ProtoDUNE-SP: Past, Present and Future

Dr Leigh H. Whitehead (ES / PT: "Li") University of Cambridge

Latin America - UK Workshop, University of Lancaster Tuesday 6th September 2022

Overview

This talk will provide a summary of some DUNE prototype detectors

ProtoDUNE-SP

- Introduction
- Detector performance
- Physics analyses

Introduction

- - It used full-size components as an engineering prototype
 - It is still the largest liquid argon TPC built to date
 - It has a wide and strong physics programme in its own right

ProtoDUNE-SP was a prototype of the DUNE Far Detector (FD) located at CERN

Introduction

- - It used full-size components as an engineering prototype
 - It is still the largest liquid argon TPC built to date
 - It has a wide and strong physics programme in its own right

H4 VLE beamline

ProtoDUNE-SP

06/09/2022

ProtoDUNE-SP was a prototype of the DUNE Far Detector (FD) located at CERN

ProtoDUNE-DP (won't discuss here)

CERN Neutrino Platform Prévessin site

Introduction

- - It used full-size components as an engineering prototype
 - It is still the largest liquid argon TPC built to date
 - It has a wide and strong physics programme in its own right

One of ProtoDUNE-SP's two drift volumes

06/09/2022

ProtoDUNE-SP was a prototype of the DUNE Far Detector (FD) located at CERN

H4 VLE beam line

- A new beam line extension was built at CERN for ProtoDUNE-SP
 - Mixed hadron and electron beam
 - - Collected over 4 million triggers in positive polarity: e^+ , μ^+ , p, π^+ , K^+

- Particle momenta tuneable in the range 0.3 - 7 GeV/c in positive and negative polarity

ProtoDUNE-SP: Detector Performance

Electron lifetime

- An important goal for ProtoDUNE-SP was to show that the DUNE FD will meet certa performance criteria as defined in the TD
- Argon purity is defined in terms of the electron lifetime
 - Time taken for a drifting electron to be captured by an impurity
 - Measured in two complementary ways
 - Dedicated purity monitors
 - Cosmic-ray muons

	Detector parameter	ProtoDUNE-SP performance	DUNE specification
C	Average drift electric field	500 V/cm	250 V/cm (min)
J			500 V/cm (nom
ain	LAr e-lifetime	> 20 ms	> 3 ms
	TPC+CE		
R	Noise	(C) 550 e, (I) 650 e ENC (raw)	< 1000 e ENC
	Signal-to-noise (SNR)	(C) 48.7, (I) 21.2 (w/CNR)	
	CE dead channels	0.2%	< 1%
	PDS light yield	1.9 photons/MeV	> 0.5 photons/Me
		(@ 3.3 m distance)	(@ cathode distance -
	PDS time resolution	14 ns	< 100 ns

Noise

- An important goal for ProtoDUNE-SP wa to show that the DUNE FD will meet cert performance criteria as defined in the TD
- Channel noise measured to be low
 - Includes coherent noise removal
 - Good signal to noise ratio for cosmic-ray muons

	Detector		DUNE an additionation
	Detector parameter	ProtoDUNE-SP performance	DUNE specificatio
15	Average drift electric field	500 V/cm	250 V/cm (min)
			500 V/cm (nomi
ain	LAr e-lifetime	> 20 ms	> 3 ms
חר	TPC+CE		
JR	Noise	(C) 550 e, (I) 650 e ENC (raw)	< 1000 e ENC
	Signal-to-noise (SNR)	(C) 48.7, (I) 21.2 (w/CNR)	
	CE dead channels	0.2%	< 1%
	PDS light yield	1.9 photons/MeV	> 0.5 photons/MeV
		(@ 3.3 m distance)	(@ cathode distance - 3
	PDS time resolution	14 ns	< 100 ns

PDS light yield time resolution

- An important goal for ProtoDUNE-SP w to show that the DUNE FD will meet cer performance criteria as defined in the T
- ARAPUCA performance
 - Measured number of photons observed from beam positrons
 - Measured using the time between two calibration pulses

as	
rtain	
DR	

	Detector parameter	ProtoDUNE-SP performance	DUNE specification
_	Average drift electric field	500 V/cm	250 V/cm (min
			500 V/cm (nom
	LAr e-lifetime	> 20 ms	> 3 ms
_	TPC+CE		
	Noise	(C) 550 e, (I) 650 e ENC (raw)	< 1000 e ENC
	Signal-to-noise (SNR)	(C) 48.7, (I) 21.2 (w/CNR)	
	CE dead channels	0.2%	< 1%
Г	PDS light yield	1.9 photons/MeV	> 0.5 photons/Me
		(@ 3.3 m distance)	(@ cathode distance -
	PDS time resolution	14 ns	< 100 ns

