Hunting for new physics with precision Lattice Calculations

Vera Gülpers

School of Physics and Astronomy The University of Edinburgh

12 January 2023

The Standard Model of Particle Physics

Higgs Boson discovered at LHC in 2012

 \rightarrow Noble Prize 2013 for P. Higgs and F. Englert for prediction

The need for new physics

Many unsolved questions, for example:

► What is dark matter? Or dark energy?

- Why is there more matter than antimatter in the Universe?
- Why are there three generations of fermions?

New physics is out there!

Hunting for new physics

High-Energy Frontier:

Searches at particle colliders such as the LHC at CERN

[https://cds.cern.ch/record/1295244]

Hunting for new physics

High-Energy Frontier:

Searches at particle colliders such as the LHC at CERN

[https://cds.cern.ch/record/1295244]

High-Precision Frontier:

New physics contributes via quantum

effects

"The closer you look the more there is to see" [F. Jegerlehner, The Anomalous Magnetic Moment of the Muon]

- precision measurements of properties of known particles
- precise calculation within the Standard Model
- ightarrow find (potential) discrepancies

- Quantum Chromo Dynamics (QCD)

 → theory of the strong interaction
- strong coupling $\alpha_s \sim \mathcal{O}(1)$ at small energies
- quarks and gluons confined to hadrons

- Quantum Chromo Dynamics (QCD)

 → theory of the strong interaction
- strong coupling $\alpha_s \sim \mathcal{O}(1)$ at small energies
- quarks and gluons confined to hadrons

- Quantum Chromo Dynamics (QCD)

 → theory of the strong interaction
- strong coupling $\alpha_s \sim \mathcal{O}(1)$ at small energies
- quarks and gluons confined to hadrons

- ► Quantum Chromo Dynamics (QCD) → theory of the strong interaction
- strong coupling $\alpha_s \sim \mathcal{O}(1)$ at small energies
- quarks and gluons confined to hadrons

- ► Quantum Chromo Dynamics (QCD) → theory of the strong interaction
- strong coupling $\alpha_s \sim \mathcal{O}(1)$ at small energies
- quarks and gluons confined to hadrons
- each additional gluon line or quark-antiquark pair comes with α_s

- ► Quantum Chromo Dynamics (QCD) → theory of the strong interaction
- strong coupling $\alpha_s \sim \mathcal{O}(1)$ at small energies
- quarks and gluons confined to hadrons
- each additional gluon line or quark-antiquark pair comes with \(\alpha_s\)

Lattice QCD in a nutshell

- Discretize (Euclidean) space-time by a 4d lattice
- Quantize QCD using Euclidean path integrals

$$\langle A \rangle = \frac{1}{Z} \int \mathcal{D}[\Psi, \overline{\Psi}] \mathcal{D}[U] e^{-S_{E}[\Psi, \overline{\Psi}, U]} A(U, \Psi, \overline{\Psi})$$

gluonic expectation value: Monto Carlo techniques

• extrapolate to $a \rightarrow 0$ and $L \rightarrow \infty$ Vera Gülpers (Edinburgh) New Direction

QCD on the lattice

successfully used for hadronic observables, e.g. hadron spectrum

[S. Dürr et al, Science 322 (2008) 1224-1227]

 $\begin{array}{c} 10 \\ 8 \\ \hline \\ 8 \\ \hline \\ 8 \\ \hline \\ 8 \\ \hline \\ 9 \\ \hline \\ 8 \\ \hline \\ 0 \\ \hline 0 \\$

[Sz. Borsanyi et al, Science 347 (2015) 1452-1455]

QCD on the lattice

successfully used for hadronic observables, e.g. hadron spectrum

[S. Dürr et al, Science 322 (2008) 1224-1227]

[Sz. Borsanyi et al, Science 347 (2015) 1452-1455]

Quantities studied in Lattice calculations include

- Hadron Spectroscopy & interactions
- weak decays of Hadrons & quark-mixing CKM matrix
- Hadron Structure
- QCD phase diagram
- Beyond the Standard Model Physics
- ▶ ...

This talk: Lattice Calculations for Muon g-2

• magnetic moment $\vec{\mu}$ of the muon due to its spin \vec{s} and electric charge e

$$ec{\mu} = g \, rac{e}{2m} \, ec{s}$$
 torque $ec{ au} = ec{\mu} imes ec{B}$

• magnetic moment $\vec{\mu}$ of the muon due to its spin \vec{s} and electric charge e

$$\vec{\mu} = g \frac{e}{2m} \vec{s}$$

torque $\vec{\tau} = \vec{\mu} \times \vec{B}$

▶ gyromagnetic-factor (*g*-factor) of the muon

• magnetic moment $\vec{\mu}$ of the muon due to its spin \vec{s} and electric charge e

