Which Way Beyond the Standard Model?

Measurements at the LHC Motivations for new physics Does the Higgs point the way? Experimental anomalies? Flavour non-universality in B meson decays? Anomalous magnetic moment of the muon? Mass of the W boson? New ways to search for dark matter

John Ellis

Summary of the Standard Model

Particles and SU(3) × SU(2) × U(1) quantum numbers:

L_L E_R	$\left(\begin{array}{c}\nu_{e}\\e^{-}\end{array}\right)_{L}, \left(\begin{array}{c}\nu_{\mu}\\\mu^{-}\end{array}\right)_{L}, \left(\begin{array}{c}\nu_{\tau}\\\tau^{-}\end{array}\right)_{L}\\e_{R}^{-}, \mu_{R}^{-}, \tau_{R}^{-}\end{array}\right)_{L}$	(1,2, -1) (1,1, -2)
Q_L U_R D_R	$ \begin{pmatrix} u \\ d \end{pmatrix}_{L}, \begin{pmatrix} c \\ s \end{pmatrix}_{L}, \begin{pmatrix} t \\ b \end{pmatrix}_{L} $ $ u_{R}, c_{R}, t_{R} $ $ d_{R}, s_{R}, b_{R} $	$(\mathbf{3,2,+1/3})$ $(\mathbf{3,1,+4/3})$ $(\mathbf{3,1,-2/3})$

• Lagrangian: $\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^{a} F^{a \ \mu\nu}$ gauge interactions Tested < 0.1% + $i\bar{\psi} /D\psi + h.c.$ matter fermions before LHC + $\psi_{i}y_{ij}\psi_{j}\phi + h.c.$ Yukawa interactions Testing now + $|D_{\mu}\phi|^{2} - V(\phi)$ Higgs potential in progress

Why the Higgs boson? What can the Higgs boson tell us? Looking beyond it

A Phenomenological Profile of the Higgs Boson

• First attempt at systematic survey

A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS ** CERN, Geneva

Received 7 November 1975

A discussion is given of the production, decay and observability of the scalar Higgs boson H expected in gauge theories of the weak and electromagnetic interactions such as the Weinberg-Salam model. After reviewing previous experimental limits on the mass of

We should perhaps finish with an apology and a caution. We apologize to experimentalists for having no idea what is the mass of the Higgs boson, unlike the case with charm [3,4] and for not being sure of its couplings to other particles, except that they are probably all very small. For these reasons we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people performing experiments vulnerable to the Higgs boson should know how it may turn up.

LHC Measurements

It Walks and Quacks like a Higgs

• Do couplings scale ~ mass? With scale = v?

... to make an end is to make a beginning. The end is where we start from. T.S. Eliot, Little Gidding

LHC LHC Masses/mixing of neutrinos LHC

Everything about Higgs is Puzzling

$$\mathcal{L} = yH\psi\overline{\psi} + \mu^2|H|^2 - \lambda|H|^4 - V_0 + \dots$$

- Pattern of Yukawa couplings y:
 - Flavour problem
- Magnitude of mass term μ:
 - Naturalness/hierarchy problem
- Magnitude of quartic coupling λ :
 - Stability of electroweak vacuum
- Cosmological constant term V₀:

- Dark energy

Higher-dimensional terms due to heavy particles?

Is "Empty Space" Unstable?

Depends on masses of Higgs boson and top quark

Are we in metastable region of parameters?

Looking Beyond the Standard Model with the SMEFT

France

"...the direct method may be used...but indirect methods will be needed in order to secure victory...."

"The direct and the indirect lead on to each other in turn. It is like moving in a circle...."

Who can exhaust the possibilities of their combination?"

Sun Tzu

Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force
- Dimension-6 operators: form = S, P, V, A, T?
 Due to exchanges of massive particles?
- V-A → massive vector bosons → gauge theory
- Yukawa's meson theory of the strong N-N force
 − Due to exchanges of mesons? → pions
- Chiral dynamics of pions: $(\partial \pi \partial \pi)\pi\pi$ clue \rightarrow QCD

Standard Model Effective Field Theory a more powerful way to analyze the data

- Assume the Standard Model Lagrangian is correct (quantum numbers of particles) but incomplete
- Look for additional interactions between SM particles due to exchanges of heavier particles
- Analyze Higgs data together with electroweak precision data and top data
- Most efficient way to extract largest amount of information from LHC and other experiments
- Model-independent way to look for physics beyond the Standard Model (BSM)

Summary of Analysis Framework

• Include all leading dimension-6 operators?

