The =y \):
sl Un1vers1ty M

3 Ve 4 DEEP UNDERGROUND
B Shefﬁeld NEUTRINO EXPERIMENT

Writing your first analyzer

oth September 2022

Latin America-UK LArsoft workshop

Rhiannon Jones
r.s.jones@sheffield.ac.uk
#larsoft_analyser

Overview & aims of this session

e [earn how to do some physics with the reconstructed events you produced
o Dontworry if you didnt manage to make the files, I'll point you to some we've made

e [earn how to access the reconstructed neutrino information
o There is a generic procedure for accessing almost all of the neutrino information you
have in every file you've made this week

o \Welllook at:
o Reconstruction objects produced by Pandora and downstream reconstruction
o Associations of these objects to higher-level information
o Take your time & try to understand everything you do

e Hopefully we'll be able to make some plots

Side note

e | have included what I think will be far too much to achieve in these
Sessions

e But hopefully it's all structured clearly enough that you can continue
with the exercises in your own time

e 5o please dont worry if you don't make it hugely far through this
tutorial, there's supposed to be too much content

e |[fyou are reading these slides as a PDF, you might prefer to look at the
Google Slides link explicitly, as some code blocks render better there

https://docs.google.com/presentation/d/1cZHKjf6jSC1wGNJQXBsewAtZa4aOJ65TDzZs1m8yLHo/edit?usp=sharing

Thanks to all who have given this
tutorial over the last few years, these
slides have been adapted from those

previous versions,

37| The "y \):
Npnf? Un1vers1ty M

NG 45 DEEP UNDERGROUND
X Shefﬁeld NEUTRINO EXPERIMENT

The empty ‘analyzer

Before we begin U

Yesterday, you may have found it very annoying to have to re-run the setup scripts every time
you open a terminal. My suggestion is that everyone makes a script that simplifies the process

into a single command, as follows.
Substitute dune_workdir with the name

you gave the directory which contains

Once you have opened a terminal, open a file called setup.sh
your local products

Put the following lines into that file and save it:

source /cvmfs/dune.opensciencegrid.org/products/dune/setup_dune.sh
cd ~/dune_workdir/

source localProducts_larsoft_v09_56_00d00_prof_e20/setup

mrbsetenv

mrbslp

You may need to modify a few elements to match your personal setup,
but I'll come round and help you suss it out now,

Before we begin

Once you have made setup.sh, open ~/.bashrc
Add this line:

alias setuplarsoft=‘source ~/setup.sh’

Close the terminal, open a new one and type:

setuplarsoft

Let me know what errors you get and we can clean it up.

Once that works, you only need to type setuplarsoft every time you open a terminal,
rather than running each line individually.

Initial navigation

Once you're setup, navigate here:

cd $MRB_SOURCE/duneana/duneana/Workshop/Analysis

there should be a CMakelLists.txt and a build.sh file.

| have been updating the contents of this directory so you will need to pull
any changes from git:

git pull

If you have any issues after running this command, please let me know!

The skeleton analysis module

There are 2 ways of getting your skeleton analyzer

1. Using a command like this:

cetskelgen -v -d /path/to/your/directory -e beginJob -e endJob analyzer namespace: :ModuleName

We will use this next: It's great for starting something brand new

2. Copying an analyzer you've made previously & removing anything unnecessary

This is great if you want to do something similar to a previous analyzer
e.g. As you learn what headers you often need and how to access LArSoft products you use frequently

The skeleton analysis module

These are optional functions which
will be added to your analyzer, welll
1. Using a command like t look at them in the next few slides

There are 2 ways of getti

cetskelgen -v -d /path/to/your/directory -e beginJob -e endJob analyzer namespace: :ModuleName

For more information, see: or starting somethir eINees something sensible

https://cdcvs.fnal.gov/redmine/projects/cetlib/wiki/Cetskelgen here, e.g. test::AnalyzeEvents

2. Copying an analyzer you've made previously & removing anything unnecessary

This is great if you want to do something similar to a previous analyzer
e.g. As you learn what headers you often need and how to access LArSoft products you use frequently

10

https://cdcvs.fnal.gov/redmine/projects/cetlib/wiki/Cetskelgen

The skeleton analysis module DU

If you are using a fresh terminal you will need to setup again:

source /cvmfs/dune.opensciencegrid.org/products/dune/setup_dune.sh
source $MRB_TOP/localProducts_larsoft_v09_56_00_e20_prof/setup
mrbslp

1. Navigate here:

cd $MRB_SOURCE/duneana/duneana/Workshop/Analysis

The full stop tells cetskelgen to place the

2. Type this command: _ analysis module in the current directory

cetskelgen -v -d . -e beginJob -e endJob analyzer test::AnalyzeEvents

"art/Framework/Core/EDAnalyzer.h"
"art/Framework/Core/ModuleMacros.h"
"art/Framework/Principal/Event.h"
"art/Framework/Principal/Handle.h"
"art/Framework/Principal/Run.h"
"art/Framework/Principal/SubRun.h"
"canvas/Utilities/InputTag.h"
"fhiclcpp/ParameterSet.h"
"messagefacility/Messagelogger /MessagelLogger.h"

namespace test {
class AnalyzeEvents;
}

class test::AnalyzeEvents : public art::EDAnalyzer {
public:
explicit AnalyzeEvents(fhicl::ParameterSet const& p);