$$\vec{\mu} = g \frac{e}{2m} \vec{s}$$

torque $\vec{\tau} = \vec{\mu} \times \vec{B}$

gyromagnetic-factor (g-factor) of the muon

without quantum effects:

$$g = 2$$

• magnetic moment $\vec{\mu}$ of the muon due to its spin \vec{s} and electric charge e

$$\vec{\mu} = g \, \frac{e}{2m} \, \vec{s}$$

torque $\vec{\tau} = \vec{\mu} \times \vec{B}$

B

▶ gyromagnetic-factor (*g*-factor) of the muon

with quantum effects:

$$g=2.00233\ldots$$

anomalous magnetic moment of the muon

$$a_{\mu}=rac{\mathrm{g}-2}{2}$$

• magnetic moment $\vec{\mu}$ of the muon due to its spin \vec{s} and electric charge e

$$\vec{\mu} = g \frac{e}{2m} \vec{s}$$

torque $\vec{\tau} = \vec{\mu} \times \vec{B}$

$$que r = \mu \times D$$

▶ gyromagnetic-factor (*g*-factor) of the muon

with quantum effects:

$$g=2.00233\ldots$$

anomalous magnetic moment of the muon "Muon g-2" $a_{\mu}=rac{g-2}{2}$

[https://upload.wikimedia.org /wikipedia/commons/a/aa/ Julian_Schwinger_headstone.JPG]

Muon g-2: Experimental measurement

Previous: Muon g-2 @ BNL (2006) [Phys.Rev. D73, 072003 (2006)]

New: Muon g-2 @ FNAL (2021) [PhysRevLett.126.141801 (2021)]

measure precession frequency of muons in magnetic field:

[https://commons.wikimedia.org/wiki/File: Fermilab_g-2_(E989)_ring.jpg]

Muon g-2: Standard Model Prediction

White Paper (2020) of the Muon g-2 Theory initiative

[Phys.Rept. 887 (2020) 1-166] [https://muon-gm2-theory.illinois.edu/]

Muon g-2: Standard Model Prediction

White Paper (2020) of the Muon g-2 Theory initiative

[Phys.Rept. 887 (2020) 1-166] [https://muon-gm2-theory.illinois.edu/]

Muon g-2: Standard Model Prediction

White Paper (2020) of the Muon g-2 Theory initiative

[Phys.Rept. 887 (2020) 1-166] [https://muon-gm2-theory.illinois.edu/]

electro-magnetism

$11658471.8931(104) imes 10^{-10}$

 $O(10^4)$ diagrams at $O(lpha^5)$

Muon g-2: Standard Model Prediction

White Paper (2020) of the Muon g-2 Theory initiative

[Phys.Rept. 887 (2020) 1-166] [https://muon-gm2-theory.illinois.edu/]

electro-magnetism

weak

 $\begin{array}{c} 11658471.8931(104) \times 10^{-10} \\ 15.36(10) \times 10^{-10} \end{array}$

Muon g-2: Standard Model Prediction

White Paper (2020) of the Muon g-2 Theory initiative

[Phys.Rept. 887 (2020) 1-166] [https://muon-gm2-theory.illinois.edu/]

 $11658471.8931(104) \times 10^{-10}$

 $15.36(10) imes 10^{-10}$

 $693.1(4.0) imes 10^{-10}$

electro-magnetism

weak

Hadronic Vacuum Polarisation (HVP)

Muon g-2: Standard Model Prediction

White Paper (2020) of the Muon g-2 Theory initiative

[Phys.Rept. 887 (2020) 1-166] [https://muon-gm2-theory.illinois.edu/]

electro-magnetism

weak

Hadronic Vacuum Polarisation (HVP) HVP (α^3, α^4)

Muon g-2: Standard Model Prediction

White Paper (2020) of the Muon g-2 Theory initiative

[Phys.Rept. 887 (2020) 1-166] [https://muon-gm2-theory.illinois.edu/]

electro-magnetism

weak

Hadronic Vacuum Polarisation (HVP) $\mathrm{HVP}(lpha^3, lpha^4)$

Hadronic light-by-light scattering

 $\begin{array}{c} 11658471.8931(104)\times 10^{-10}\\ 15.36(10)\times 10^{-10}\\ 693.1(4.0)\times 10^{-10}\end{array}$

$$-8.59(7) imes 10^{-10}$$

 $9.2(1.8) imes10^{-10}$

Experiment vs Standard Model prediction

- SM: $a_{\mu} = 0.00116591810(43)$
 - ► This could be new physics!

Experiment vs Standard Model prediction

- SM: $a_{\mu} = 0.00116591810(43)$
 - ► This could be new physics!

Experiment vs Standard Model prediction

- Exp: $a_{\mu} = 0.00116592061(41)$
- SM: $a_{\mu} = 0.00116591810(43)$
 - ▶ This could be new physics!