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

- Simplify by assuming flavour SU(3)⁵ or
 SU(2)² X SU(3)³ symmetry for fermions
- Work to linear order in operator coefficients, i.e. $\mathcal{O}(1/\Lambda^2)$
- Use G_F , M_Z , α as input parameters

Global SMEFT Fit to Top, Higgs, Diboson, Electroweak Data

- Global fit to dimension-6 operators using precision electroweak data, W+W- at LEP, top, Higgs and diboson data from LHC Runs 1, 2
- Search for BSM
- Constraints on BSM
 - At tree level
 - At loop level

Dimension-6 Constraints with Flavour-Universal SU(3)⁵ Symmetry

- Individual operator coefficients
- Marginalised over all other operator coefficients

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779 Lepton Flavour Universality Violation in $B \rightarrow K\ell^+\ell^-$ Decays?

B decays to
$$e^+e^- > \mu^+\mu^-$$

Prima facie violation of lepton universality

SM interactions flavouruniversal

Except for Higgs couplings ∝ masses

LHCb Collaboration, arXiv:2103.11769

Sic Transit Gloria Anomaliae

$g_{\mu}-2:$ dawn of new physics or its sunset?

Fermilab Measurement

FNAL result: $a_{\mu}(\text{FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm) Combined result: $a_{\mu}(\text{Exp}) = 116\,592\,061(41) \times 10^{-11}$ (0.35 ppm) Difference from Standard Model: $a_{\mu}(\text{Exp}) - a_{\mu}(\text{SM}) = (251 \pm 59) \times 10^{-11}$

Interpretation Papers

2104.05685	Vector LQ	В	Du		890	Radiative seesaw		Chiang
5656	L_\mu - L_\tau	DM	Borah		2103.13991	Scalar LQ	B, H decays	Greljo
5006	B_q - L_\mu	В	Cen	Leptoquarks	2012.11766	DM		D'Agnolo
4494	LFV	LFV	Li		2012.07894	Axions		Darmé
4503	Pseudoscalar	DM, H decays	Lu	Extra U(1)	1812.06851	Charmphilic LQ		Kowalska
4456	2HDM	DM	Arcadi					
3542	B-LSSM	H decays	Yang	Extra Higgs	2104.04458	GUT-constrained SUSY	DM	Chakraborti
3701	Leptophilic spin 0	H factory	Chun		5730	LQ + charged singlet	B, Cabibbo	Marzocca
3839	SUSY	HL-LHC	Aboubrahim	Supersymmetry	6320	L-R symmetry		Boyarkin
3691	Survey	DM, LHC	Athron		6858	L_\mu - L_\tau	\nu masses	Zhou
3705	Seesaw	g_e	Escribano	Axion	6854	D-brane	U(1), Regge	Anchordoqui
3699	Gauged 2HDM	В	Chen		6656	vector LQ	В	Ban
3239	SUSY	Gravitino DM	Gu		7597	SUSY	LHC, landscape	Baer
3284	NMSSM	DM	Cao		7047	3HDM	Fermion masses	Carcamo
3262	GUT-constrained SUSY	DM, LHC	Wang		7680	Leptophilic Z'	Global analysis	Buras
3292	MSSM	CPV	Han		8289	Custodial symmetry	Light scalar + pseudoscalar	Balkin
3296	lepton mass matrix	Flavour	Calibbi		9205	U(1)D	Neutrino mass	Dasgupta
3280	Z_d	Cs weak charge	Cadeddu		8819	Lepton non-universality	Naturalness	Cacciapaglia
3334	E_6 3-3-1	H stability	Li		8640	2x2x1	Higgses, heavy nus	Boyarkina
3242	\mu-\tau-philic H	\tau decays, LHC	Wang		8293	Multi-TeV sleptons in FSSM	Extended H, tau decays	Altmannshofer
3259	Anomaly mediation	DM	Yin		10114	SO(10)	Yukawa unification	Aboubrahim
3245	pMSSM	DM, fine-tuning	Van Beekveld		7681	U(1)B-L	DUNE	Dev
3274	NMSSM	DM, AMS-02 pbar	Abdughani		10324	Gauged lepton number	Dark matter	Ma
3290	MSSM	DM	Cox		10175	2HDM	Lighter Higgs?	Jueid
3367	2HDM	V-like leptons	Ferreira		11229	LQ	Matter unification	Fileviez
3267	Axion	Low-scale	Buen-Abad		15136	U(1)	HE neutrinos, H tension	Alonso
3340	L_\mu - L_tau	AMS-02 positrons	Zu					
3282	ALP	V-like fermions	Brdar		2105.00903	Anomalous 3-boson vertex	W mass	Arbuzov
3301	Lepton portal	DM	Bai		7655	U(1)T3R	RK(*)	Dutta
3276	Dark axion portal	Dark photon	Ge		8670	Leptoquark	nu mass, LFV	Zhang
3491	GmSUGRA	LHC	Ahmed					, r
3227	2HDM	LHC	Han					
3302	SUSY	small \mu	Baum					
3238	Scalar	DM, p radius	Zhu					
3489	\mu \nu SSM	B, H decays	Zhang					
3287	pMSSM	ILC	Chakraborti					
3228	DM	B, H decays	Arcadi					

Comparison of Calculations of Hadronic Vacuum Polarization

$$\left[a_{\mu}^{\mathrm{HVP}} + \left[a_{\mu}^{\mathrm{QED}} + a_{\mu}^{\mathrm{Weak}} + a_{\mu}^{\mathrm{HLbL}}
ight]
ight> \left[a_{\mu}^{\mathrm{SM}}
ight]$$

Aoyama et al, arXiv:2006.04822

Update on Lattice Calculations

data-driven calculations differ?

