

# Developing quantum algorithms for chemistry at Google

Ryan Babbush January 11, 2023





# Qubits and gates, briefly

Any 2-state quantum system is a qubit,  $\ket{\psi}=a_0\ket{0}+a_1\ket{1}$  Classical prediction

For 2 qubits,  $|\psi\rangle = a_{00} |00\rangle + a_{01} |01\rangle + a_{10} |10\rangle + a_{11} |11\rangle$ 

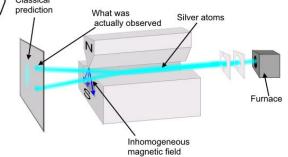
N qubit systems requires  $O(2^N)$  classical bits to represent

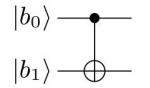
Information manipulated by controlled Hamiltonian evolutions

For instance, evolve 2 qubits under  $H = (Z_0 - I_0) \otimes (I_1 - X_1)$  for time,  $t = \pi / 4$ 

$$e^{-iHt}: \left|b_0\right\rangle \left|b_1\right\rangle \mapsto \left|b_0\right\rangle \left|b_0 \oplus b_1\right\rangle$$

CNOT + single qubit rotations "universal" for all quantum dynamics / circuits



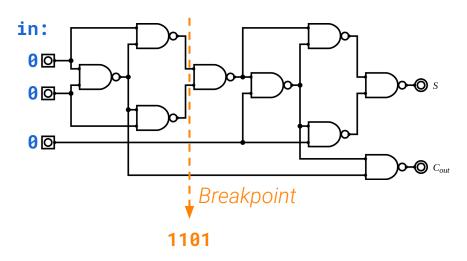


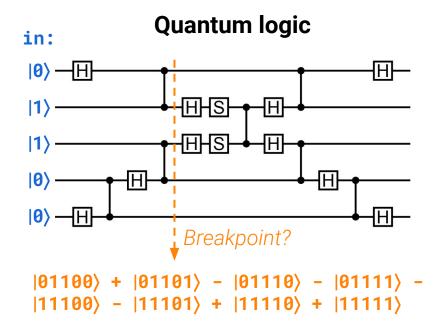


