Light simulation / reconstruction tutorial

Andrzej Szelc

The University of Edinburgh

Based on Patrick Green’s and Fran Nicolas’s UK-LArSoft light simulation tutorial:
https://indico.ph.ed.ac.uk/event/91/contributions/1410/attachments/891/1203/light_simulation
_tutorial.pdf

& Alex Himmel’'s & Laura Paulucci’s DUNE tutorials:
https://wiki.dunescience.org/wiki/Photon_simulation_tutorial

https://indico.ph.ed.ac.uk/event/91/contributions/1410/attachments/891/1203/light_simulation_tutorial.pdf
https://indico.ph.ed.ac.uk/event/91/contributions/1410/attachments/891/1203/light_simulation_tutorial.pdf
https://wiki.dunescience.org/wiki/Photon_simulation_tutorial

Introduction

*In this tutorial we will look at simulating and reconstructing the scintillation light

*We will take a look at how DUNE-FD fast optical simulation works and what the results
look like for particles traveling through the detector at truth level

*We will then look at running the OpDetDigitizer stage and what the signals look like on
each optical detector

*Then we will run the optical reconstruction, and look at the OpHits and how they can be
combined into Flashes

*Finally, we will talk a little bit about flash matching

9/9/22 2

Part 1: simulating the light through the LArG4 Stage

9/9/22 3

*Two TPCs, separated by an APA with
double-sided light detectors (center,
x=0)

*Light detectors at each APA, for
ARAPUCA super-cells per APA.

— X-Arapucas: see light from
Interactions occurring both TPCs

9/9/22

Running the light simulation in SBND

*\We will be using this fhicl: optical_tutorial _sim_muons.fcl
—you can find this fhicl in Workshop/Photon/fcl/ in your local duneana install

-This fhicl will generate 2 GeV muons at a certain position in the detector —
don’t run it just yet.
*It will then run the light simulation (LArG4 stage), followed by an analyzer

module that will provide 3 TTrees with truth-level information about the light

9/9/22 5

Running the light simulation in DUNE-FD
(Legacy Version)

physics: | egacy LArG4:

{ Configuration of light simulation (semi-analytic or library)

Hits & scintillation
roducers:
p dunefd_pdfastsim_par_ar: @local::standard_pdfastsim_par_ar
{ dunefd_pdfastsim_par_ar.VUVTiming: @local: :dune_vuv_timing_parameterization
rns: { module_type: "RandomNumberSawver" } dunefd_pdfastsim_par_ar.VUVHits: @local::dune_vuv_RS100cm_hits_parameterization
‘e o Prod single generator g with cathode reflections
eneration . . dunefd_pdfastsim_par_ar_ref @local: :dunefd_pdfastsim_par_ar
generator: @local::microboone_singlep = — P dunefd_pdfastsim _par_ar_refl.DoReflectedLight: true
dunefd_pdfastsim_par_ar_refl.VISTiming: @local: :dune_vis_timing_parameterization
The geant4 step dunefd_pdfastsim_par_ar_refl.VISHits: @local: :dune_wis_RS188cm_hits_parameterization

|largeant: @local::dunefd_largeant]\ ; ;
Geant4 simulation of light AND charge. NOte’ we are simulating
, (in re-factored G4, you can choose only one). light reflecting off-of the
N cathode, even though
Co N this is currently not
#Dggz;{:igr?o@igzgiT;Egzzﬁz:l::::ons arriving on photo-detectors planned for DUNE-HD
¥ Also include an analyzer that will allow us to access

the truth level information: (SBND-specific originally but
works in DUNE after minor changes).

9/9/22 6

Task 1 preparation

‘We will be using the same duneana installation from before
“We need to re-setup the environment, and re-compile as I've added new files.