AnalyzeEvents(AnalyzeEvents const&) = delete;
AnalyzeEvents(AnalyzeEvents&&) = delete;

AnalyzeEvents& operator=(AnalyzeEvents const&) = delete;
AnalyzeEvents& operator=(AnalyzeEvents&&) = delete;

void analyze(art::Event const& e) override;

void beginJob() override;
void endJob() override;

private:

12

"art/Framework/Core/EDAnalyzer.h"
"art/Framework/Core/ModuleMacros.h"
"art/Framework/Principal/Event.h"
"art/Framework/Principal/Handle.h"
"art/Framework/Principal/Run.h"
"art/Framework/Principal/SubRun.h"
"canvas/Utilities/InputTag.h"
"fhiclcpp/ParameterSet.h"
"messagefacility/Messagelogger /MessagelLogger.h"

lass test::AnalyzeEvents : public art::EDAnalyzer {

explicit AnalyzeEvents(fhicl::ParameterSet const& p);

AnalyzeEvents(AnalyzeEvents const&) = delete;
AnalyzeEvents(AnalyzeEvents&&) = delete;

AnalyzeEvents& operator=(AnalyzeEvents const&) = delete;
AnalyzeEvents& operator=(AnalyzeEvents&&) = delete;

void analyze(art::Event const& e) override;

void beginJob() override;
void endJob() override;

13

What do we have so far?

This is the constructor, we'll access configuration
parameters here later on

This is the analyze function, it's called for every
event you give it in the LArSoft job

test::AnalyzeEvents: :AnalyzeEvents(fhicl: :ParameterSet

: EDAnalyzer{p}

test::AnalyzeEvents::analyze(art::Event

These optional functions are called once, before
and after any and all events are analyzed

Macro to tell art that this module exists
This is used in the fcl configuration in a few slides

14

test::AnalyzeEvents: :beginJob()

test::AnalyzeEvents::endJob()

DEFINE_ART_MODULE(test::AnalyzeEvents)

You should now have reached the
end of the file

DDDDDDDDDDDDDDD

Adding an output (T)Tree —
Compiling and running the code

Adding an output tree

We will be modifying various elements of the
code before compiling

Add relevant LArSoft & ROOT headers

TTree *fTree;

fEventID;

Declare TTree and event-based variables

test::AnalyzeEvents::analyze(art::Event & e)

fEventID = e.id().event();
Access our event ID from the LArSoft event we're

analysing & fill the TTree fTree->Fill();

test::AnalyzeEvents::beginJob()

Create your TTree & add branches for the

art::ServiceHandle<art::TFileService> tfs;

variables we want to fill fTree = tfs->make<TTrees(

16 fTree->Branch(, &fEventID);

Note: The order follows how the file reads

Running the analysis module

In order to be able to run the analyzer, we now need to write 2 fhicl files

e The first will configure our analysis (An include fcl)

o Thisis where we point the analyzer to the objects/parameters we want to access
from the input files

e The second will be used to run our analysis (A run/job fcl)
o This links together the configuration file and the analysis module

Fhicl1: Configuring the analyzer. Open up a file, e.g. analysisConfig. fcl & fill it with this:

Your chosen name for this BEGIN_PROLOG
PRI pnalyzeEvents: Links the fhicl file to the analysis
: module using the name you

module_type: "AnalyzeEvents" L L
S hat this d (and } gave your anatlyzer Class
ee whna IS does (an

more best practices) END_PROLOG

https://indico.fnal.gov/event/11857/sessions/1051/attachments/6785/8812/LArSoftUsability_workshop_June2016_knoepfel.pdf

Fhicl 2: Running the module

Include your analyzer configuration fhicl

0,9

process_name: AnalyzeEvents

Name this process
Must not include any underscores

source:
r

module_type: RootInput
maxEvents: o |

Tell it to expect a ROOT input file

1

services:
r

TFileService: { fileName:
@table::dunefd_1x2x6_simulation_services

Output filename

i

physics:

{

analyzers:
L

ana: @local::analyzeEvents

ana sets our module analyzeEvents as part of the

workflow
Note, this matches the name in the configuration fcl file

18

T
patho: [ana]
end_paths: [patho]

The =y \):
o Un1vers1ty M

§ DEEP UNDERGROUND
= Shefﬁeld NEUTRINO EXPERIMENT

Let's try running it

N

3
3.5&

Pre-made reconstructed events

Don't panic!