ProtoDUNE-SP: Physics

Michel Electrons

- Michel electrons (and positrons) selected from stopping cosmic rays
- Measured energy resolution after correcting for hits below threshold and missed hits
- Good agreement between data and simulation
- Provides evidence of successful reconstruction of low energy electrons
 - Important for DUNE's low-energy physics programme

Diffusion

- Electron diffusion is a source systematic uncertainty
 - Electrons diffuse along (longitudinal) and perpendicular (transverse) to the E-field
- Diffusion can be probed through the width of hits in time
 - Longitudinal diffusion (D_L) smears the distribution
 - Transverse diffusion (D_T) adds an angular dependence
- Aim to simultaneously extract both diffusion terms

06/09/2022

Recombination

- Recombination of electrons with argon ions causes non-linearity between the deposited energy and the charge response of the detector
- Use stopping 1 GeV/c beam protons to probe the effect
 - Modified box model
 - Birks' model
- Preliminary results consistent with previous experiments
 - ArgoNeuT and ICARUS
- Finalising potential space charge effect systematic uncertainty
- Run on full data sample

dE/dx Modelling

- Use stopping particles to characterise dE/dx
 - Cosmic ray muons
 - 1 GeV/c beam protons
 - Secondary kaons produced in 6 and 7 GeV/c kaon beam interaction
- Secondary kaons selected by characteristic muon decay channel
 - 90% pure sample of stopping kaons obtained
- Good dE/dx agreement between data and MC

Cosmic muon seasonal variations

- Expect to see seasonal variations in cosmic ray rates due to changes in atmospheric temperature
- Good agreement for the selected cosmic ray muon sample between data and MC
- Measure the rate in data for a number of different runs and fit the distribution:

$$g(t) = C * \left(1 + B * \cos\left[\frac{2\pi}{P}(t - t_0)\right]\right)$$

- See a clear signal at 3.8σ
- Amplitude = $4.3 \pm 1.1\%$
- Maximum rate on day 21.9 ± 13.6 days
- In agreement with other surface experiments

Photon Detector Analysis

- Xenon added in 2020 after N2 contamination
 - 18.8ppm enough to recover the 70% light drop
- Light increases with Xe concentration and then saturates above ~16ppm
- Similar results from PDS and two additional X-ARAPUCA detectors suggest uniform Xe distribution in the detector
- Results stable over a time scale of months
- No detectable interference between TPC operation and light level from Xe
- Paper in internal review

ProtoDUNE-SP: Hadronic Cross Sections

Hadron - argon cross sections

- Very few measurements of hadron interactions on liquid argon
- Important for neutrino interaction modelling:
 - Interactions of primary pions and protons within the argon nucleus
 - Interactions of primary hadrons as they propagate from the neutrino interaction
- Make use of the thin-slice method from LArIAT
 - Effectively divide the TPC into separate detectors in the beam direction
 - Modified to divide based on energy instead of distance
 - Cross section is proportional to the ratio of incident and interacting pions per slice

$$\sigma = \frac{M_{\rm Ar}}{\rho N_A \Delta E} \frac{dE}{dx} (E) \ln \left(\frac{N_{\rm inc}(E)}{N_{\rm inc}(E) - N_{\rm int}(E)} \right)$$

Pion Inelastic Cross Section

- Analysis of the inelastic cross section
 - Includes all possible final states
- Data-driven background estimation
 - Beam-line muons and mis-id of beam protons
- Cross-section extraction on MC works well
- Aim to open the box on 1 GeV/c data very soon
- Will then work towards a paper draft and publication

1000

800

600

400

200

0

Leigh Whitehead - University of Cambridge

200

Pion absorption and charge exchange xsec

- Look at three channels
 - Absorption: no pions in final state
 - Charge exchange: pi-zero(s) but no charged pions in final state
 - Other: events that are neither of the above
- Two different methods used for absorption measurement
 - Presented in two thesis
- Analysis in working group review
- Paper draft is being written

Proton Inelastic Cross Section

- Analysis similar to pion inelastic cross section
- Select inelastically interacting 1 GeV/c beam protons
- Main backgrounds from elastically scattering protons and mis-id of secondary protons
- Comparison of thin slicing by length and energy
 - E-slicing allows a wider energy range
- Aim to unblind soon
- Goal to publish by the end of 2022

