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Introduction to protein 
structure



What is a protein?

◯ Proteins are molecular machines
that are essential to life

◯ They have many functions: from our hair 
to our immune system

◯ Consist of chains of amino acids that 
fold into a úD structure

◯ The exact úD shape is important for a 
protein’s function

◯ Understanding protein structures is a 
fundamental problem in biology



Protein structure: terminology 

Vocabulary:  ù÷ common amino acids / residues

◆ Small organic molecules with common groups

+ a side chain specific to each amino acid

Sequence: chain of ø÷÷s-ø÷÷÷s amino acids

◆ Amino acids form peptide bonds and build up a protein chain

◆ DNA sequences directly encode the amino acid sequence

Structure: atom coordinates in úD space (ú÷÷ - ü÷,÷÷÷ atoms) 

◆ Unique úD structure comes from physical interactions of amino acids.



Protein structure



Why predict structures?

Predicting a protein’s structure from its amino acid sequence has been a grand challenge in 
biology for the past ü÷ years.

➔ Experimental structure determination takes months to years.

➔ ~ù÷÷,÷÷÷ protein structures experimentally determined so far.

➔ Structure prediction can provide actionable information faster.

 

Structure prediction

Protein-coding 
DNA

Protein 
structure
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the data
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Express
in cells



ù÷÷,÷÷÷x 
decrease in
ù÷ years

Reading DNA has become cheap



AlphaFold predicts highly accurate protein 
structures from amino acid sequences

SIFSYITESTGTPSNATYT
YVIERWDPETSGILNPCYG
WPVCYVTVNHKHTVNGTGG
NPAFQIARIEKLRTLAEVR
DVVLKNRSFPIEGQTTHRG
PSLNSNQECVGLFYQPNSS
GISPRGKLLPGSLCGIAPP
PVHHHHHH

Tø÷ûĀ / ýyûf
Āú.ü GDT

(adhesin tip)



CASP
Critical Assessment of
protein Structure Prediction

External independent benchmarks are critical

Run every ù years since øĀĀû - gold standard

Blind prediction assessment

DeepMind



AlphaFold at CASP14

Tø÷úþ / ývrû
Ā÷.þ GDT, RNA polymerase domain



Making AlphaFold available

>ù÷÷ million protein structures



How AlphaFold works



Why not physical simulations?

Physics
[causal]

Sequence

Structure



Why not physical simulations?
Reason 1: timescales

SARS-COV-ù spike, Anton simulation

~1 GPU-dayOne step of MD ~1 Anton-day

● Molecular dynamics (MD):

○ Langevin dynamics on a potential

○ Folding takes ø÷øù-ø÷øü sequential steps - too slow



Why not physical simulations?
Reason 2: underspecified context

AlphaFold (monomer prediction xú) Experimental structure

Tø÷ÿ÷ (trimer)Tø÷üý (zinc binding)

AlphaFold / Experiment



Determining Structure from Evolution - Intuition

Physics
[causal]

Sequence

Structure

Evolutionary History

Evolutionary 
Structure Prediction

[Bayesian]

Function
[causal]



Determining Structure from Evolution - Intuition

Search genetics 
databases

Multiple Sequence 
Alignment (MSA)

Co-evolution: residues in contact 
must mutate together.

Evolution conserves some properties 
like hydrophobic / hydrophilic amino 
acids on the ”inside” / “outside”

Coevolution cartoon by Sergey Ovchinnikov 
(https://jgi.doe.gov/seeking-structure-metagenome
-sequences/cartoon-coevolution-sergey-o/)



Deep learning provides building blocks for 
approximating arbitrary functions

Convolutional layers Graph layers Attention layers

E.g.

These blocks are very generic; they don’t take advantage of our scientific understanding 
of proteins and protein evolution



Design principles

● End-to-end

○ Network goes all the way from inputs to structure

○ Can learn about and optimise the whole process 

● Inductive biases 

○ Design reflects our knowledge of physics / geometry

○ Emphasis on pairs, not a sequence of residues

○ Output should be self-consistent

residue ù

re
si

d
ue

 ø

Protein backbone image by Dcrjsr, vectorised Adam Rędzikowski (Wikipedia)

https://en.wikipedia.org/wiki/Dihedral_angle#/media/File:Protein_backbone_PhiPsiOmega_drawing.svg


Model

● Deep: øĀù blocks (ûÿ blocks x û cycles)

● Āú million parameters

○ Reasonably small; GPT-ú is øþü billion parameters

● Seconds to hours of runtime, depending on protein length

Training Data

● øþ÷,÷÷÷ úD structures

● Genetic databases (sequences without structure)