The location of the pre-made reconstruction file is:

/home/share/september2022/reconstruction/reco_Imulp.root

20

Compiling and running your code

First, compile what you've written so far
From the $MRB_SOURCE/duneana/duneana/Workshop/Analysis directory:

This has each build command in one place, have a look to

source build.sh make sure you're comfortable with what it does before using it

Then (when successful) run your analyzer!

lar -c run_analyzeEvents.fcl -s /path/to/input/file.root -n 10

Let's see what we've got in the output file...

root -1 analysisOutput.root

21

Compiling and running your code

First, compile what you've written so far
From the $MRB_SOURCE/duneana/duneana/Workshop/Analysis directory:

This has each build command in one place, have a look to
make sure you're comfortable with what it does before using it

source build.sh

Then (when successful) run your analyzer!

Let's just run over 10 events while
lar -c run_analyzeEvents.fcl -s /path/to/input/file.root -n 10 we make sure things build
We'll run on the whole sample later

Let's see what we've got in the output file...

root -1 analysisOutput.root

22

root [0]
Attaching file analysisOutput.root as _fileo...
(TFile *) 0x214e200

.1s

analysisOutput.root

KEY: TTree tree;1 Output TTree
root [4] tree->Scan() 000000

EEEEEEEEEEREEERRRRRTRR*

Row * eventID.e *
AEEEEEEEEEEEEEEERERR R *

*

* ¥ ¥ ¥ ¥ ¥ ¥ *
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ *

LoOo~NOOTUBAEWNEO

*

T TR TR TR TR TTTFTTTFRTERTK

long long

DDDDDDDDDDDDDDD

Accessing PFParticles and adding
them to the output tree

Accessing the PFParticles

We will discuss in detail
how to implement this in

the analyze function next!

Add the new headers we need

Some new parameters to add to our fEventID; This links to your
fNPFParticles; W rat
TTree Pidrimartes: configuration fcl.

Including the label for the fNPrimaryDaughters; Welllook at how later.

PFParticle module
std::string fPFParticlelLabel;

test::AnalyzeEvents: :AnalyzeEvents(fhicl: :ParameterSet
: EDAnalyz :
In the class constructor, extract the alyzer{p}

label for the PFParticle producer {
(pandora) from our configuration fhicl }

Define the new branches in the TTree ->Branch(, &fEventID);
->Branch(,&FNPFParticles);

->Branch(,&fNPrimaries);

->Branch(,&fNPrimaryDaughters);
25

Accessing the PFParticles

We're now inside your analyze function

fNPFParticles
fNPrimaries
fNPrimaryDaughters

"n nn

Empty the counters at the start of the event

26

Accessing the PFParticles ¥

art::Handle<std: :vector<recob: :PFParticle>> pfpHandle;

std::vector<art::Ptr<recob::PFParticle>> pfpVec;
(e.getByLabel(fPFParticleLabel, pfpHandle))
art::fill_ptr_vector(pfpVec, pfpHandle);

(pfpvec.empty())

s

The analysis objects are always formatted such that we access them from a vector.
The art: :Handle< std::vector< .. > >is the art wrapper which holds each vector.

In our case, we want the PFParticles from the RecoBase, recob, using the appropriate
module label: pandora.

We then make sure the art: :Handle is valid before filling the vector of objects to analyze.

https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1PFParticle.html

size_t neutrinoID(std::numeric_limits<size t>::max());

for(const art::Ptr<recob::PFParticle> &pfp: pfpvec){
fNPFParticles++;

if(!(pfp->IsPrimary() && (std::abs(pfp->PdgCode()) == 14 || std::abs(pfp->PdgCode()) == 12)))

neutrinoID pfp->Self();
fNPrimaryDaughters = pfp->NumDaughters();
}

28
if(neutrinoID == std::numeric_limits<size t>::max())

I }2

https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1PFParticle.html

Accessing the PFParticles

}

test::AnalyzeEvents::analyze(art::Event & e)

fEventID = e.id().event();

fNPFParticles
fNPrimaries
fNPrimaryDaughters 5

art::Handle<std: :vector<recob: :PFParticle>> pfpHandle;

std::vector<art::Ptr<recob::PFParticle>> pfpvec;
(e.getByLabel(fPFParticleLabel, pfpHandle))
art::fill_ptr_vector(pfpvec, pfpHandle);

(pfpvec.empty())

s

neutrinoID(std: :numeric_limits<siz >iimax())
(t art::Ptr<recob::PFParticle> &pfp: pfpVec){
fNPFParticles++;

(!(pfp->IsPrimary() & (std::abs(pfp->PdgCode()) ==

fNPrimaries++;

neutrinoID = pfp->Self();
fNPrimaryDaughters = pfp->NumDaughters();
(neutrinoID == std::numeric_limits<size t>::max())

s

fTree->Fill();

|| std::abs(pfp->PdgCode()) ==

)))

Fhicl configuration file linking & running » ¥

_—

Add the PFParticle module label analyzeEvents:

‘pandora’ to the configuration file L . _ g
Note that the parameter name matches the string module_type: AnalyzeEvents
we passed to the constructor of the analyzer :