Hadron Vacuum Polarization: Lattice vs Experiment

- $\frac{R_{\sigma}(E)}{R_{\sigma}^{exp}(E)} 1$, pulls $\Sigma_{\sigma}(E)$ for smearing values σ
- Why the discrepancy?
- New physics hiding in experiment?

Alexandrou et al, arXiv:2212.08467

CDF Collaboration, *Science* 376 (2022) 6589, 170

CDF Measurement of m_W

compared with previous measurements

Theoretical Interpretations of W Mass

taking CDF measurement at face value

90 papers and counting!

Supersymmetry?

3667	DM	Zhu	7970	GUT, finite group	Wilson			
3693	Inert H	Fan	8067	Extra U(1)	Zhang			
3797	EWPO	Lu	8266	Seesaw	Borah			
3996	Relation to g-2	Athron	8390	Zee model	Chowdhury			
4183	Avion chameleon	Yuan	8406	2HDM	Arcadi			
4103	EWPO	Strumia	8440	Beta decay	Cirigliano			
4202	SUEV	Vang						1
4202	EWDO	do Blac	8546	Oblique	Carpenter	1115	2004	Botolla
4204	EWPU	de blas	8568	Seesaw	Popov	1427		Botella
4280	SUST GIVISB	Tana	9001	2HDM	Ghorbani	1437	ZHDIVI	KIM
4356	SUST NIVISSIM	Tang	9029	Stueckelberg	Du		n 11	-
4514	non-standard H	Cacciapaglia	9031	Leptoquarks	Bhaskar	1699	Braneworld	Barman
4559	RH neutrinos	Blennow				1701	2HDM	Kim
4710	SUSY NMSSM	Cao	9376	Triplet	Batra	1911	Dark photon	Thomas
			9477	VIO	Cao	2088	Leptoquark+VLQ	He
5031	Seesaw triplet	Cheng	9/197	Extra LI(1)	Zeng	2205	bs anomalies	Li
5085	2HDM	Song	0595	Extra U(1)	Rook	2217	DM + g-2	Dcruz
5260	SMEFT	Bagnaschi	9363	Extra O(1)	Daek			
5267	Custodial symm	Paul	9671	Divitermions	вогап	2788	ResBos2	Isaacson
5269	2HDM	Bahl	40400		1.01			
5283	S&T	Asadi	10130	SMEFT	da Silva	3877	GUT triplet	Evans
5284	Higgs physics	Di Luzio	10156	Dark photon	Cheng	3917	VLQ.	Chowdhury
5285	FlexibleSUSY	Athron	10274	Triplet seesaw	Heeck	3942	PDFs	Gao
5296	S&T. SMEET	Gu	10375	FOPT triplet	Addazi	4016	Lepton portal	Kim
5302	D3-Brane	Heckman						
5303	2HDM	Babu	10338	2HDM	Lee	4473	IIP	Giudice
5505	2110101	baba				4974	SO(10) avion	Lazaridas
5729	2004	Haa	11570	Extra U(1)	Cai	6024		Capianouic
5720	Coorgi Mashasak	Du	11755	2HDM	Benbrik	5022	JU(J)	Chash
5/00	Georgi-Machacek	Chours				5041	Inplet	Ghosh
5942	Leptoquark	Crivelli	11871	nu-lepton collider	Yang		o. I	a. et
5962	VL quarks	crivellin	11945	Scotogenic DM	Batra	5610	Coloured scalars	Miralles
5965	Single-field	Endo	11991	Atomic PV	Tran Tan			
5975	2HDM + singlet	Biekötter	12018	2HDM	Abouabid	8215	SESM	Li
5992	SMEFT	Balkin	12453	Colour-octet	Gisbert			
			22.00			9109	SUSY 331	Rodriguez
6327	Non-local SM	Krasnikov	12909	Georgi-Machacok	Chen			
6485	2HDM	Ahn	12030	Evtra II(1)	Zhou			
6505	2HDM	Han	1302/		21100			
6541	RPV MSSM	Zheng	12000	DC avanian	Curto			
			13690	KG running	Gupta			
7022	Lepton portal DM	kawamura						
7144	Triplet H	Fileviez	5.00758	Flipped SU(5)	Basiouris			
			783	DM	Wang			