AlphaFold: a deep learning model



Determines relationship 
between residue pairs

Model overview

Incorporates evolutionary
information 

End-to-end:
outputs structure 

directly



Evoformer



Evoformer

Multiple sequence 
alignment data

Residue pair data
Multiple sequence alignment and residue pairs are the 

main concepts in Evoformer blocks



Evoformer

Attention

Multiple sequence 
alignment data

Residue pair data

Attention is augmented by the network’s belief about residue pairs



Evoformer

Attention

Outer 
productMultiple sequence 

alignment data

Residue pair data

Outer product allows generalized correlation similar to co-evolution



Evoformer

Attention

Triangular 
attention

Outer 
productMultiple sequence 

alignment data

Residue pair data

Residue pair interactions inspired by geometric interactions



Triangular attention for residue pairs

➔ Matrix view: 

◆ Each residue attends to all other residues within a row 



Triangular attention for residue pairs

➔ Matrix view: 

◆ Each residue attends to all other residues within a row 

➔ Graph view:

◆ Nodes = residues, edges = pairs of residues; represents residue spatial relations, e.g. distances in úD. 

◆ Transitivity / triangle inequality: update for query ij should depend on ik and jk (for residues i, j, k).

This is missing in traditional self-attention: we add a bias term to bring the third edge in.



Network



● Protein backbone = gas of ú-D rigid bodies
(chain is learned!)

● Geometric transformer architecture updates 
the rigid bodies / backbone

○ Also builds the side chains from torsion angles

Structure module

Target: Tø÷ûøImage: Dcrjsr, vectorised Adam Rędzikowski (CC BY 3.0, Wikipedia)

https://en.wikipedia.org/wiki/Dihedral_angle#/media/File:Protein_backbone_PhiPsiOmega_drawing.svg


Model interpretability - ORF8 - Sars-Cov2

Target

Prediction

7JTL: Flower, T.G., et al. (2020) Structure of SARS-CoV-2 ORF8, a rapidly 
evolving coronavirus protein implicated in immune evasion. Biorxiv.



Model interpretability - T1044

6VR4: Drobysheva, A.V., et al. Structure and 
function of virion RNA polymerase of a crAss-like 
phage. Nature (2020). (CASP14 target T1044)

Target



Model interpretability - Role of depth



AlphaFold and the 
biology community





● AlphaFold outputs two confidence 
metrics: pLDDT and PAE

● Important for sharing predictions 
responsibly

● Supports new use cases:
○ Software integrations
○ Domain segmentation
○ Detecting interactions
○ Disorder prediction
○ Ranking structural models . . . 

Communicating confidence is key

Very high (>Ā÷)

Confident (þ÷-Ā÷)

Low (ü÷-þ÷)

Very low (<ü÷)

pLDDT PAE



Studying molecular machines

Mosalaganti, S. et al. AI-based structure prediction empowers integrative structural 
analysis of human nuclear pores. Science (ù÷ùù)



What’s next?



Proteins in the cellular context
● AlphaFold-Multimer: multiple protein chains
● Need to also consider non-protein components:

DNA, RNA, ligands, water, ions…

What’s next? Three major challenges

DESRES-ANTON-11021571 https://www.deshawresearch.com/downloads/download_trajectory_sarscov2.cgi/ 
RNA polymerase, PDB-101 https://pdb101.rcsb.org/motm/40 

https://www.deshawresearch.com/downloads/download_trajectory_sarscov2.cgi/
https://pdb101.rcsb.org/motm/40


Proteins in the cellular context
● AlphaFold-Multimer: multiple protein chains
● Need to also consider non-protein components:

DNA, RNA, ligands, water, ions…

Protein dynamics

Effect of mutations on proteins

What’s next? Three major challenges

DESRES-ANTON-11021571 https://www.deshawresearch.com/downloads/download_trajectory_sarscov2.cgi/ 
RNA polymerase, PDB-101 https://pdb101.rcsb.org/motm/40 

https://www.deshawresearch.com/downloads/download_trajectory_sarscov2.cgi/
https://pdb101.rcsb.org/motm/40
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AlphaFold 2 Methods Human Proteome
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Lattice QCD work at 
DeepMind



The problem; scientific viewpoint:

● Simulate quantum fluctuations of gauge fields 
(gluons, photons) and fermionic fields (quarks, 
electrons) in QFT using generative models

● Use the model's samples to compute physical 
observables (such as particle masses)

Enabling Lattice QCD simulations to a wide community 
and accelerate progress in our understanding of matter

The problem; machine learning viewpoint:

● Not a data fitting problem!
● Inference problem: 

○ Learn a target density in a ûD lattice of 
complex-valued matrices and vectors

○ Minimize a divergence using model sampler 
(e.g. reverse Kullback-Leibler)

● Requires enormous amount of memory due to 
lattice size

Proton

Gluon

Proton Proton

Proton

ø. Sampling using SU(N) gauge equivariant flows, Phys. Rev. D, Boyda, Kanwar, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan
ù. Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions, Phys. Rev. D, Abbott, Albergo, Boyda, 

Cranmer, Hackett, Kanwar, Racanière, Rezende, Romero-López, Shanahan, Tian, Urban



Thank you!

Q&A


