
Simulation Tutorial
Marina Reggiani-Guzzo

UK LArSoft Workshop 2022 - Lancaster, 08/11/2022

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

What are you going to learn in this tutorial?

1. Understand how configuration files (FHiCL) work in LArSoft and how to write one

2. Understand how to run a simulation

3. Simulate some events up to the detector response stage
a. Generation (Gen) → Propagation (LArG4) → Detector Simulation (DetSim)

2

Tutorial heavily inspired by the
last years’ ones! Thank you for

the previous speakers!

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Is your environment set-up?

This tutorial requires a workspace with a compiled sbndcode with the branch
uk_larsoft_workshop_2022 checked out

(see David’s tutorial)

Once your workspace is set up, you are ready for this tutorial… let’s go?

3

FHiCL files

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

What is a FHiCL?

FHiCL = Fermilab Hierarchical Configuration Language

You can easily identify a FHiCL file by its extension .fcl

5

Is it possible to inherit
FHiCLs and their

parameters when you
are writing your own

FHiCL file.

A FHiCL (a.k.a. fcl)
enables us to configure

and run LArSoft
modules

A FHiCL is written in a
specific syntax (similar
to JSON). We will see
its structure later on in

this tutorial, stay strong!

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Why use a FHiCL file?

● The hierarchical feature of a FHiCL file allows us to define parameters only once that will
persist throughout the entire simulation/reconstruction/analysis code

● But if necessary you can easily change a parameter on the fly without having to recompile
anything (for instance, if you want to run a quick test). We are going to see how it works
shortly…

6

define
parameters simulation reconstruction analysis

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

FHiCL Language

Quick introduction on the syntax of FHiCL.

Everything is based on name-value pairs

Comments can be done with # or //

7

n: 1
pi: 3.14159
charge: “positive”

n: 1 # this is a comment
pi: 3.14159 // this is a comment as well
charge: “positive”

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

FHiCL Language - Sequences

Sequences are defined by square bracketed [] with comma delimiters

You can also overwrite any of the entries

Remember that the sequence entries start from “zero”

8

seq1: [1, 2, 3, 4] # basic sequence
seq2: [1, 2, “word”] # sequence with numbers and words
seq3: [1, [2, 3], 4, “word”] # mix of everything

seq1[1]: 10 # 2 changed to 10, now seq1: [1, 10, 3, 4]

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

FHiCL Language - Tables

Tables are enclosed in curly braces { }

And overwriting works similar to before

Entire tables can be referred using @local::var

9

tab1:
{
 a: 123
 b: “this is a table”
 seq1: [1, 2, 3, 4, 5]
}

tab1.a: 246 # overwrite 123 with 246

tab2: @local::tab1 # tab2 is now the same as tab1

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

FHiCL Language - Splicing

You can splice tables together using a reference @table::tab_name, for instance:

Is equivalent to

10

tab3:
{
 @table::tab1
 n: 100
}

tab3:
{
 a: 123
 b: “this is a table”
 seq1: [1, 2, 3, 4, 5]
 n: 100
}

tab1:
{
 a: 123
 b: “this is a table”
 seq1: [1, 2, 3, 4, 5]
}

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

FHiCL Language - Prologs

Prologs contain configurations that can be accessed in other fcl files. The idea is to have a
dictionary of possible values we can choose from. For instance, one can define the possible
beam energies as:

And in your code you can simply choose which beam energy you want to use:

11

BEGIN_PROLOG
 bnb: 8 # 8 GeV beam
 numi: 120 # 120 GeV beam
END_PROLOG

BeamEnergy: @local::numi choose numi beam energy

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

How is it usually structured in a FHiCL?

One option is to have everything written in a single FHiCL file

But that is not how it is usually done, PROLOGs tend to be written in a separate FHiCL that is
inherited by other FHiCL files:

12

BEGIN_PROLOG
 bnb: 8 # 8 GeV beam
 numi: 120 # 120 GeV beam
END_PROLOG

BeamEnergy: @local::numi

BEGIN_PROLOG
 bnb: 8 # 8 GeV beam
 numi: 120 # 120 GeV beam
END_PROLOG

#include “beam_config.fcl”

BeamEnergy: @local::numi

beam_config.fcl your_working_fhicl.fcl

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

FHiCL - Configurations

● Instead of writing long files, and repeating all the information over and over again, we can
write our configurations in one file and include it in another

● Guarantees that the information is unified
● Shorter, cleaner and tidier codes!

13

Writing your first FHiCL

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

FHiCL file formats

The FHiCL files you actually run have a very important structure and some fields that have to
be there and need to be filled out properly. The overall structure is:

The next slides will explain the role of each part and what kind of information they take. Do not
worry in memorising anything now, focus on understanding the overall structure of this file.