—connect to the viewer as before and open a new terminal
(http://py-dom.lancs.ac.uk:8080/guacamole/#/)

Text set up your local dunetpc installation:
source /cvmfs/dune.opensciencegrid.org/products/dune/setup_dune.sh
source source localProducts_larsoft_v09_56_00_e20_prof/setup

- cd SMRB_SOURCE/duneana; git pull
cd SMRB_BUILDDIR

mrbsetenv
mrb i -738
mrbslp

‘Make a new empty directory called photon_tutorial (or whatever you like) to work in and copy
optical_tutorial_sim muons. fcl to this directory

from srcs/duneana/duneana/Workshop/Photon/fcl/

9/9/22 7

http://py-dom.lancs.ac.uk:8080/guacamole/#/

Task 1.1: running the light simulation
and looking at the results

6\0 ; oo . . . Generating 3 events E...ﬁghl51,5_-_-:|n1i:~,a|'ru1-:|riaﬂ34-2-:]211-:]21T13134
l\i_ets run optical_tutorial_sim_muons.fcl. | B Cqopanalyzer.!
E...ﬂAIIthansﬂ
...y EventlD
—lar —-c optical_tutorial_sim muons.fcl -n 3 é.....gh‘.'avelengm
*The OpDetAnalyzer will produce an _hist.root file containing three %fﬂh'
TTrees with truth-level information: f1- # | PhotonsPerpDet:1
EEI---ﬂ PhotonsPerEvent;1

—AllPhotons — contains information about each photon

o To view the output hist file:
—PhotonsPerOpDet — number of photons arriving at each detector
root -1 sim_muons_G4_hist.root

—-PhotonsPerEvent — total number of photons detected per event new Tbrowser
*Take a look at the AllPhotons tree (use TBrowser): and click on the file from the list

—-do the OpChannel, Wavelength and Time plots make sense? (can you try to figure out the channel
mapping?)

—try to extract the slow timing constant of argon (hint: in TBrowser, tools —> Fit panel, then fit an

exponential and look at 1 / slope)
9/9/22 8

< S

g A .

- 8 Task 1.2: lets change the muon location

@) Q: # generator parameters

<> g < physics.producers.generator.PadOutVectors: true

- . . physics.producers.generator.PDG: [13]

ThebMuons we just generated were at X = -180cm, about in physics. producers. generator .P0: [2.0] & Gev
the middle of one of the TPCs e tca roducors. domerator PDiat: 6

physics.producers.generator.X@: [-1808]

. . . . hysics. d . tor.y@: [308]
*Towards the end of the optical_tutorial_sim_muons.fcl you Will — |payeice. mroducere. generator .z0: [30]

: . physics.producers.generator.TO: [0]
see the parameters of the generated particles: Dhysics producers. generator ThetaoXz: [0]
physics._producers.generator.Theta®¥Z: [@]

- . : physics._producers.generator.SigmaThetaxZ: [@]
X0, YO, Z0: start coords of the particle cigmaThetayZ: [6]

physics._producers.generator.

*What happens if we move the muons to X0 = -330cm (by CPA) Or -Zzbcm (Dy APA)?
—how does the total amount of light change? (look at the PerEvent tree)

—how does the amount of VUV vs visible light change at different positions? Why is this? (there are
separate branches for each)

We can use the “-0” and “-T” options to change the output root file names larsoft, e.g.:

lar -c optical_tutorial_sim_muons.fcl -n 1 -0 sim_muons_25cm.root -T sim_muons_25cm_hist.root

9/9/22 9

Q.,

COTN RS - . .
*Lets R)ng at how the photons are distributed using this macro:

~Workshop/Photon/macro/PlotPhotonsYZ.cc
*First try running this using the muons from the previous task:

—does the distribution of the light make sense?

*Lets try generating some lower energy electrons at different positions

in the detector (copy the fcl to your working directory):

~lar —-c optical_tutorial_sim electrons.fcl -n 5
*How does the distribution of the light differ from the muons?
-look at each event (they will be in different YZ positions)

*Bonus task: plot the direct and reflected light separately (modify the
macro) — the reflected light is much more diffuse, why?