Kaon Inelastic Cross Section

- High energy inelastic cross section measurement
 - 6 GeV/c K+ beam
- Preliminary result suggests
 G4 overestimates the
 measured cross section

- Now finalising the systematic uncertainties
 - Backgrounds from secondary particles etc
- Will add the 7 GeV/x beam sample to the analysis
- Aim for journal submission by the end of the year

Neutron Inelastic Cross Section

- Charged particle beam has no primary neutrons
 - Look for neutrons produced in pion interactions
 - Tag them based on scattered protons
 - Distance from pion interaction to proton is the observable - the neutron scattering length
- Neutrons are a source of missing energy in the **DUNE-FD**
 - Needs to be well modelled for energy measurements
- Preliminary result shows G4 significantly underestimates the cross section
 - Agreement with TENDL is better
- Aim for publication later this year

Summary

- Lots of progress on ProtoDUNE-SP analyses
 - Two papers now on the arXiv, and two more in the DUNE review process
 - Many hadron cross section analyses to unblind in the coming months
 - Expect a number of analysis papers submitted by the end of the year
- Thank you for listening
 - Feel free to ask questions now or later in the week

Transverse Kinematic Inbalance

- - The same method can be applied to the ProtoDUNE beam events
- Pion charge exchange channel: π^+ + n(⁴⁰Ar) $->\pi^0$ + p
- Probe the initial state neutron momentum
- Boosting angle $\delta \alpha_T$ is uniform without FSI
- Analysis is advanced

 π^0

N' = p

TKI probes nuclear effects and final state interactions of hadrons in neutrino events

 π^+ n(⁴⁰Ar) $\rightarrow \pi^0$ p

Pandora Event Reconstruction

- Cosmic-ray reconstruction efficiency and quality
- Beam reconstruction efficiency and quality
- Comparison of efficiency to reconstruct and identify beam particles
- Paper written and in collaboration review

Pandora is the primary event reconstruction software used in all of the TPC analyses

Hit-tagging CNN

- CNN designed to tag hits as either track- or shower-like
 - Uses a novel "small patch" approach
- Used in the majority of analyses
- Excellent performance seen for beam and cosmic
 - Minimal difference in performance between data and MC
- Paper posted to the arXiv and submitted to EPJC

https://arxiv.org/abs/2203.17053

Reconstruction of beam electron energy

- Electron energy reconstruction and resolution is critical for the v_e analyses in DUNE
- Use ProtoDUNE-SP beam positrons from 0.3 to 6 GeV/c
- Measured energy is corrected for hits below the energy threshold
 - Clear linear relationship between reconstructed and beam energy
- Resolution limited by the spread of positron energies in the beam line (5-6%)
- Particle gun MC approach yields 2.9% for 0.3 GeV/c and 0.7% for 7 GeV/c

Reconstruction of pi-zero energy

- Look at π⁰s produced in pion charge exchange events
 - Search for two reconstructed decay photons
 - Used for the energy reconstruction in the TKI analysis
- Uses a kinematic fitting technique to improve the π⁰ energy resolution
 - Uses covariance matrix between three measured values: the photon energies E_1 and E_2 , and the angle between them
- Good resolution obtained with good agreement between data and MC

ProtoDUNE-HD

ProtoDUNE-HD: Introduction

- ProtoDUNE-HD will be the module 0 for the DUNE FD Horizontal Drift detector - The APAs will actually be part of the FD
- - It reuse the ProtoDUNE-SP cryostat and infrastructure
- Differences from ProtoDUNE-SP:
 - There will be four APAs instead of six
 - Allows the distance between the cryostat walls and the TPC to match the FD
 - Two will be upside-down to mimic the bottom APAs in the FD
 - New cold electronics
 - Modified cathode for better planarity

Modification of existing infrastructure

- ProtoDUNE-II will test final component designs
 - Reduced to 4 APAs to match FD distances between the field cage and the cryostat
 - Two APAs "upside-down" to mimic the bottom APAs in the FD, which will hang down with the electronics at the bottom
 - Updated cold electronics
 - Including full length cables for the FD
 - Neutron calibration source, lasers (next slide)
 - Temperature sensors on APAs
 - Improved cryogenics
- **Required cryostat modifications finished**