15

#include

process_name:

services: { }
source: { }
physics: { }
outputs: { }

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Writing your FHiCL: Skeleton

This is the skeleton of a FHiCL file

Let’s complete it together and understand the function of each part
(you will have access to the final and complete file at the end)

16

#includes

process_name:

services:
{

}

source:
{

}

physics:
{

}

outputs:
{

}

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Writing your FHiCL: #includes

17

experiment specific configurations
#include “simulationservices_sbnd.fcl”
#include “messages_sbnd.fcl”

configuration files containing prologs
#include “singles_sbnd.fcl”
#include “rootoutput_sbnd.fcl”

process_name:

services:
{

}

source:
{

}

physics:
{

}

outputs:
{

}

Different experiments have their own files and configurations.

In general, FHiCL files start by inheriting include files:

If you want to see what’s inside a specific FHiCL file, you can find out
its path by using this very useful command:

experiment specific configurations
#include “simulationservices_sbnd.fcl”
#include “messages_sbnd.fcl”

configuration files containing prologs
#include “singles_sbnd.fcl”
#include “rootoutput_sbnd.fcl”

find_fhicl.sh simulationservices_sbnd.fcl

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Writing your FHiCL: process_name

18

experiment specific configurations
#include “simulationservices_sbnd.fcl”
#include “messages_sbnd.fcl”

configuration files containing prologs
#include “singles_sbnd.fcl”
#include “rootoutput_sbnd.fcl”

process_name: SingleGen

services:
{

}

source:
{

}

physics:
{

}

outputs:
{

}

Define overall name for the collection of modules you are running.

Must be unique, so you cannot have the same process name run
multiple times on the same art-root file. If you are running some
reconstruction but a process called Reco has already been run, define
a new one called process_name: Reco2

The module that generates single particles is called SingleGen:

process_name: SingleGen

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Writing your FHiCL: services

19

experiment specific configurations
#include “simulationservices_sbnd.fcl”
#include “messages_sbnd.fcl”

configuration files containing prologs
#include “singles_sbnd.fcl”
#include “rootoutput_sbnd.fcl”

process_name: SingleGen

services:
{
 @table::sbnd_simulation_services
 TFileService:
 {
 fileName: “hist_prod_single_sbnd.root”
 }
}

source:
{

}

physics:
{

}

outputs:
{

}

Services table contains all of the simulation specific services that are
commonly used, for instance: detector geometry, physical properties,
file managements…

services:
{
 @table::sbnd_simulation_services
 TFileService:
 {
 fileName: “hist_prod_single_sbnd.root”
 }
}

Load in SBND specific
configuration, table included from
simulationservices_sbnd.fcl

Naming the output ROOT file

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Writing your FHiCL: source

20

experiment specific configurations
#include “simulationservices_sbnd.fcl”
#include “messages_sbnd.fcl”

configuration files containing prologs
#include “singles_sbnd.fcl”
#include “rootoutput_sbnd.fcl”

process_name: SingleGen

services:
{
 @table::sbnd_simulation_services
 TFileService:
 {
 fileName: “hist_prod_single_sbnd.root”
 }
}

source:
{
 module_type: EmptyEvent
 timestampPlugin:
 {
 plugin_type: “GeneratedEventTimestamp”
 }
 maxEvents: 10
 firstRun: 1
 firstEvent: 1
}

physics:
{

}

outputs:
{

}

This is where we specify the input information (or source)

source:
{
 module_type: EmptyEvent
 timestampPlugin:
 {
 plugin_type: “GeneratedEventTimestamp”
 }
 maxEvents: 10
 firstRun: 1
 firstEvent: 1
}

Start with an empty event. If we have an
input ROOT file, specify ROOTInput
here.

Default number of events to generate.
Use -1 if you want to run over all events in
a file.

Default run and event number.

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Writing your FHiCL: physics

21

experiment specific configurations
#include “simulationservices_sbnd.fcl”
#include “messages_sbnd.fcl”

configuration files containing prologs
#include “singles_sbnd.fcl”
#include “rootoutput_sbnd.fcl”

process_name: SingleGen

services:
{
 @table::sbnd_simulation_services
 TFileService:
 {
 fileName: “hist_prod_single_sbnd.root”
 }
}

source:
{
 module_type: EmptyEvent
 timestampPlugin:
 {
 plugin_type: “GeneratedEventTimestamp”
 }
 maxEvents: 10
 firstRun: 1
 firstEvent: 1
}

physics:
{
 producers:
 {
 rns: { module_type: “RandomNumberSaver”
}
 generator: @local::sbnd_singlep
 }
 analyzers: { }
 filters: { }
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

outputs:
{

}

Define and configure modules that do work on the event

physics:
{
 producers:
 {
 rns: { module_type: “RandomNumberSaver” }
 generator: @local::sbnd_singlep
 }
 analyzers: { }
 filters: { }
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

