_l'WiJQ)
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RBM: Estimation of interactions

Z bjv; — (S‘ /1(1)sz> 3 Z (Z I€(2)Wszm) VU + -

7k ()
Beyond pairwise, higher-order couplings

Possible to re-sum the entire series to obtain 2-point coupling!!

For binary data, using cumulant generating function ... P =wv; , neZ"

. . finite sum
e.g., 3-point interaction:

1 (1 4 ec,~+le+W +Wij, )(1 4 ec+le)(1 1 i +W12)(1 4 eC+Wf ) ]
~ Y1 Closed form expression!

n
(1 4 eSitWii Wi +) (1 4 St Wiii TWii3 ) (1  CtWin TWiis ) (1 + )
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RBM: Couplings Jj

Ising Model RBM prediction
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RBM: Couplings during training
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16 Cossu et. al., Physical Review B (2018)



RBM: Number of training examples
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Cossu et. al., Physical Review B (2018)



RBM: Lessons Learnt

- Understand well the training criteria from RBMs: Log-likelihood, Loss, free
energy, reconstruction error + moments generated by the machine

- RBMs are successful at estimating (higher-order) interactions in a given system
of binary variables

- Generally, need lots of training examples
AND

- Still need to deal with potentially very large numbers of dependent variables
(e.g. Gene Networks). RBM interactions changing depending on gene included!

- RBMs are not particularly convenient to train ... (e.g. including time on hyper-
parameter tuning)

18



Part 2

Interactions: Model-independent
definition and estimation

19



Defining the target

Aim: Formulate the target quantity of interest:

not as a property of a parametric statistical model

The target quantity can often be identified without ever specifying the
functional or distributional form of the model: model-independent

Why is this important?
1) Be clear about what we are actually after.

2) Don’t waste computational, analytical and data resources on irrelevant
aspects of a problem (here the full joint distribution!)

20 Judea Pearl (2010), Mark van der Laan (2011)



There is no “theory” in biology

Come up with a ‘sensible’ model-independent statistical definition

0
0

QA

Later, G = genes

I =1
! p(G; =0

1
‘odds ratio’: What is the likelihood of spin i being 1 vs O

For 1 spin: <p(G¢ — 1 ) Here G = spins
)

21



There is no “theory” in biology

Come up with a ‘sensible’ model-independent statistical definition

I (MGLIG=D) e
' p(G; =0|G=0) ’
‘odds ratio’: What is the likelihood of spin i being 1 vs O
For 2 spins:
m (p(Gij — (171) QZO)) <p(Gij — (170) QZO))
I ;= In — In

‘odds ratio’ of spin i

‘odds ratio’ of spin i
with spin j being O

with spin j being 1

‘generalised odds ratio’: Does the likelihood of spin i being 1 increase/decrease
depending on whether spin j is 1/0. Generalisable to higher-orders.



There is no “theory” in biology

Come up with a ‘sensible’ model-independent statistical definition

I (MGLIG=D) e
' p(G; =0|G=0) ’
‘odds ratio’: What is the likelihood of spin i being 1 vs O
For 2 spins:
m (p(Gij — (171) QZO)) (p(GZJ (170) QZO))
I ;= In — In
| p(Gij — (07 1) G = O) p(Gw — ( ; ) G = O)
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=3
9
I
||
=
=
Q
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=

If two spins are independent: p(G;,G,;|G =0
I{'} =

There is no interaction:



There is no “theory” in biology

Come up with a ‘sensible’ model-independent statistical definition

I (MGLIG=D) e
' p(G; =0|G=0) ’
‘odds ratio’: What is the likelihood of spin i being 1 vs O
For 2 spins:
m (p(Gz'j = (1,1) |G = 0)> (P(Gij (1,0) | G = 0))
I ;= In — In
| p(Gi; = (0,1) | G =0) p(Gij = (0,0) | G =0)

p(Gi|G = 0)p(G;|G = 0)

N——"

S,

If two spins are independent: p(G;,G,;|G =0
I{'} =

There is no interaction: , o
Spoiler: Jij in Ising!