Running prints the PFParticleLabel: "pandora”

products and the modules names

source build.sh Compile changes

lar -c run_analyzeEvents.fcl -s /path/to/input/file.root -n 10 Run analyzer

root -1 analysisOutput.root Check output

What the output looks like now ¥

We can check that

ana->cd Move into the output directory
everything looks sensible:

new branches

nPFParticles tells . .
nPrimaries should be nPrimaries IS

0 or 1in our sample the number of
0 if we didn't reconstruct anything

us how many

particle we have : nPrimaryDaughters is
neutrinos
reconstructed the number of

nPFParticles !=nPrimaries + [EEENESIIECRSIENI® primary particles

nPrimaryDaughters . Row * eventID.e * |[nPFPartic|* |nPrimarie|*[nPrimaryD]|* (Daughters of the

As we can have some . i . 3]s .| Il Neutrinos) we have
non-primary particles : o - s ¢ 2] reconstructed

The (I |
University W’N
g Of
DEEP UNDERGROUND
#" Sheffield. yeyrriN expERIMENT

Assoclations

What Is an associlation?

LArSoft uses associations to make links between different objects
e The recob::PFParticles have associations to other objects
e Below is an example of how some are linked to them, producer names are defined in " .."

S . PFParticle
Track-shower ID !

“““““]‘ ‘pandora”

1

i There are many other

| associations you can

I consider in your analysis
1

Track Shower Cluster Space Point

"pandoraTlrack” "pandoraShower" ‘pandora’ "pandora’

1 Looking at an 'eve‘ntdump'
! of your reco file will show
! you what’s available

Calorimetry ParticlelD

‘pandoracalo’ ‘pandorapid*

What Is an association?

Don't panic! We won't look at all of these.

. PFParticle

i Track-shower ID ! . :
e L] .) ' There are many other |
] pandora ' associations you can |

consider in your analysis

Space Point

Track Shower Cluster

"pandoraTrack” "pandoraShower" ‘pandora’ "pandora’

I Looking at an ‘eventdump’
I of your reco file will show
' you whats available

Calorimetry ParticlelID

‘pandoracalo” ‘pandorapid"

What Is an association?

To start with, we'll simply access recob: : Track associations to recob: :PFParticles
- since we are interested in finding a muon and a proton

PFParticle

" " i There are many other
pandora ' associations you can
I consider in your analysis

Space Point

Track Shower Cluster

"pandoraTrack' "pandoraShower" ‘pandora’ "pandora’

i Looking at an ‘eventdump’
! of your reco file will show
! you what’s available

Calorimetry ParticlelID

‘pandoracalo” ‘pandorapid"

Finding the associations in an event

Running eventdump.fcl will show us not only the products in the event but the
associations between them. Here is everything produced by pandoraTrack

The process_name The name of the The type of products The number of each
set in the fcl producer that was run that were created product created

36

Finding the associations in an event

Running eventdump.fcl will show us not only the products in the event but the
associations between them. Here is everything produced by pandoraTrack

The process_name The name of the The type of products The number of each
set in the fcl producer that was run that were created product created

We want the association between recob: :PFParticle and recob: : Track

37

Now let's apply this to the analysis

These are the additional headers you'll need.
FindManyP is the class which ‘finds many' pointers to a certain type of object.
In our case, this is used initially as follows:

art::FindManyP<recob::Track> pfpTrackAssns(pfpvec, e, fTrackLabel);

Here we are accessing the recob: : Track objects associated with everything in the
pfpVec.

The recob: : Track objects we want have been produced by the fTrackLabel module.
Once again, this will be linked to the configuration file shortly. 38

The details (bitty part)

In the configuration file add the label
of the track producer

Add a new output to store the lengths
of the reconstructed tracks

Add a new field to store the
TrackLabel that we set in the fcl above

Initialise the TrackLabel from the
configuration

39

In analysisConfig.fcl

module_type: "AnalyzeEvents"

PFParticlelabel: "pandora"

TrackLabel: "pandoraTrack"

fEventID;
- fNPFParticles;
fNPrimaries;
t fNPrimaryDaughters;

std::vector<float> fDaughterTrackLengths;

std::string fPFParticlelLabel;

- std::string fTrackLabel;

est::AnalyzeEvents: :AnalyzeEvents(fhicl::ParameterSet
: EDAnalyzer{p},
fPFParticlelabel(p.get<std::string>(

fTrackLabel(p.get<std::string>("T kLabel"))

Creating the output

Reset the values stored in the vector
for each event

Add a new branch to the TTree using
the vector defined on the previous
slide

fNPFParticles
fNPrimaries
fNPrimaryDaughters
fDaughterTrackLengths.

fTree->Branch(
fTree->Branch(
fTree->Branch(
fTree->Branch(
fTree->Branch(

tlear(); analyze(..)

beginJob()
, &fEventID);