# Quantum circuits, briefly

Use different logic to unlock new algorithms

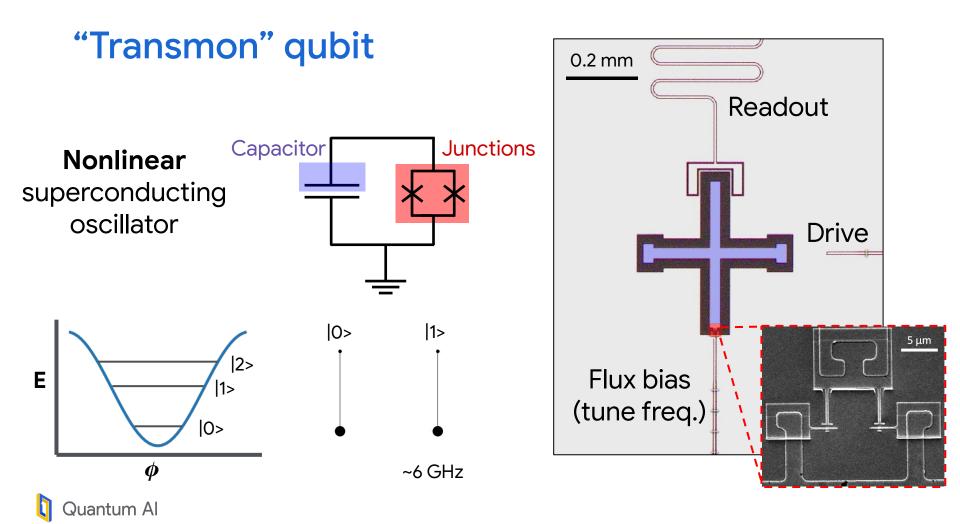
"Classical" digital logic

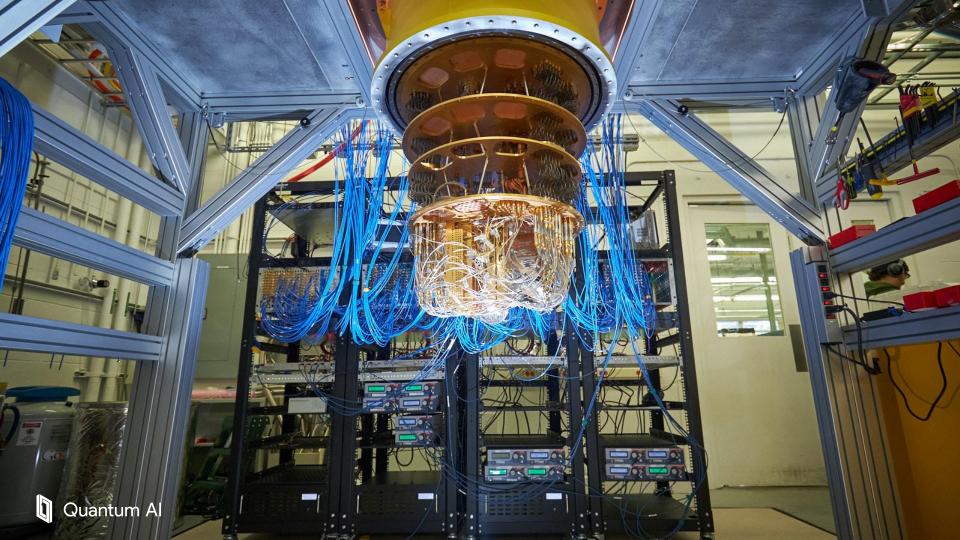




**Linear superposition** in high-dimensional space Measurement **collapses** to one bitstring





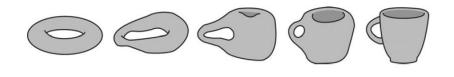


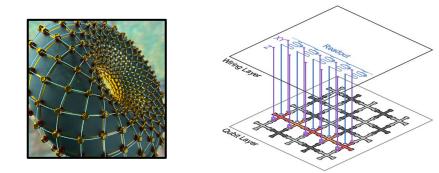
### Fault-tolerance enables the quantum computer of our dreams

In early classical computers, logical bits were encoded in redundant physical bits:

 $|0\rangle = |000\rangle \qquad |1\rangle = |111\rangle \qquad |b_1, b_2, b_3\rangle \mapsto |\text{mode} \{b_0, b_1, b_2\}\rangle$ 

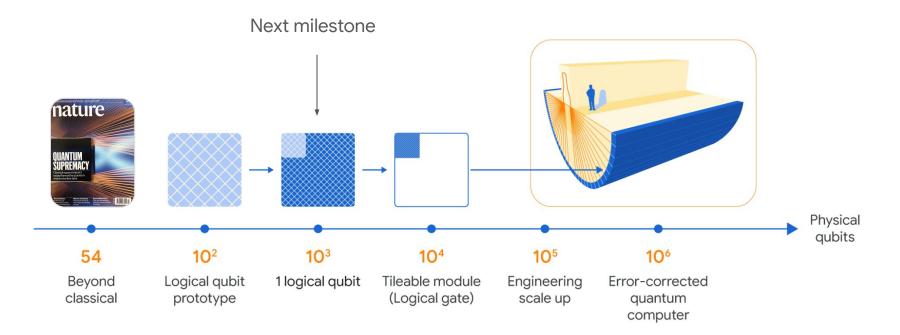
Cannot copy qubits; popular idea is to encode information topologically





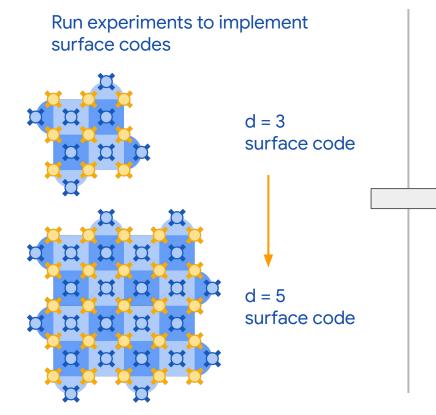
30 x 30 array of physical qubits in "surface code" has lifetime on order of millennia