Recall analytical formula for RBM interactions

n m

Eg(v, h) = — ZZ W,'jh,'\/j — Z C,'h,' — Z bJVJ

=1 j=1 =1 Jj=1

Marginal:  p(v]0) = % H (eP7v7) H (1 + ST 2= ’“’iﬂ'“j)

Asymptotic expansion, resummation, ... »

Analytical closed-form expression for n-point interactions, e.g. 2-point:

J 1 T (L4 es ot (1 + )
j17j2 X HU1 (1 L eci—|—’w7;j1)(1 _|_ eci+wij2)



Recall analytical formula for RBM interactions

n m n m
Eg(v,h) — —Z W,'jh,'\/j —ZC;h,‘—ijVj
i=1 j=1 i=1 j=1
1 Eyv.h)
Prem(V, h|0) = e —°
Zrem

o P = (1,1), 0= 0) p(vj,, = (0,0),v=0) _ ﬁ (1 4 ecitin i) (1 4 %)
J1,J2 p(’Ujle = (1,0),v = 0) p(vj1j2 = (0,1),v =0) Pl (1+ pCitWijy )(1+ 6Ci+’wij2>
No asymptotic expansion and re-summation required ...

Applies to other energy based models
Beentjes & Khamseh, Physical Review E (2020)



Model-independent estimation results

Conditioning on parent spins to isolate pairs from the rest of the system
(Markovian). Run time: Few seconds per temperature.
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Biology: Large number of dependent variables

Estimating intricate interaction structure amongst many genes

Certain approximation no longer possible: p(G;, G;) # p(G;)p(G)

Number of variables >> data, (and high temperatures) G binarised!
m o (p(Gij = (1,1) |G =0)p(Gi; =(0,0)]| G = 0)>
i, — _ — _ _
p(Gi; = (0,1) | G =0)p(Gi; = (1,0)|| G = 0)

Estimate conditional dependencies directly from data, using efficient
causal discovery algorithms (e.g. PC, Score-based MCMC)

Nothing comes for free! These come with their own assumptions/bias
Keep in mind to be conservative.



Part 3
Biological data: Gene expression




The central dogma

Translation Translation

Figure by Abel Jansma (PhD student)



Biology: Large number of dependent variables

Single Cell

RNA

Count data
(Later binarised)
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(In)dependence of gene expressions

10X single-cell LEVEL: 0
1M mouse brain
developmental data
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Plot by Abel Jansma (PhD student)



(In)dependence of gene expressions

10X single-cell LEVEL: 1
1M mouse brain
developmental data
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(In)dependence of gene expressions

10X single-cell LEVEL: 2
1M mouse brain
developmental data
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Plot by Abel Jansma (PhD student)



(In)dependence of gene expressions

LEVEL: 3

10X single-cell

1M mouse brain
developmental data

Plot by Abel Jansma (PhD student)



(In)dependence of gene expressions
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Plot by Abel Jansma (PhD student)



(In)dependence of gene expressions

10X single-cell VEVEL: &
1M mouse brain
developmental data ) Sld39n14
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Plot by Abel Jansma (PhD student)



(In)dependence of gene expressions
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1M mouse brain
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Estimate model-free n-point interactions

2-point up to 7-point interactions
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Stator workflow

Al Gene B | Pseudo-causal graph | C | n-point MFI
01 PC, MCMC estimation
8 1 1
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binarised



What is the biological interpretation of
these n-point interactions?

Does it help answer questions
of molecular & cell biologists?



Regulation vs Cell State

1. MFls represent physical interactions amongst molecules within a cell

>

2. MFls represent a biochemical network:

Transcription factor A -> Target gene B

3. MFIs represent dependence structure amongst genes that imply

cell types, subtypes or states

(MFls estimated as an average across diverse cell populations)

l.e. the statistical interpretation of interactions, rather than dynamical/physical



Stator workflow
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Stator pipeline: Abel Jansma (PhD student)



Stator workflow
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Stator workflow
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Will biologists bother using this
methodology?



Criteria:

1. Ease of use
(easy-to-follow documentation, easy copy/paste code, press of a button)
2. Speed
Output with good visualisation
4. Biology that “makes sense”

Lo



Criteria:

1. Ease of use
(easy-to-follow documentation, easy copy/paste code, press of a button)
2. Speed
Output with good visualisation
4. Biology that “makes sense”

Lo

n. The methodology behind the software

(where n can be very large!)