Cold box test of first APA

- The first of the DUNE-FD APAs arrived in October from Daresbury
 - Tested in the cold box with the ProtoDUNE-SP era cold electronics
 - Performance consistant with what was seen in ProtoDUNE-SP
 - Small noise increase with wire bias voltages on
 - No effects seen when switching on the photon detectors or temperature sensors

06/09/2022

CPA and field-cage end-wall assembly

- CPA design remains similar to in ProtoDUNE-SP
 - Frame was rebuilt but panels remain the same
 - Anti-rotation system added to improve planarity
 - Modified hanging system
 - Now has 4 columns instead of six to match the 4 APAs
- All 12 field cage end-wall panels assembled

Calibration systems

- Install and test a new laser calibration system
 - Lasers mounted on top of the cryostat
 - Periscope and feedthrough system direct and rotate the beam into the TPC
 - Installation planned for July 2022
- Produces ionisation tracks in the LArTPC
 - Should be perfectly straight in absence of electric field distortions
 - Measure the drift velocity
 - Probe space charge and other E-field distortions

Plans and schedule

- Schedule driven by arrival of new cold electronics and related cold cables
 - Preparations underway to test APA1 in the cold box with new CE
 - All four APAs should be cold-box tested and in the cryostat by the end of June 2022
- To mitigate this, will now handle 3 APAs simultaneously in the clean room - More logistically complicated, but feasible
- Two weeks of beam requested for the end of this year
 - Longer period of beam time to be requested for spring 2023

Full schedule

		24 Jan	31 Jan	7 Feb	14 Feb	21 Feb	28 Feb	7 Mar	14 Mar	21 Mar	28 Mar	4 Apr	11 Apr	18 Apr	25 Apr	2 Mav	9 v Mav	16 v Mav	23 May	30 Mav	6 Jun	13 Jun	20 Jun	27 Jun	4 Jul	11 Jul	18 Jul	25 Jul	1 Aug	8 Aug /	15 Aug	22 Aug	29 Aug	5 Sep	12 Sep	19 Sep	26 Sep	3 Oct	10 Oct	17 Oct	24 Oct	31 Oct	7 Nov
Instrumentation																		,,	,																								
Install cables T sensors	and LBLS	-																																									
Install laser Periscopes																																											
Install Purity Monitors																																											
СРА																																											
Assemble/Insert CPA #2	1																																										
Assemble/Insert CPA #2	2																																										
Move CPAs to Clean-Ro	oom																																										
Install T/B FCs on CPAs																																											
Re-insert/Install CPAs																																											
APA																																											
Test and Outfit APA #1																																											
Test and Outfit APA #2																																											
Test and Outfit APA #3																																											
Test and Outfit APA #4																																											
Cold Box test APA #1																																											
Cold Box test APA #2																																											
Cold Box test APA #3																																											
Cold Box test APA #4																																											
Install/Cable APAs 1&2									ļ									_]		
Install/Cable APAs 3&4]	<u> </u>	
]	<u> </u>	
FC																																											
Install Saleve-side EW F	Cs								ļ									_]	<u> </u>	
Close Saleve-side Drift	Volume								ļ									_]	<u> </u>	
Install Jura-side EW FCs	s]	<u> </u>	
Close Jura-side Drift Vo	lume]	<u> </u>	
]	<u> </u>	
Cryostat																		_																									
Re-configure sprinklers	;								ļ						ļ			_]	<u> </u>	
Clean]		
Close TCO]	\vdash	
Clean and last connecti	ions]	<u> </u>	
Seal & Purge																																											
FIII																																											

PhD theses

- 2020
 - University of Oxford
- 2021
 - muon calibrations, Kansas State University
 - Milo Vermeulen, A blessing in disguise: characterisations of ProtoDUNE photon shower for neutrino measurements in DUNE, University of Amsterdam & Nikhef
 - inelastic cross section on argon, University of Minnesota
 - SP, Michigan State University
 - University of Bern

- Aidan Reynolds, Evaluating the low-energy response of the ProtoDUNE-SP detector using Michel electrons,

- Ajib Paudel, A pion-argon cross section measurement in the ProtoDUNE-SP experiment with cosmogenic

- Richard Diurba, Evaluating the ProtoDUNE-SP detector performance to measure a 6 GeV/c positive kaon

- Jake Calcutt, Measurement of the π^+ - argon absorption and charge exchange interactions using ProtoDUNE-

- Francesca Stocker, Measurement of the pion absorption cross section with the ProtoDUNE experiment,

David Rivera, Neutron cross section measurement in the ProtoDUNE-SP experiment, Pennsylvania University