### Google's roadmap to fault-tolerant quantum computing

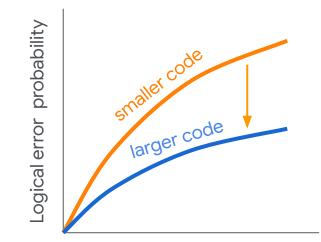




### Milestone 2: Logical qubit prototype (plan)



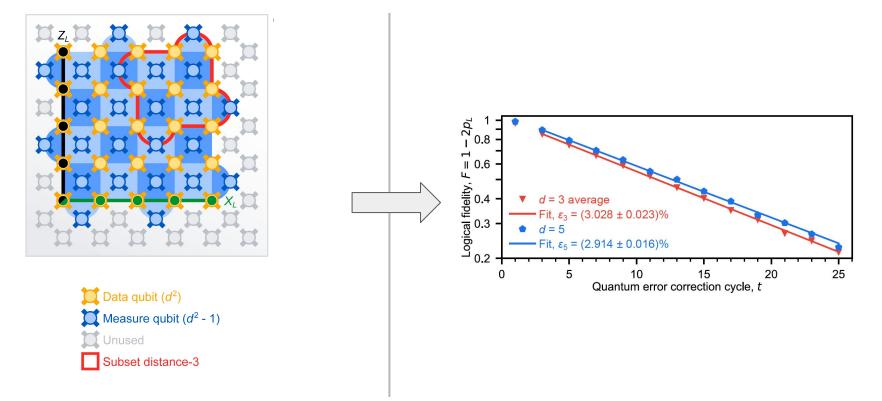
Analyze data and see if failure probability is lower with larger code



**Error-correction rounds** 



### Milestone 2: Logical qubit prototype (experimental data)



Quantum Al

arXiv:2207.06431

# Quantum computers today

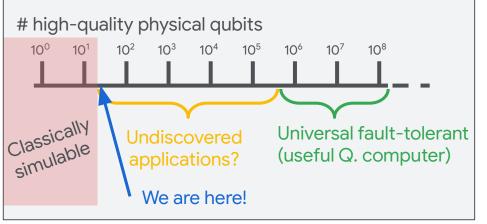
We are in the age of noisy intermediate scale (NISQ) quantum devices We can run circuits on 50-100 qubits but errors severely limit circuit size

In 2019 Google team demonstrated beyond classical computation i.e., we used our 54 qubit quantum computer to perform a well defined computational task that (was then) intractable on a classical computer

**Ultimate goal is quantum error-correction** Has very large resource overheads

We'll have NISQ devices in the meantime Will we be able to use such devices to achieve quantum advantage on a useful application?

Jantum Al





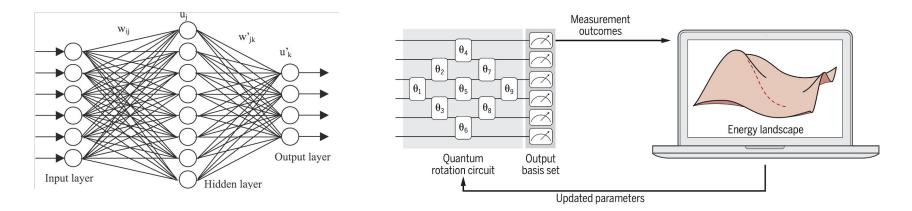
### **Quantum variational algorithms**



Beyond classical experiments reveal that we can prepare extremely complex quantum states on existing hardware

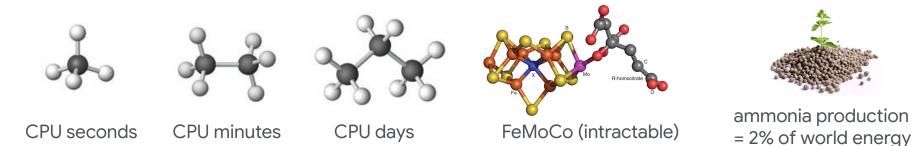
But how do we make relevant states for an application?