9/9/22

Task 1.3: distribution of the light

To run the root macro:

> root -/
> L PlotPhotonsYZ.cc

EventlD to plot

> PlotPhotonsYZ(“sim_muons_G4_hist.root”, 1)

Do this in a new terminal to use the local root install

rather than cvmfs (much faster)

Example for a 50 MeV electron, each point
represents an X-ARAPUCA supercell

E 600 mm mm - - - O - S O .]
> [= BN B B BN B =B = = = =
[- - S S S S B S . = =
400 =mE @ EEE @ = H BN BN BN BN E E N
FEE - . - N S B B = -
[mm = - = I BN BN B B = = B
00NN HE HE B BN BN BN BN BN =
FEE - - S S S S B B B =
[N I - - S S S B B B . -
ol I H H BH B E 9 E " "la
[(m - - - O S O B B .]
L - - S S . []] -
—-200 — H BN N B B = - = = = .
L = = - Em = - . - EEE
L "= =Em = H = B = - . -
-400— = = L] - . = = - = = e
o e] = = [] = .
[mm = [[- = m []]
76007|-\ |- | H 1 \-\ \-\ L \- [-I T " |- T |- L
0 200 400 600 800 1000 1200
Z [cm]
10

160

140

120

100

Part 1 summary

“You are now able to run simple light simulation jobs and have gained some
understanding of what is happening in them

*There is of course a lot more that can be done with light, but that needs us to
start looking at reconstruction of events, which will be next

*One thing I did not cover is how the semi-analytic simulation is trained and
how optical libraries are constructed. This is a bit more complicated, but

tutorials/details can be found here:

—https://cdcvs.fnal.gov/redmine/projects/sbn-analysis-group/wiki/Tutorial 3 Semi-Analytic_mode H
ow_to generate the_correction_curves

—https://cdcvs.fnal.gov/redmine/projects/dunetpc/wiki/How _to_make a photon_library

9/9/22 11

https://cdcvs.fnal.gov/redmine/projects/sbn-analysis-group/wiki/Tutorial_3_Semi-Analytic_mode_How_to_generate_the_correction_curves
https://cdcvs.fnal.gov/redmine/projects/sbn-analysis-group/wiki/Tutorial_3_Semi-Analytic_mode_How_to_generate_the_correction_curves
https://cdcvs.fnal.gov/redmine/projects/dunetpc/wiki/How_to_make_a_photon_library

Part 2: detector response simulation and light
reconstruction

9/9/22 12

Detector response simulation

I N D .
“We have determined the number of photons at truth level, now we need to model what
a realistic photo-detector response would look like:

— need to add electronics response, noise, etc.
— module we’re interested in: OpDetDigitizerDUNE

*For this part of the tutorial we will need this fhicl: optical_tutorial_detsim. fcl

—you can find this in the Workshop/Photon/fcl/ directory as before, copy this to your
working directory

*This fhicl runs the standard detsim in DUNE, along with an analyzer to let us look at the
resulting waveforms

9/9/22 13

OpDetDigitizer

Each PE swapped for an
electronics response
(here constructed from

producers:)
{ parameters). Noise then
rns: { module_type: "RandomNumberSaver" }
| opdigti: @local::dune35t_opdigl | added to the Waveform'
daq: @local::dunejdetsim
’ Analyzer will let us look
ADC
analyzers: at these waveforms so000
.[-
wvTana: @local::dunefd_averagewavetorm L
} * -
4000 il Example XArapuca waveform
Responses for XArapucas: o
3000 |—,
dunefd_opdigiRdgIEUIE @local: : JINEAEVI RG] unganged —
COLENG LT E threegang. Pulselength: 5.2 B
COLENE MDA threegang.PeakTime: 0.828 —
SOLEN IR threegang. MaxAmplitude: 0.8594 # * VoltageToADC = 9 ADC/PE 2000
COLENG LR threegang. FrontTime: 0.013 MHI
COLENE ML threegang.BackTime: 0.386 |m
UL MR threegang.algo_threshold.ADCThreshold: 15.8008 # "2 PE" threshold = 1.7 PE 1000
COLEN GG threegang_refactor: @local: :[RENEGEGILRER threegang
LG LI threegang_refactor.InputModules: ["PDFastSim"”] 0)) |))) |))) |)
0 2 4 6
COLERE ML R : @local: : IGEAG ARl threegang T_[]
us