,&fNPFParticles);
,&fNPrimaries);
,&FNPrimaryDaughters);
,&fDaughterTrackLengths);

if(neutrinoID == std::numeric_limits<size t>::max())
return;
art::FindManyP<recob::Track> pfpTrackAssns(pfpvec, e, fTrackLabel);
for(const art::Ptr<recob::PFParticle> &pfp: pfpVec){
if(pfp->Parent() != neutrinoID)

continue;

const std::vector<art::Ptr<recob::Track>> pfpTracks(pfpTrackAssns.at(pfp.key()));

if(pfpTracks.size() == 1){

const art::Ptr<recob::Track> &pfpTrack(pfpTracks.front());

fDaughterTrackLengths.push_back(pfpTrack->Length());

fTree->Fill();

e r\l [|
NNz : :
ek University ~=

g\“Zy/g Of
NV 1 co 13 DEEP UNDERGROUND
(82 Sheffield. NEUTRINO

A little more of an in depth
analysis of the output

Let's look at the track lengths

Once you have compiled and run your analysis module once more, this time over all

your events, open the output file
We'll open a TBrowser and have a look at the distribution of track lengths

Run over all your events by removing -n 10 from the command like this:

lar -c run_analyzeEvents.fcl -s /path/to/input/file.root

When you are inside the output file, open up a TBrowser like this:

root[@] new TBrowser

43

In your TBrowser

Hopefully you'll see
something like this
open up

() ROOT Object Browser

Browser |Eile Edit View Options Tools

e ®

Help|

Files | Canvas_1 (%) | Editor 1]|

4, Y & Draw Option: -
([Jroot
(LIPROOF Sessions
(_IROOT Files
E %analysisoutput.mot
A
[st

Command |

Command (local): |

Filter: | &l Files (%) [~ ‘

In your TBrowser B O RooTobject rowsr

' = e ®
Browser |Eile Edit View Options Tools

Help |
Files | Canvas_1 (x| Editor 1]|
8y V¥ & Drawopton:| 7]
(root
(ZIPROOF Sessions
(ZAROOT Files
E]‘»%analysisﬂutput.rool
=4 ana;1
E;l-"ﬂtree;l
-3k eventD
- 3% nPFParticles
3% nPrimaries
3% nPrimary Daughters
3% daughterTrackLengths

Navigate into your e

file and find the tree

Command |

Command (local): I

Filter: | All Files () [+] ‘

In your TBrowser O Ro0T Objectbrowser 00 ®

Browser |Eile Edit View Options Tools ﬂelp|

Files | Canvas_1 ®| Editor 1 LZ]]

gmf [Do = daughterTrackLengths.daughterTrackLengths
=4 Fana;t 25
3% nPrimaries 20

Open up the S s
daughterTrackLengths ‘
(=1 % |tree;1
-3 eventID
- 3% nPrimary Daughters
.‘ daughterTrackLengths

htemp
Entries 100
Mean 149.6
StdDev 113.6

=] T analysisOutput root
b ra n C h - 3% nPFParticles

=
#-(Jsbnd 15

You can almost make
out what is likely to be |
separate muon and
proton distributions!

—J_l—| T I T 1T | Ll i gl | I [| By Tl ol I T 1T
o
__‘_l]

B S I | | | IS S | | | : ﬂ] L ﬂ 1 I 11 m | |
50 100 150 200 250 300
daughterTrackLengths.daughterTrackLengths

o

Probably with some
amount of contamination Comnand (oca: | -

Command |

Filter: | All Files () [+] ‘

Let's write that histogram to our output file RIVE

Rather than creating a

TTree then creating a implement these lines in the

histogram from the TTree *fTree; appropriate places..
TTree we can create THIF *fTrackLengthHist;
histograms in the

ana[yser module fDaughterTrackLengths.push_back(pfpTrack->Length());

TTrees generauy give fTrackLengthHist->Fill(pfpTrack->Length());

greater flexibility but

direct[y Creating art::ServiceHandle<art::TFileService> tfs;
) fTree = tfs->make<TTree>(-

hlStOgramS can be fTrackLengthHist = tfs->make<TH1F>(

useful in some cases

47

Check your work!

Compile and run!

Check that the output file now has a new entry:

root [2] .ls
TDirectoryFilex* ana ana (AnalyzeEvents) folder

KEY:: TTree tree;1 Output Tree
KEY: TH1F trackLengthHist;1 Reconstructed Track Lengths

Compare your histogram with the one you saw in the TTree.

They should be identical! (Up to maybe different binning)

48

DDDDDDDDDDDDDDD

Associations: Going a little deeper

Particle lonisation

A plot from ProtoDUNE-SP
LArTPC showing the 2D dE/dx

[2007.06722] First results on ProtoDUNE-SP....

vs. residual range distributions . DUNEPrOloDUNESP____________ Dama
for Muons and Protons produced e AT T e

R - - P -c - .-'. - i - 160
in a test beam at CERN. Sy bseion Expeoia :

b A ; roton Expectation 140

T 10 BE g Muon Expectation 120

The theoretical distributions for s % : .

each particle type are given by = -

the lines. o . %

©

40

20

Good separation between e — A
Muons & P_rotons due the large oo w0 en Bx 100 20
difference in mass.