Use a variational quantum algorithm - *Nat. Comm* 5, 421 (2014) i.e., quantum circuits trained like a quantum neural network



"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical" - Richard Feynman





#### The prospect of more efficient simulations is scientifically exciting and valuable!



# The molecular electronic structure problem

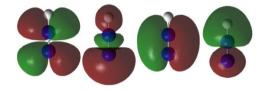
**Energy surfaces allow us to understand reactions** Need chemical accuracy (1 kcal/mol) for rates

 $H = \hat{T}_{\text{nuc}} + \hat{T}_{\text{elec}} + \hat{V}_{\text{nuc-nuc}} + \hat{V}_{\text{nuc-elec}} + \hat{V}_{\text{elec-elec}}$ 

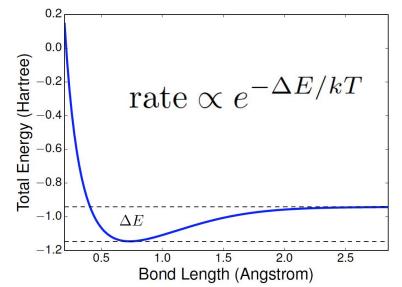
Such accuracy is often classically intractable Especially for systems with strong correlation

Goal is to solve for the energy of molecule

To represent wavefunctions on computer one must discretize space (confine to basis)



 $a_{1}\left|0011\right\rangle + a_{2}\left|0101\right\rangle + a_{3}\left|1001\right\rangle + a_{4}\left|0110\right\rangle + a_{5}\left|1010\right\rangle + a_{6}\left|1100\right\rangle$ 

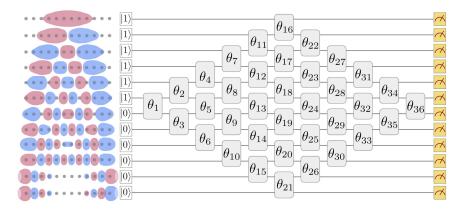


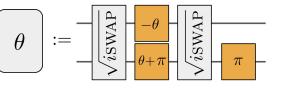


-

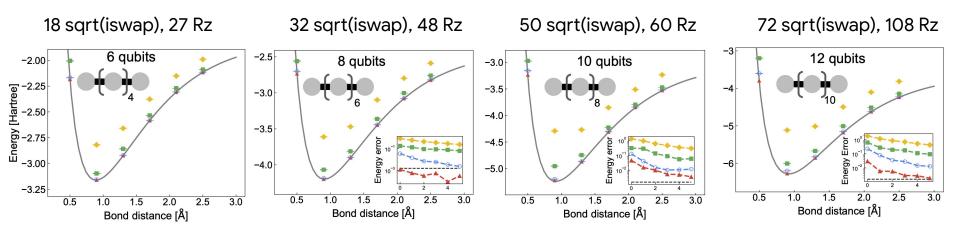
### Realizing chemical variational algorithms Science 369, 1084-1089 (2020)







Quantum Al



## Quantum-Classical Hybrid Quantum Monte Carlo

Nature 603, 416-420 (2022)



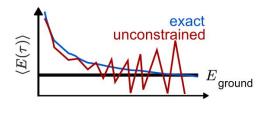
Quantum Al

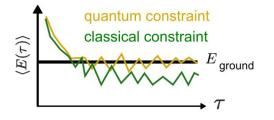
quantum Monte Carlo

classically samples state via imaginary time evolution

the fermion sign problem leads to exponentially high variance, but can be suppressed with a biasing constraint

trial wavefunction from quantum computer can apply this constraint without introducing high bias

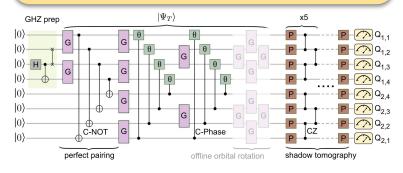


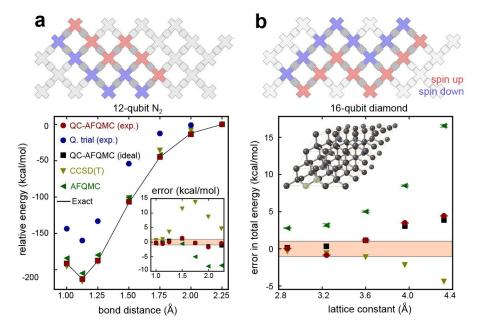


### **Quantum-Classical Hybrid Quantum Monte Carlo**

Nature 603, 416-420 (2022)