SMEFT Fits with the Mass of the W Boson

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Single-Field Extensions of the Standard Model

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Single-Field Models that can Contribute to W Mass

Model	C_{HD}	C_{ll}	$C_{H^{\downarrow}}^{(3)}$	$C_{Hl}^{\left(1 ight)}$	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
S_1		X							
Σ	Wrong	sign	X	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$		
Σ_1	WICHS	JIGH	X	$-\frac{3}{16}$			$\frac{y_{ au}}{8}$		
N			$-\frac{1}{4}$	$\frac{1}{4}$					
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{ au}}{2}$		
B_1	X					$-\frac{1}{2}$	$-\frac{y_{\tau}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
B	-2	Righ	nt sign				$-y_{ au}$	$-y_t$	$-y_b$
Ξ	-2					$\frac{1}{2}$	$y_{ au}$	y_t	y_b
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
W	X					$-\frac{1}{2}$	$-y_{ au}$	$-y_t$	$-y_b$
	Operators								
	contributing to m _w			Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.0526					

Models Fitting the Mass of the W Boson

68 and 95% CL ranges of masses assuming unit couplings

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Searching for Models Fitting the Mass of the W Boson

- W: Isotriplet vector boson, mass ~ 3 TeV x coupling, electroweak production, accessible at LHC?
- B: Singlet vector boson, mass ~ 8 TeV x coupling, phenomenology depends on fermion couplings, too heavy for LHC?
- Ξ : Isotriplet scalar boson, mass ~ 3 TeV x coupling, detectable in LHC searches for heavy Higgs bosons?
- N: Isosinglet neutral fermion, mass ~ 4 TeV x coupling, similar to (righthanded) singlet neutrino
- E: Isosinglet charged fermion, mass ~ 6 TeV x coupling, similar to (righthanded) singlet electron

HL-LHC Search for Triplet Vector Boson

Baker, Martonhelyi, Thamm & Torre, arXiv:2207.05091

Searches for Dark Matter Particles

'Ultra-Light' dark matter

'Massive' dark matter

Principle of Atom Interferometry

Effect of Dark Matter on Atom Interferometer

AION Collaboration

L. Badurina, S. Balashov², E. Bentino³, D. Blas¹, J. Boehm², K. Bongs, A. Beniwol¹
D. Bortoleuce of Powcock⁵, W. Bowden^{6,*}, C. Brew, O. Buchmueller⁶, J. Coleman, J. Carlton
G. Elertas, J. Ellis¹, ⁴, C. Foot³, V. Gibson⁷, M. Haehnelt⁷, T. Harte⁷, R. Hobson^{6,*}, M. Holynski, A. Khazov², M. Langlois⁴, S. Lelleuch⁴, Y.H. Lien⁴, R. Maiolino⁷,
P. Majewski², S. Malik⁶, J. March-Russell, C. McCabe, D. Newbold², R. Preece³, B. Sauer⁶, U. Schneider⁷, I. Shipsey³, Y. Singir, M. Tarbutt⁶, M. A. Uchida⁷, T. V-Salazar², M. van der Grinten², J. Vossebeld⁴, D. Weatherill³, I. Wilmut⁷, J. Zielinska⁶

¹Kings College London, ²STFC Rutherford Appleton Laboratory, ³University of Oxford, ⁴University of Birmingham, ⁵University of Liverpool, ⁶Imperial College London, ⁷University of Cambridge

Network with MAGIS project in US

MAGIS Collaboration (Abe et al): arXiv:2104.02835

AION – Staged Programme

- AION-10: Stage 1 [year 1 to 3]
- 1 & 10 m Interferometers & site investigation for 100m baseline
 Initial funding from UK STFC
- AION-100: Stage 2 [year 3 to 6]
- 100m Construction & commissioning
- AION-KM: Stage 3 [> year 6]
- Operating AION-100 and planning for 1 km & beyond
- AION-SPACE (AEDGE): Stage 4 [after AION-km]
- Space-based version

Searches for Light Dark Matter AION

Linear couplings to gauge fields and matter fermions

AION Collaboration (Badurina, ..., JE et al): arXiv:1911.11755; Badurina, Buchmueller, JE, Lewicki, McCabe & Vaskonen: arXiv:2108.02468

Gravitational Waves from IMBH Mergers AION

Probe formation of SMBHs Synergies with other GW experiments (LIGO, LISA), test GR

Badurina, Buchmueller, JE, Lewicki, McCabe & Vaskonen: arXiv:2108.02468

Summary

standard Model

Visible matter

Higgs physics? $m_W, g_\mu - 2$? Dark Matter?