Stator workflow
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Liver Cancer: Cell types and states

10

Macrophage
Tissue_stem_cells 8
Subtype: Hepatocytes 6
Fibrotic DC 4
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State: e.g. cell cycle, proliferative states, high-energy state, ...



Stator app interface

Medical
Research
Council

®
12C El
INSTITUTE OF
GENETICS & CANCER

If you like MFIs and use it, please consider citing
the related article:

Higher-order interactions in statistical physics and
machine learning: A model-independent solution
to the inverse problem at equilibrium Sjoerd
Viktor Beentjes and Ava Khamseh, Phys. Rev. E.
2020 Nov 102, 053314

MFIs application code is available through Github
f

If you have any question, you can send an e-mail
F
R

1.00000

THE UNIVERSITY -3¢ CANCER
of EDINBURGH g O

BB Table [ Heatmap |2 GO & KEGG |2 Using rrvgo Jlll Upset Plot

3G DE analysis

Explore cell states by MFls

MFIs takes in scRNA-seq count matrix and estimate gene interactions. Here we show how to use these MFIs to
explore cell states.

Data Visualization & Analysis

= Table - A Summary statistics for deviating state

= Heatmaps - Over-representation test for MFls and other cell annotations
= GO & KEGG for genes in each state

= rrvgo - Simplifying the redundance of GO sets

= Upset Plot

= DE analysis for mutually exclusive states

Tutorial

Resolution (dice distance) cut-off

0.98333

¢ I HEEEN EEEEEEEEEEEEENERN

Dice-distance

0 0.95000

i I I I I I I
ATP5F1E+ SELENOP- RACK1- SRGN+ IL2RB+ ATP5F1E- ATP5F1E
SELENOP+ ATP5F1E+ ATP5F1E+ CXCR4+ IL7R+ SELENOP+

RACK1+ RACK1+ SELENOP+ VIM+ CCL5+ RACK1+ MSAA‘H
GC+ SELENOF+ SELENOF+ DUSP2+ KLRB1+ SELENOF+ S100A8+

wﬂu ‘&%ﬁm i ta, - Mv- S L L L S
| | | | | | |
MLXIPL+ SPARC+ DAB2+ EREG- c1Qc+ ADIRF+ BIRC3+ CYP2E| EREG+ IGHG1+ IGHG4+ c1Qc- ADAMTS1+ COL6AT+
ATF5+ TM4SF1+ LYVE1+ FCN1+ CD68- NDUFA4L2+ HSPH1+ FCN1+ IGHG4+ IGKC+ CD68+ CLDN5+ COLBA2+
CPS1+ COL4A1+ PLVAP+ IL1B+ PLTP+ AGR2+ LCN2+ KNG1- CXCL8- IGKC- FGFBP2+ PLTP+ SPARC- SPARC-
CYP2C9+ IGFBP7+ CXCL8+ RNASE1+ AKR1C2+ TNFAIP3+ IL1B- IGHG1+ RNASE1+

Stator interface app: Yuelin Yao (PhD student)



Stator app interface
1 )C s @ i £ ws

INSTITUTE OF
GENETICS & CANCER

O About BB Table [ Heatmap ¥ GO & KEGG l~ Using rrvgo Jlll Upset Plot 238 DE analysis
Here we use scRNA-seq HCC dataset. To upload your

Sk Al 0 Table for deviating MFls

391 deviating MFlIs in total, 21 clusters.