The quantum processor makes a collection of randomized measurements of the **quantum trial wavefunction** to generate a **classical shadow** 



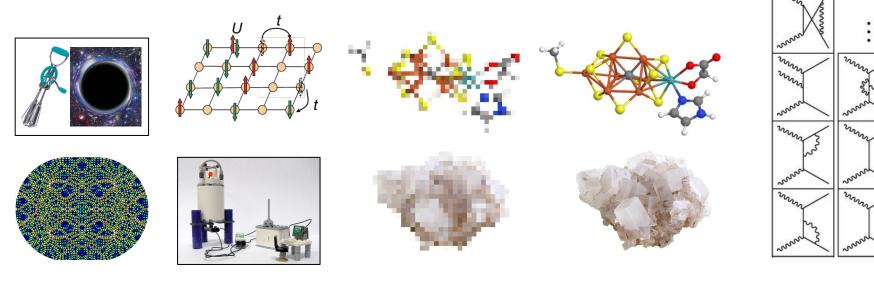


The energies from the Monte Carlo calculation driven by the quantum trial wavefunction are **highly accurate** (red circles) even though the bare trial wavefunction is not (blue circles)





## Spectrum of quantum simulation difficulty



application difficulty \_\_\_\_\_\_ physical qubits 25k-50k 50k - 250k 250k - 1MM 1MM - 5MM ??? required (with QEC)

## Algorithms have rapidly improved!

| Year | arXiv      | First/Last Affiliations | Basis Set | Space Complexity                   | T Gate Complexity                                 | T Gates for $N \approx 100$ |
|------|------------|-------------------------|-----------|------------------------------------|---------------------------------------------------|-----------------------------|
| 2005 | 0604193    | Berkeley                | Arbitrary | $\mathcal{O}(N)$                   | $\mathcal{O}(\mathrm{poly}(N/\epsilon))$          | Unknown                     |
| 2010 | 1001.3855  | Harvard                 | Arbitrary | $\mathcal{O}(N)$                   | $\widetilde{\mathcal{O}}(N^{11}/\epsilon^{3/2})$  | Unknown                     |
| 2012 | 1208.5986  | Haverford               | Arbitrary | $\mathcal{O}(N)$                   | $\widetilde{\mathcal{O}}(N^{10}/\epsilon^{3/2})$  | Unknown                     |
| 2013 | 1312.1695  | Microsoft / ETH Zurich  | Arbitrary | $\mathcal{O}(N)$                   | $\widetilde{\mathcal{O}}(N^9/\epsilon^{3/2})$     | $\sim 10^{20}$              |
| 2013 | 1312.2579  | Haverford               | Arbitrary | $\mathcal{O}(\eta \log N)$         | ${\cal O}(\eta^2 N^8/\epsilon^{3/2})$             | Unknown                     |
| 2014 | 1403.1539  | Microsoft / ETH Zurich  | Arbitrary | $\mathcal{O}(N)$                   | $\widetilde{\mathcal{O}}(N^8/\epsilon^{3/2})$     | Unknown                     |
| 2014 | 1406.4920  | Sherbrooke / Microsoft  | Arbitrary | $\mathcal{O}(N)$                   | $\widetilde{\mathcal{O}}(N^7/\epsilon^{3/2})$     | Unknown                     |
| 2014 | 1410.8159  | Harvard / Microsoft     | Arbitrary | $\mathcal{O}(N)$                   | $\widetilde{\mathcal{O}}(N^6/\epsilon^{3/2})$     | Unknown                     |
| 2015 | 1506.01020 | Harvard                 | Arbitrary | $\mathcal{O}(N)$                   | $\widetilde{\mathcal{O}}(N^5/\epsilon)$           | Unknown                     |
| 2015 | 1506.01029 | Harvard                 | Arbitrary | $\mathcal{O}(\eta \log N)$         | $\widetilde{\mathcal{O}}(\eta^2 N^3/\epsilon)$    | Unknown                     |
| 2016 | 1605.03590 | ETH Zurich / Microsoft  | Arbitrary | $\mathcal{O}(N)$                   | $\widetilde{\mathcal{O}}(N^6/\epsilon^{3/2})$     | $\sim 10^{15}$              |
| 2018 | 1808.02625 | Caltech / Google        | Arbitrary |                                    | $\widetilde{\mathcal{O}}(N^{9/2}/\epsilon^{3/2})$ | Unknown                     |
| 2019 | 1902.02134 | Macquarie / Google      | Arbitrary | · · ·                              | $\widetilde{\mathcal{O}}(N^4/\epsilon)$           | $\sim 10^{11}$              |
| 2020 | 2007.14460 | ETH Zurich / Microsoft  | Arbitrary | $\widetilde{\mathcal{O}}(N^{3/2})$ | $\widetilde{\mathcal{O}}(N^{7/2}/\epsilon)$       | $\sim 10^{10}$              |
| 2020 | 2011.03494 | Columbia / Google       | Arbitrary | $\widetilde{\mathcal{O}}(N)$       | $\widetilde{\mathcal{O}}(N^3/\epsilon)$           | $\sim 10^9$                 |