What's next?

▶ FNAL reduce error by factor ~ 4, new upcoming experiment @JPARC

175 180 185 190 195 200 205 210 215

Muon g-2 Coll., Phys. Rev. Lett. 126, 141801

4.2σ

a...×10⁹-1165900

BNL g-2

Breakdown of Standard Model Prediction

The HVP from R-ratio

Lattice calculation of HVP

Comparision of available lattice QCD calculations of HVP

Lattice calculation of HVP

Comparision of available lattice QCD calculations of HVP

calculate hadronic part on the lattice

vector two-point function

$$C_{\mu
u}(t) = \sum_{ec{x}} \langle J_{\mu}(t,ec{x}) J_{
u}(0)
angle$$

electromagnetic current

$$J_{\mu} = \frac{2}{3}\overline{u}\gamma_{\mu}u - \frac{1}{3}\overline{d}\gamma_{\mu}d - \frac{1}{3}\overline{s}\gamma_{\mu}s + \dots$$

 \blacktriangleright a_μ from $\mathcal{C}(t)$ [T. Blum, Phys.Rev.Lett.91, 052001 (2003); Bernecker and Meyer, Eur.Phys.J.A47, 148 (2011)]

$$a_{\mu}^{\text{HVP}} = \sum_{t} w_t C_{ii}(t)$$
 with kernel function w_t

calculate hadronic part on the lattice

vector two-point function

$$C_{\mu
u}(t) = \sum_{ec{x}} \langle J_{\mu}(t,ec{x}) J_{
u}(0)
angle$$

electromagnetic current

$$J_{\mu} = \frac{2}{3}\overline{u}\gamma_{\mu}u - \frac{1}{3}\overline{d}\gamma_{\mu}d - \frac{1}{3}\overline{s}\gamma_{\mu}s + \dots$$

 \blacktriangleright a_μ from $\mathcal{C}(t)$ [T. Blum, Phys.Rev.Lett.91, 052001 (2003); Bernecker and Meyer, Eur.Phys.J.A47, 148 (2011)]

$$a_{\mu}^{\text{HVP}} = \sum_{t} w_t C_{ii}(t)$$
 with kernel function w_t

▶ flavour decomposition (isospin symmetric QCD $u = d = \ell$)

$$C(t) = \frac{5}{9}C^{\ell}(t) + \frac{1}{9}C^{s}(t) + \frac{4}{9}C^{c}(t)$$

calculate hadronic part on the lattice

vector two-point function

$$C_{\mu
u}(t) = \sum_{ec{x}} \langle J_{\mu}(t,ec{x}) J_{
u}(0)
angle$$

electromagnetic current

 \blacktriangleright a_μ from C(t) [T. Blum, Phys.Rev.Lett.91, 052001 (2003); Bernecker and Meyer, Eur.Phys.J.A47, 148 (2011)]

$$a_{\mu}^{\text{HVP}} = \sum_{t} w_t C_{ii}(t)$$
 with kernel function w_t

▶ flavour decomposition (isospin symmetric QCD $u = d = \ell$)

$$C(t) = \frac{5}{9}C^{\ell}(t) + \frac{1}{9}C^{s}(t) + \frac{4}{9}C^{c}(t) + C^{\text{disc}}(t)$$

calculate hadronic part on the lattice

vector two-point function

$$C_{\mu
u}(t) = \sum_{ec{x}} \langle J_{\mu}(t,ec{x}) J_{
u}(0)
angle$$

electromagnetic current

 \blacktriangleright a_μ from C(t) [T. Blum, Phys.Rev.Lett.91, 052001 (2003); Bernecker and Meyer, Eur.Phys.J.A47, 148 (2011)]

$$a_{\mu}^{\text{HVP}} = \sum_{t} w_t C_{ii}(t)$$
 with kernel function w_t

▶ flavour decomposition (isospin symmetric QCD $u = d = \ell$)

$$C(t) = \frac{5}{9}C^{\ell}(t) + \frac{1}{9}C^{s}(t) + \frac{4}{9}C^{c}(t) + C^{\text{disc}}(t) + C^{u\neq d}(t)$$

Precision Challenges for the HVP

Precision Challenges for the HVP

recent progress: [VG *et al*, PRL 121, 022003 (2018); D. Giusti *et al*, Phys. Rev. D 99, 114502 (2019); S. Borsanyi *et al*, Nature 593, 51 (2021); M. Cè *et al*, Phys. Rev. D 106, 114502 (2022]

Precision Challenges for the HVP

recent progress: [VG *et al*, PRL 121, 022003 (2018); D. Giusti *et al*, Phys. Rev. D 99, 114502 (2019); S. Borsanyi *et al*, Nature 593, 51 (2021); M. Cè *et al*, Phys. Rev. D 106, 114502 (2022]