Residual Range [cm]
50

https://arxiv.org/abs/2007.06722

Accessing energy information

Associating the anab: :calorimetry objects to recob: : Tracks will give us energy
information

S . PFParticle
i Track-shower ID

“““““]‘ ‘pandora”

Track Shower Cluster Space Point

"pandoraTrack' "pandoraShower" ‘pandora’ ‘pandora’

Calorimetry ParticlelID

‘pandoracalo’ ‘pandorapid"

51

We are now looking inside your loop over the recob: : Track associations from recob: :PFParticles

In contrast to the Tracks The dE/dx &

associated to the As you did previously, define a vector of art pointers to the ResidualRange objects we
PFParticles where there want have entries for every
was maximum 1 entry in Cal-orlmetry ObJeCtS & check if they re valid. trajectory point in the track
the vector, the Calorimetry and have type

object can have 3: 1 for std: :vector<float>

each plane in the detector. See doxygen for details

t std::vector<art::Ptr<anab::Calorimetry>> trackCalos(trackCaloAssns.at(pfpTrack.key()));

t art::Ptr<anab::Calorimetry> &calo: trackCalos){ This is great, we Ccan

pass the vector of
t planeNum(calo->PlaneID().Plane); dE/dx &

Then you can loop

over the calorimetry
objects, make sure you
can access the plane

ID, and only look at the directly to the vector

collection plane (plane (of vectors) we already
number 2) for ease. fDaughterTrackdEdx.push_back(calo->dEdx()); defined!
fDaughterTrackResidualRange.push back(calo->ResidualRange()); ennea:
)

ResidualRange objects

(planeNum != 2)

52

https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

How this is implemented

e e will use techniques you have already seen to access the calorimetry
objects

©)

With a couple of slight differences

e You once again need to

©)

©)

©)

Add the relevant header for the anab: :Calorimetry object

Add the module label to your configuration file and access it in the constructor
Add any declarations for new variables you want to push to your tree along with
a new branch

Access the list of anab: :Calorimetry objects from the list of recob: : Track
objects using art: : FindManyP

If you are feeling confident have a go on your own now

53

In analysisConfig.fcl

CalorimetrylLabel: "pandoracalo”

> "lardataobj/AnalysisBase/Calorimetry.h"

std::vector<std: :vector<float>> fDaughterTrackdEdx;
std::vector<std: :vector<float>> fDaughterTrackResidualRange;

const std::string fCalorimetrylLabel;

fTree->Branch("daughterTr Ix" ,&fDaughterTrackdEdx);
fTree->Branch("daughterTrackResidualRange" ,&fDaughterTrackResidualRange);

| have purposefully left out some things you've seen before:

e Initialising in the constructor
e Clearing the vectors at the start of every event

See slide 37 for hints!

Inside the analyze function

e \Xe now need to access the calorimetric associations to recob: : Tracks,
for this we need the art_ptr_vector of recob::Tracks
o Thisis done using the same method as for the recob: :PFParticles
art::Handlecs d: egtor recob: :Track>> trackHandle;
: P ::Track> trackVec;

3 ckLabel, tr3<LHaﬁdlclw
flll JTF P\tOf'TlE(R , trackHandle);

e \Xe canthen use art::FindManyP in the same way we did for
recob: :PFParticles and their associated recob: : Tracks

art::FindManyP<anab::Calorimetry> trackCaloAssns(trackVec, e, fCalorimetrylLabel);

55

Build, run, look at 2D histogram!

e | won'trecall the way you build and run, hopefully that's clear from
previous slides/times you've done it

e But | will show you how to quickly plot a 2D histogram in ROOT

root[0] ana->cd()

root[1] TH2D *h = new TH2D("h","dE/dx vs. Residual Range", 200, 0, 50, 200, 0, 30)

root[2] tree->Draw("daughterTrackdEdx:daughterTrackResidualRange>>h", "", "colz")

56

What do you find most interesting about the distribution?

dE/dx vs. Residual Range

dE/dx [MeV/cm]

e

5 40 45 50
Residual Range [cm]

Please note that | added the axes labels myself in the canvas window

57

What do you find most interesting about the distribution?

dE/dx vs. Residual Range

= 30 18
5 . Could this indicate ! a
© | some proton-muon .
separation power? o
____________________________ 8

6

4

2

L

5 40 45 50
Residual Range [cm]

We'll try and get to the bottom of this now

58

The =y \):
o Un1vers1ty M

\ DEEP UNDERGROUND
s Shefﬁeld NEUTRINO EXPERIMENT

A very simple PID

Dom, start a timer

Finding the longest track

e Since we have generated a single muon and proton with defined
momenta, we can be reasonably confident that they will be very
different lengths in each event

e So! Lets use this as a very simple particle identification technique for
our sample

e \We need to loop over all the recob: : Tracks associated to the
recob: :PFParticles which are daughters of the neutrino once again,
but we'll do this independently from our main analysis loop