TABLE I. Best fault-tolerant algorithms for phase estimating chemistry in an arbitrary (e.g., molecular orbital) basis. N is number of basis functions,  $\eta < N$  is number of electrons and  $\epsilon$  is target precision. Gate counts here are for FeMoCo.

| Year | arXiv | First/Last Affiliations | Basis Set | Space Complexity T Gate Complexity T Gates for $N \approx 100$ |
|------|-------|-------------------------|-----------|----------------------------------------------------------------|
|      |       |                         |           |                                                                |

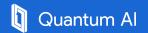
| 2017 | 1706.00023 | Google / Caltech | Plane Waves | $\mathcal{O}(N)$                 | $\widetilde{\mathcal{O}}(N^{11/3}/\epsilon)$          | Unknown        |
|------|------------|------------------|-------------|----------------------------------|-------------------------------------------------------|----------------|
| 2018 | 1805.00675 | Microsoft        | Plane Waves | $\mathcal{O}(N\log(N/\epsilon))$ | $\widetilde{\mathcal{O}}(N^2/\epsilon)$               | Unknown        |
| 2018 | 1805.03662 | Google           | Plane Waves | $\mathcal{O}(N)$                 | $\mathcal{O}(N^3/\epsilon)$                           | $\sim 10^{10}$ |
| 2018 | 1807.09802 | Google           | Plane Waves | $\mathcal{O}(\eta \log N)$       | $\widetilde{\mathcal{O}}(\eta^{8/3}N^{1/3}/\epsilon)$ | Unknown        |
| 2019 | 1902.10673 | Google           | Plane Waves | $\mathcal{O}(N)$                 | $\widetilde{\mathcal{O}}(N^{5/2}/\epsilon^{3/2})$     | $\sim 10^9$    |
| 2019 | 1912.08854 | Maryland         | Plane Waves | $\mathcal{O}(N)$                 | $\widetilde{\mathcal{O}}(N^2/\epsilon)$               | Unknown        |
| 2020 | 2012.09194 | Amazon           | Plane Waves | $\mathcal{O}(N)$                 | $\widetilde{\mathcal{O}}(\eta^{8/3}N^{1/3}/\epsilon)$ | $\sim 10^8$    |
| 2021 | 2105.12767 | Google           | Plane Waves | $\mathcal{O}(\eta \log N)$       | $\widetilde{\mathcal{O}}(\eta^{8/3}N^{1/3}/\epsilon)$ | $\sim 10^7$    |
| 2023 | 2301.01203 | Google           | Plane Waves | $\mathcal{O}(\eta \log N)$       | $\widetilde{\mathcal{O}}(\eta^{7/3}N^{1/3}/\epsilon)$ | Unknown        |

TABLE II. Best fault-tolerant algorithms for phase estimating chemistry in a plane wave basis. N is number of basis functions,  $\eta < N$  is number of electrons and  $\epsilon$  is target precision. Gate counts here are for  $\eta = 40$ .



### Outlook

- It is still an open question whether quantum chemistry calculations will be feasible on NISQ devices
- QC-QMC allowed us to perform 16 qubit correlated calculation, surpassing VQE record in first experiment
- Error-correction requires many resources, methods are improving, and we are making hardware progress towards fault-tolerance



# Thank you!