9/Y122 14

% . : .
- 8 Optical reconstruction
NN:
€DI;BOQ
*Our simulation is now at a stage that resembles data we would get from a real-life
detector

*This means that we need to shift towards reconstructing the signals and seeing how well
this reconstruction reproduces the initial truth information

*For this part of the tutorial we will need this fhicl: optical_tutorial_ reco.fcl

—you can find this in the Workshop/Photon/fcl/ directory as before, copy this to your
working directory

*This fhicl runs the standard optical reconstruction in SBND, along with a couple of
analyzers to let us look at the resulting information

9/9/22 15

*First stage of reconstruction is OpHits

*OpHits are found when the waveform is
above a certain threshold and held while it
continues to be so.

*This can lead to the merging of visibly
separate optical signals, especially in the
case of SiPMs (in the X-Arapucas)

*The OpHit Time is decided by the first
arriving photon

9/9/22

ADCs

XArapuca signal OpHits

W“’WHWM

1005 1006 1007

Time (us)

1002 1003 1004

1001

16

Flashes

D INBY recob::OpFlash Class Reference
*OpHits from different photon detectors are

combined into Flashes. These are analogous to

#include =oOpFlash.h>

clusters in the charge reconstruction, but matched Public Member Functions
in time rather than space OpFlash (

OpFlash (double time, double timewi
*Having a flash allows us to try to reconstruct the —— fmcﬂtt‘d‘ double >(0
position of the particle that generated the light double TimeWidth () const
(roughly) double AbsTime () const

unsigned int Frame () const
double PE (unsigned int i) const

*This can then be used to match the light signals R T
to the reconstructed TPC tracks — Flash Matching Returs a vector with a number of ph

double YCenter () const
double YWidth () const
double ZCenter () const
double ZWidth () const

9/9/22 17

optical tutorial _reco.fcl

Define and configure some modules to do work on each event. .PrOduceS OpHItS and OpFlaSheS

First modules are defined; they are scheduled later.
Modules are grouped by type.

physics:
{ .
*Runs analyzer modules to look at OpHits
#Reconstruction from photon detectors .
producers: and flashes in each TPC
{
ophit: @local: :dunefd_ophit
opflash: @local::dunefd _opflash
rns: { module_type: "RandomNumberSaver" }
} *Dumps Hit Coordinates (mutilated SBND
#Load analyzers module — use with care).
Analyzer from larana/OpticalDetector
analyzers:
{

opflashana: @Llocal::dunefd opflashana
fitdumper: @local: :hitdumper |
}

9/9/22 18

lar —-c optical_tutorial_ detsim.fcl -s sim muons_G4.root

*Take a look at the _hist.root file. The wvfana tree should contain waveforms for each
photo-detector (there will be a lot of them!).

—have a look at the total average and the single X-Arapuca events

*Check that the optical detectors you expect to a lot of light do indeed (you can use the
AllPhotons tree from the previous task to get an idea of the channels to look at).

Pre-made files from the previous stage can be found here if needed:
/home/share/september2022/photon/

(copy them to your directory)

9/9/22 19

lar —-c optical_tutorial_reco.fcl -s sim muons_G4_detsim.root

*Let’s first take a look at the OpHits: (_hist file, opflashana/PerOpHitTree)

—take a look at the OpChannel and PE — do these make sense?

*Try plotting the hit Y-Z distribution:

—a root macro to do this can be found here (copy it to your directory):
/Workshop/Photon/macro/PlotOpHitYZ.cc

—how does this compare with the equivalent plot at truth level? Is the OpHitFinder

performing well?

Pre-made files from the previous stage can be found here if needed:
/home/share/september2022/photon/

(copy them to your directory)

9/9/22

20

E-££joprecoanatpe ;1

..... ﬂ FlaghBreakdownTree 1
[_]_th PerDpHitTree;1

..... ﬂ PerFlashTree;1
..... ﬂ PerEventFlashTree;1
..... # | FlazhHitMatchTree 1

*Look at the opflashana/PerFlashTree:

—check where the flashes show up in the Y-Z plane. Is this where we
expect them to be?