60

Finding the longest track

std: :vector< > fDaughterLongestTrack;

Declare a vector of booleans
Add a corresponding branch to your tree

longestID -1;
longestLength = std::numeric limits< >::lowest();
¢ art::Ptr<recob::PFParticle> &pfp: pfpVec){

Start by initialising a float to be (pfp->Parent() != neutrinoID)
unphysically small as the longest length ;
and an invalid ID integer as the initial ID of
the longest track, longestID std::vector<art::Ptr<recob::Track>> pfpTracks(pfpTrackAssns.at(pfp.key()));

(pfpTracks.size() == 1){
In a standalone loop over the neutrino
daughter tracks art::Ptr<recob::Track> &pfpTrack(pfpTracks.front());
If the current track length is longer than
the ¢longest’: Redefine longest to be that {PfDTraCk”Le”chg) > 1E”995E;e”9th){

ongestID pfpTrack->ID();

track length and the longestID to be the longestLength = pfpTrack->Length();
ID of that track
Fill the boolean vector in your main fDaughterTrackLengths.push_back(pfpTrack->Length());

. fDaughterLongestTrack.push_back(pfpTrack->ID() == longestID);
analysis loop g g push_back(pfp >ID() g)

61

Current status of your output tree

El% analysis Output root

Your new list of branches should look something like this: E’?z:1
Once again this is looking inside the TBrowser = :e:e:;m“
~~~~~ n arucles
~~~~~ 3% nPrimaries
The added vector of booleans means we can now look ateach - :npnmyoaugmers
' . . . - daughterTrackLengths
track-based variable with conditional formatting: . 2e coughter LongestTrack
. . . . T HldaughterTrackdEcl
Check if each track is the longest in the event in the Draw function . e
|44 trackLengthHist;1

root[0] ana->cd()

root[1] TH2D *hLong = new TH2D("hLong",dE/dx vs. Residual Range", 200, 0, 50, 200, 0, 30)

root[2] TH2D *hShort = new TH2D("hShort","dE/dx vs. Residual Range", 200, 0, 50, 200, 0, 30)

Current status of your output tree (Ve

Drawing the 2 histograms with the relevant conditions: T

E--#ﬂma;l

root[3] tree->Draw("daughterTrackdEdx:daughterTrackResidualRange>>hLong", "daughterLongestTrack", "") = A

3% nPrimaries

3% nPrimary Daughters

& daughterTrackLengths

& daughterLongestTrack

A daughterTrackd Edx

daughterTrackResidualRange
| &a trackLengthHist;1

root[4] tree->Draw("daughterTrackdEdx:daughterTrackResidualRange>>hShort", "!daughterLongestTrack", "same")

Changing the marker colours so we can distinguish between the 2!

root[5] hLong->SetMarkerColor(kViolet) Alternative colour options are here: https://root.cern.ch/doc/master/classTColor.html
root[6] hShort->SetMarkerColor(kBlue)

root[6] c1->Modified() Tell the canvas (default c1) to implement these changes and redraw the canvas

Wel'll see how this affects both your energy and track length plots next!

Let's look at some final plots

Track lengths

W
o

A quick comparison of track
lengths for the longest track
and everything else confirms
there is never any ambiguity
within a single event as to

—— Longest track
— Shorter tracks

Number of tracks
N
(6]

N
o

o°_|_l—0—|||lll||lll|l||l|l|l|||||l
— .

—_
1

| This peak is due to !

which track might be the the fixed initial
mMuon 10 momentum
The longest track is always 5
significantly longer than | | . 1,
: I50I — I100I — I150I — I200I — |250| I I300I
everything else. Track Length for]

65

Energy distributions

— 30
An even better indication of %
' = —— Longest track
particle flavour occurs when 5
° —— Shorter tracks

we plot the dEdx vs residual 5
range of the tracks.

ek DR T T T

15

IR
Yoa’

Here you can see there is a 10F
reasonably clear separation :
between the longest and % | -
shorter tracks! B S R A R SN N S I

Residual Range [cm]

66

Energy distributions

arXivi1205.6747v2 [physics.ins-det] 5 Jun 2012

— 40
§ GEANT4 MC predictions T 30
% 35 I Eroton % -
aon <
Z ., — pion = i — Longest track
5 —__ muon 5 |
0 25 ° E —— Shorter tracks
© 20+
2 = P TTToTmooTTTmmmmomoommomo oo
° = ' Given the ArgoNeuUT plot on the Lleft:
15 15 ' We can select our longest track as
1 the muon and call everything else a
10 i , proton with a reasonable level of
5 L. 3 Conﬁdence as we hoped
o L 1 1 L | 1 L Il I | I — | 1 I‘I L I 1 L L 1 | L Il L
0 5 10 15 20 25 30

residual range (cm)

'?I‘ L1 | | Lo 1] | Il 1 'I’ | L1 1 | | L1 1 | | L1 1 | |] L1 1 | L1 1 1 | L1 1 | | Ll 1 1
00 5 10 15 20 25 30 35 40 45 50
Residual Range [cm]

i Plot from ArgoNeuT showing the theoretical separating power of the .
| average dE/dx vs. residual range distributions. |
1 The theoretical distributions for each particle type are given in varying |
1 colours, the energy loss of a stopping track in the ArgoNeuT detector is !
| shown by the black dots !