Dice distance: Show | fl'_  entries search:
0 0.95
T T T - i i T T T [ genes dev pva' cluster
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
47 IGHG4_IGHG1_IGKC 216.09886998247 2.29736631083133e-28  Cluster:1
150 IGHG4_FGFBP2_IGKC 21.9122324209873 1.04827895292059e-19  Cluster:1
341 PLTP_CD68_C1QC_RNASE1 6.41225201584546 1.39266594426104e-9  Cluster:2
ReSOIUtlon CUt_Oﬁ 213 EREG_CXCL8_IL1B_FCN1 14.7648630077289 1.05933261179815e-8  Cluster:3
220 EREG_CXCL8_IL1B_FCN1 13.9465435194403 3.12038785771356e-13  Cluster:3
282 EREG_ILT1B_FCN1 9.95679034074909 2.46844896187663e-13  Cluster:3
292 EREG_CXCL8_FCN1 9.09789155019342 9.41630198774148e-13  Cluster:3
177 IGHG4_IGHG1_IGKC 18.5991179035581 8.521545688936e-16  Cluster:4
63 CXCL1_IER3_CXCL3 99.0782359764262 2.01516836396423e-47  Cluster:5
74 MB_NDUFA4L2_TFF2 79.5037037037037 6.82448451177721e-18  Cluster:5
Showing 1 to 10 of 391 entries Previous 1 J 2 3 4 5 40 Next

' Download as .csv

Stator interface app: Yuelin Yao (PhD student)



Stator app interface
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© About BB Table &2 GO & KEGG & Using rrvgo Jlll Upset Plot 3¢ DE analysis

Here we use scRNA-seq HCC dataset. To upload your data, click
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Stator workflow
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Backup slides



e
RBM Prediction: n-point interactions

e A non pair-wise treatment
e Higher order couplings

e Not accessible via standard statistical techniques

Z bjvj — (Y li(Z)WZ]) — — Z (Z K(Q)WszZJ> VU + -

——

Re-sum the entire series to obtain 2-point coupling!!




e
Derivation of n-point interactions in closed form

E(v) =1n Z eE(V:h)
h

— ln Z e Zj bj’b'j_zi C'ih‘i_zi,j hi‘/Vijvj

h
E(v) = - Z bjvj — Z In Z eCilvi g2 hiWi;v;
J 1 h;
- Z bjvj — Z IHZQ(hi)ethi ; t = Zj W;;v; and q(h;) = eCilvi
J 1 h

Cumulant generating function:

(n) yn
| <, T n n
Ki(t)=In) q(h)e™ =) h@n' ") = 0P Ky (1)|i=o

h.l' n

A high-bias, low-variance introduction to machine learning for physicists by Mehta et al. Physics Reports (2019)



e
Derivation of n-point interactions in closed form

(2)

S SUCRISLLED WELE Z’%Q!’f?

0

= — ZREO) — Z (bj + ZHEI)VVU) (2F B % Z (Z H,,(;Q)‘Vijlwi]é) UjiVjp —

j jlsj? 1

n _ +
Vi =5, n € Z

e.g. 2-point interaction:

;53 (SR ()t ) o

n>1 O<l<:<n317'5.72 v

| (1 4 eoi+ Wi +Wiss ) (1 4 %)
Hj1j2 R Zln c W, - it W
8 (1 4+ e“™Widn ) (1 + e@™Widz)

()

Closed form expression!

Cossu et. al., Physical Review B (2018)



e
Derivation of n-point interactions in closed form

(2),2

iju - - e - Z’%Q!’f

0

= — ZREO) — Z (bj + ZHEI)VVU) (2F B % Z (Z H,,(;Q)‘Vijlwi]é) UjiVjp —

j jlsj? 1

v =wv; , nel"

<o

e.g. 2-point interaction:

Z Z ngn) (Z) W’lelwn ’ Uj1 Vs,

n>1 O<k:<n317£32 7

e.g. 3-point interaction: I

1 , (1_l_ec,-—I—Wijl+Wij2+Wij3)(1_|_ec,-+Wij1)(1_|_ec,-+Wij2)(1+ec,-+Wij3) .
Z n (1 i eCitWij, +W, ,,2+)(1 +ec,+W,,1+W,J3)(1 + eCit Wij, +Wij, )(1 + ec) Closed form expressmn!

Cossu et. al., Physical Review B (2018)



Back to Ising ...

2-point interaction

Ising 2-point interactions per spin pair, L=8, 100K samples expectation
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Beentjes & Khamseh, Physical Review E (2020)



Model-independent estimation results

Conditioning on parent spins to isolate pairs from the rest of the system
(Markovian). Run time: Few seconds per temperature.
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