Add information to the ARTROOT file
➔ Modifies file

Perform analysis on the ARTROOT file
➔ No modification

Remove events we are not interested
➔ Modifies file

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Writing your FHiCL: physics

22

experiment specific configurations
#include “simulationservices_sbnd.fcl”
#include “messages_sbnd.fcl”

configuration files containing prologs
#include “singles_sbnd.fcl”
#include “rootoutput_sbnd.fcl”

process_name: SingleGen

services:
{
 @table::sbnd_simulation_services
 TFileService:
 {
 fileName: “hist_prod_single_sbnd.root”
 }
}

source:
{
 module_type: EmptyEvent
 timestampPlugin:
 {
 plugin_type: “GeneratedEventTimestamp”
 }
 maxEvents: 10
 firstRun: 1
 firstEvent: 1
}

physics:
{
 producers:
 {
 rns: { module_type: “RandomNumberSaver”
}
 generator: @local::sbnd_singlep
 }
 analyzers: { }
 filters: { }
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

outputs:
{

}

Define and configure modules that do work on the event

physics:
{
 producers:
 {
 rns: { module_type: “RandomNumberSaver” }
 generator: @local::sbnd_singlep
 }
 analyzers: { }
 filters: { }
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

Defines the modules in the order you
want to run them in

Define the output stream if you need it
(configured later in the file)

Everything that modifies the event
(filters/producers)

Everything that does not modify the event
(analyzers and output streams)

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Writing your FHiCL: outputs

23

experiment specific configurations
#include “simulationservices_sbnd.fcl”
#include “messages_sbnd.fcl”

configuration files containing prologs
#include “singles_sbnd.fcl”
#include “rootoutput_sbnd.fcl”

process_name: SingleGen

services:
{
 @table::sbnd_simulation_services
 TFileService:
 {
 fileName: “hist_prod_single_sbnd.root”
 }
}

source:
{
 module_type: EmptyEvent
 timestampPlugin:
 {
 plugin_type: “GeneratedEventTimestamp”
 }
 maxEvents: 10
 firstRun: 1
 firstEvent: 1
}

physics:
{
 producers:
 {
 rns: { module_type: “RandomNumberSaver”
}
 generator: @local::sbnd_singlep
 }
 analyzers: { }
 filters: { }
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

outputs:
{
 out1:
 {
 @table::sbnd_rootoutput
 fileName: “prodsingle_sbnd_%p-%tc.root”
 }
}

Define where the output goes:

outputs:
{
 out1:
 {
 @table::sbnd_rootoutput
 fileName: “prodsingle_sbnd_%p-%tc.root”
 }
}

Included from rootoutput_sbnd.fcl

Specify the default output filename here.
Check here to see more options on how
to configure the name.

Note: same name used in stream1: [] in
physics: { }

http://cdcvs.fnal.gov/redmine/proj%20ects/art/wiki/Output_file_re%20naming_for_ROOT_files

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

How do I choose what to simulate?

24

experiment specific configurations
#include “simulationservices_sbnd.fcl”
#include “messages_sbnd.fcl”

configuration files containing prologs
#include “singles_sbnd.fcl”
#include “rootoutput_sbnd.fcl”

process_name: SingleGen

services:
{
 @table::sbnd_simulation_services
 TFileService:
 {
 fileName: “hist_prod_single_sbnd.root”
 }
}

source:
{
 module_type: EmptyEvent
 timestampPlugin:
 {
 plugin_type: “GeneratedEventTimestamp”
 }
 maxEvents: 10
 firstRun: 1
 firstEvent: 1
}

physics:
{
 producers:
 {
 rns: { module_type: “RandomNumberSaver”
}
 generator: @local::sbnd_singlep
 }
 analyzers: { }
 filters: { }
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

outputs:
{
 out1:
 {
 @table::sbnd_rootoutput
 fileName: “prodsingle_sbnd_%p-%tc.root”
 }
}

You can define a few initial properties:

● PDG: Particle ID
● P0, SigmaP, PDist: Momentum
● X0, Y0, Z0: Initial position
● And much more!

Trust me, this is a complete and working FHiCL ready to simulate
particles. But what is it simulating?