67

Energy distributions

arXivi1205.6747v2 [physics.ins-det] 5 Jun 2012

:E: GEANT4 MC predictions = 30
; ___ proton § |
s " oon 2 —— Longest track
X —— muon L% ;
i ° ok —— Shorter tracks
T 20+
| Given the ArgoNeuT plot on the left:
' We can select our longest track as
1 the muon and call everything else a
. 1 proton with a reasonable level of
Lt . confidence --as we hoped
PR T ast -4; » .n__'_i____.______________________;_; _____]
L — é — '1'0' ! '1'5' '2'01 - '2'5' ——30 3 s If you get here ahead of schedule, try
residual range (cm) 5 g, ., playing around with different cuts in
——— . o é . |1I0| . 1'5 W the tree and see if you can see

Plot from ArgoNeuT showing the theoretical separating power of the anything to |dent|fy these events

1
1
i average dE/dx vs. residual range distributions.

1 The theoretical distributions for each particle type are given in varying

1 colours, the energy loss of a stopping track in the ArgoNeuT detector is
| shown by the black dots

68

The LI |
University W’N
g Of
DEEP UNDERGROUND
#" Sheffield. yeyrriN expERIMENT

Final notes

ROOT Workflows

e These tutorials focus on using ROOT via a VNC connection

e Trying to open root files (or any visualisation) via a standard ssh
connection will result in bad times

e You can often set up a VNC over an ssh connection (e.g. to the
Fermilab GPVMs)

e You can also copy root files to your local machine and run root macros
locally (the TTree files are much smaller than the art files and root can
be compiled on a laptop fairly easily with minimal dependencies)

70

Documentation and additional information IDRIVE

The documentation for each art object/tool we have looked at lives here:

recob: :PFParticle - https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1PFParticle.html
art::FindManyP - https://nusoft.fnal.gov/larsoft/doxsvn/html/classart_1_1FindManyP.html
recob::Track - https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1Track.html

anab::Calorimetry = https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

Remember you can look at all of the objects and their corresponding
producers in any reco file by looking at an event dump:

lar -c eventdump.fcl -s /path/to/reco/file.root -n 1

71

https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1PFParticle.html
https://nusoft.fnal.gov/larsoft/doxsvn/html/classart_1_1FindManyP.html
https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1Track.html
https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

Some important file locations

My version of the code lives here;

$MRB_SOURCE/duneana/duneana/Workshop/Analysis/.FinishedModule/AnalyzeEvents_module.cc

$MRB_SOURCE/duneana/duneana/Workshop/Analysis/.FinishedModule/analysisConfig.fcl

$MRB_SOURCE/duneana/duneana/Workshop/Analysis/.FinishedModule/run_analyzeEvents.fcl

Type 1s -ain the directories to see hidden files and directories

Please note:

There is some additional material on the following slides for anyone who finishes early. These also
contain some versions of the code with additional functionality and refactoring the code to make it
more modular and efficient.

72

Previous tutorials (SBND-based)

Ed Tyley & Rhiannon Jones' tutorial from 2021 is here:
https:.//indico.ph.ed.ac.uk/event/91/contributions/1417/

Owen Goodwin's tutorial from 2020 is here:
https:/indico.hep.manchesterac.uk/getFile.py/access?contribld=12&sessionld=4&resld=0&mat
erialld=slides&confld=5856

Rhiannon Jones' tutorial from 2019 is here;
https:./indico.hep.manchesterac.uk/getFile.py/access?contribld=13&sessionld=4&resld=0&mat
erialld=slides&confld=5544

Leigh Whitehead's tutorial from 2018 is here:
https:/indico.hep.manchesterac.uk/getFile.py/access?contribld=13&sessionld=2&resld=0&mat
erialld=slides&confld=5372

73

https://indico.ph.ed.ac.uk/event/91/contributions/1417/
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=12&sessionId=4&resId=0&materialId=slides&confId=5856
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=12&sessionId=4&resId=0&materialId=slides&confId=5856
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=4&resId=0&materialId=slides&confId=5544
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=4&resId=0&materialId=slides&confId=5544
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=2&resId=0&materialId=slides&confId=5372
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=2&resId=0&materialId=slides&confId=5372

Final final remarks

There is a refactored version of the module that modularises the code and
code and makes it more efficient and readable

$MRB_SOURCE/duneana/duneana/Workshop/Analysis/.FinishedModule/.ReorderedModule

74