Disconnected contribution needs stochastic evaluation \rightarrow noisy

recent progress: [V.G. et al, PoS LAT2014 (2014) 128], [T. Blum *et al*, Phys. Rev. Lett. 116, 232002 (2016)], [A. Stathopoulos et al, arXiv:1302.4018], [A. Gérardin *et al*, Phys. Rev. D 100, 014510 (2019)], [L. Giusti et al, Eur.Phys.J.C 79 (2019) 7, 586]

Light-quark contribution

- main challenges:
 - statistical noise at large t
 - finite volume effects
 (largest at large t)
 - discetisation effects at small t

$$\bullet \ a_{\mu}^{\mathsf{HVP}} = \sum_{t} w_{t} C(t)$$

summary of available lattice results

Light-quark contribution

- main challenges:
 - statistical noise at large t
 - finite volume effects (largest at large **t**)
 - discetisation effects at small t

$$\bullet \ a_{\mu}^{\mathsf{HVP}} = \sum_{t} w_{t} C(t)$$

summary of available lattice results

Vera Gülpers (Edinburgh)

schematic lat

w(t)C(t)

Lattice Cross Checks - Window method

• a_{μ}^{HVP} from intermediate window $a_{\mu} = a_{\mu}^{\text{SD}} + a_{\mu}^{\text{W}} + a_{\mu}^{\text{LD}}$ [T. Blum, P. Boyle, VG *et al* Phys.Rev.Lett. 121 (2018) 022003]

$$a_{\mu}^{\mathbb{W}} = \sum_{t} w_{t} C(t) [\theta(t, t_{0}, \Delta) - \theta(t, t_{1}, \Delta)]$$

e.g. $t_0 = 0.4$ fm to $t_1 = 1.0$ fm

Lattice Cross Checks - Window method

• a_{μ}^{HVP} from intermediate window $a_{\mu} = a_{\mu}^{\text{SD}} + a_{\mu}^{\text{W}} + a_{\mu}^{\text{LD}}$ [T. Blum, P. Boyle, VG *et al* Phys.Rev.Lett. 121 (2018) 022003]

$$a^{\mathbb{W}}_{\mu} = \sum_{t} w_t C(t) [heta(t, t_0, \Delta) - heta(t, t_1, \Delta)]$$

e.g. $t_0=0.4$ fm to $t_1=1.0$ fm

compare *R*-ratio with lattice using window quantity

- "R-ratio Scenario": lattice consistent with R-ratio (unlikely?)
- ► "BMW Scenario": Other (full) lattice calculations agree with BMW → tension between lattice and *R*-ratio
- update of the Theory whitepaper in progress

Sep 22 @Higgs Centre

- "R-ratio Scenario": lattice consistent with R-ratio (unlikely?)
- ► "BMW Scenario": Other (full) lattice calculations agree with BMW → tension between lattice and *R*-ratio
- update of the Theory whitepaper in progress

Will we discover new physics with Muon g-2?

Sep 22 @Higgs Centre

- "R-ratio Scenario": lattice consistent with R-ratio (unlikely?)
- ► "BMW Scenario": Other (full) lattice calculations agree with BMW → tension between lattice and *R*-ratio
- update of the Theory whitepaper in progress

Will we discover new physics with Muon g-2? Maybe. Maybe not.

Sep 22 @Higgs Centre

Conclusion

Summary

- Standard Model very successful, but leaves many open questions
- ► low-energy precision test of the Standard Model → QCD: first principles calculations using Monte Carlo (Lattice QCD)
- Muon g-2: promising quantity for finding new physics
 - \rightarrow lattice calculation closer to experiment, in tension with $\textit{\textbf{R}}\textsc{-}ratio$
 - \rightarrow further lattice calculations and cross checks in progress

Conclusion

Summary

- Standard Model very successful, but leaves many open questions
- ► low-energy precision test of the Standard Model → QCD: first principles calculations using Monte Carlo (Lattice QCD)
- Muon g-2: promising quantity for finding new physics
 - \rightarrow lattice calculation closer to experiment, in tension with $\textit{\textbf{R}}\textsc{-}ratio$
 - \rightarrow further lattice calculations and cross checks in progress

If a future experiment finds hints of new physics, lattice QCD is essential for calculating processes involving hadronic physics.

Conclusion

Summary

- Standard Model very successful, but leaves many open questions
- ► low-energy precision test of the Standard Model → QCD: first principles calculations using Monte Carlo (Lattice QCD)
- Muon g-2: promising quantity for finding new physics
 - \rightarrow lattice calculation closer to experiment, in tension with ${\it R}\mbox{-}{\rm ratio}$
 - \rightarrow further lattice calculations and cross checks in progress

If a future experiment finds hints of new physics, lattice QCD is essential for calculating processes involving hadronic physics.

Thank you!