—look at the flash widths — are they wider in Y or Z? Why?

*Bonus task: try doing the same for the electrons (you will need to run
them through the detsim and reco stages too!):

—-is there any difference between the electrons and the muons?

Pre-made files from the previous stage can be found here if needed:
/home/share/september2022/photon/

(copy them to your directory)

9/9/22

-5 oprecoanatpet ;1

..... ﬂ FlashBreakdownTree;1
..... | PerOpHitTree:1

[_]_th PerFlashTree;1

..... h AbsTime

..... % FlaghFrame
..... ﬁ InBeamFrams
..... % OnBeamTime
..... h TotalPE

21

Flash Matching

*The final stage is to perform matching between the reconstructed light information and
the reconstructed TPC information (as you heard in the pandora tutorials!):

—-in SBND we do this with the optOfinder module after Reco2:

13 process_name: Reco? sbnd_opt@_finder:

14 {

’ . : dul : "SBNDOpT@Finder"
15 physics.trigger_paths: [reco2 &, opticalte modute_type proFinder
it OpFlashProducers: ["opflashtpc@", "opflashtpci"]
] TRPCs: [0, 1]

SliceProducer: "pandora”

*This module makes a prediction of the light based on the TPC track using the same
simulation method as the LArG4 stage. This prediction is then compared with each
OpFlash to find the best match.

*Unfortunately | haven’'t managed to get it working in DUNE (because ran out of time).

9/9/22 22

Conclusions

*You are now able to run simple light reconstruction in LArSoft and have
hopefully gained some intuition for how the light behaves in LArTPCs

*There are a lot of things we can use this light information for to complement
and enhance the TPC information (triggering, event selection / background
rejection, calorimetry, etc.).

*Hopefully this information / tools will help you to incorporate the light into your
own analyses.

*Thanks!

9/9/22 23

9/9/22

Backups

24

< s,
Pl A .
- 8 Making plots
Uz =
«oé\ 3 Co
Amhe'Visual way:

;root -1 <my_file>_hist.root

—new TBrowser ()

—Find the name of your .root file in the list

—Select opanalyzer, select AllPhotons, right click and select StartViewer.

—You can plot any of the branches and apply cuts.

9/9/22 25

Making plots

—Create a new file called myScript.C

-n it:

—~void myScript ()

—{

“TFile * fin = new TFile ("<myfile>_ hist.root", "READ");

“TTree * mytree = (TTree *)fin—>Get ("opanalyzer/AllPhotons");
mytree->Draw ("Time","");

~}

Run: root -1 myScript.C

9/9/22 26

Light simulation in legacy LArG4

Qma?ny experiments still use legacy LArG4 (uBooNE, ICARUS, DUNE-HD), this works a

bit differently:

physics:
{

producers:

{
generator: @local::dunefd singlep
largeant: @Llocal::dunefd larqaant
rns: { module_type:

}

analyzers:

{

pmtresponse: @local::dunefd simphotoncounter

*simphotoncounter is a useful analyzer for
legacy LArG4 that has similar outputs to our
analyzer

9/9/22

*Particle interaction, ionization, electron drift, optical
simulation all performed in one stage:

—result is similar, but much less flexibility

*Configuration of light simulation (semi-analytic or
library) is equivalent:

Hits & Timing parameterization for DUNE FD, Ar scintillation

.dunefd _pdfastsim_par_ar: @local:: dard_pdfastsim_par_ar
dunefd_pdfastsim_par_ar.VUVTiming: @local:: _wvuv_timing_parameterization
dunefd_pdfastsim_par_ar.VUVHits: @local: :dune_vuv_RS100cm_hits_parameterization

with cathode reflections included

pd astsim_par_ar_ H @local: :dunefd_pdfastsim_par_ar
dunefd_pdfastsim_par_ar_ Do lectedLight: true
dunefd_pdfaststm_par_ar_refl.VISTiming: @local::dune_wvis_timing_parameterization
dunefd_pdfastsim_par_ar_refl.VISHits: @local::dune_vis_RS100cm_hits_parameterization

27

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