Find out what this file is simulating

Hints:
● Explore the input files (and their inputs)
● Use the command find_fhicl.sh (slide 14)

Full file here:
$MRB_SOURCE/sbndcode
/sbndcode/Workshop/TPC
Simulation/sim_tutorial_g
en_non0_T0.fcl

https://pdg.lbl.gov/2007/reviews/montecarlorpp.pdf

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

What am I simulating? (solution)

25

experiment specific configurations
#include “simulationservices_sbnd.fcl”
#include “messages_sbnd.fcl”

configuration files containing prologs
#include “singles_sbnd.fcl”
#include “rootoutput_sbnd.fcl”

Exploring the include files…

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

What am I simulating? (solution)

26

experiment specific configurations
#include “simulationservices_sbnd.fcl”
#include “messages_sbnd.fcl”

configuration files containing prologs
#include “singles_sbnd.fcl”
#include “rootoutput_sbnd.fcl”

Exploring the include files…

#include "singles.fcl"

BEGIN_PROLOG

sbnd_singlep: @local::standard_singlep

Particle generated at this time will appear in main drift window at trigger
T0.
physics.producers.generator.T0: [1.7e3] # us

physics.producers.generator.P0: [-1.0] # GeV/c
physics.producers.generator.SigmaP: [0.0] # GeV/c
physics.producers.generator.PDist: 0
physics.producers.generator.X0: [150.0] # cm
physics.producers.generator.Y0: [150.0] # cm
physics.producers.generator.Z0: [-50.0] # cm
physics.producers.generator.Theta0XZ: [15.0] # degrees
physics.producers.generator.Theta0YZ: [-15.0] # degrees
physics.producers.generator.SigmaThetaXZ: [0.0] # degrees
physics.producers.generator.SigmaThetaYZ: [0.0] # degrees

END_PROLOG

This file contains some
information about the particle (T0,
momentum, initial position…) but
not the particle ID. So the
question remains: what are we
simulating?

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

What am I simulating? (solution)

27

experiment specific configurations
#include “simulationservices_sbnd.fcl”
#include “messages_sbnd.fcl”

configuration files containing prologs
#include “singles_sbnd.fcl”
#include “rootoutput_sbnd.fcl”

Exploring the include files…

#include "singles.fcl"

BEGIN_PROLOG

sbnd_singlep: @local::standard_singlep

Particle generated at this time will appear in main drift window at trigger
T0.
physics.producers.generator.T0: [1.7e3] # us

physics.producers.generator.P0: [-1.0] # GeV/c
physics.producers.generator.SigmaP: [0.0] # GeV/c
physics.producers.generator.PDist: 0
physics.producers.generator.X0: [150.0] # cm
physics.producers.generator.Y0: [150.0] # cm
physics.producers.generator.Z0: [-50.0] # cm
physics.producers.generator.Theta0XZ: [15.0] # degrees
physics.producers.generator.Theta0YZ: [-15.0] # degrees
physics.producers.generator.SigmaThetaXZ: [0.0] # degrees
physics.producers.generator.SigmaThetaYZ: [0.0] # degrees

END_PROLOG

BEGIN_PROLOG

#no experiment specific configurations because SingleGen is detector agnostic

standard_singlep:
{
 module_type: "SingleGen"
 ParticleSelectionMode: "all" # 0 = use full list, 1 = randomly select a single listed
particle
 PadOutVectors: false # false: require all vectors to be same length
 # true: pad out if a vector is size one
 PDG: [13] # list of pdg codes for particles to make
 P0: [6.] # central value of momentum for each particle
 SigmaP: [0.] # variation about the central value
 PDist: "Gaussian" # 0 - uniform, 1 - gaussian distribution
 X0: [25.] # in cm in world coordinates, ie x = 0 is at the wire plane
 # and increases away from the wire plane
 Y0: [0.] # in cm in world coordinates, ie y = 0 is at the center of the
TPC
 Z0: [20.] # in cm in world coordinates, ie z = 0 is at the upstream edge
of
 # the TPC and increases with the beam direction
 T0: [0.] # starting time
 SigmaX: [0.] # variation in the starting x position
 SigmaY: [0.] # variation in the starting y position
 SigmaZ: [0.0] # variation in the starting z position
 SigmaT: [0.0] # variation in the starting time
 PosDist: "uniform" # 0 - uniform, 1 - gaussian
 TDist: "uniform" # 0 - uniform, 1 - gaussian
 Theta0XZ: [0.] #angle in XZ plane (degrees)
 Theta0YZ: [-3.3] #angle in YZ plane (degrees)
 SigmaThetaXZ: [0.] #in degrees
 SigmaThetaYZ: [0.] #in degrees
 AngleDist: "Gaussian" # 0 - uniform, 1 - gaussian
}

random_singlep: @local::standard_singlep
random_singlep.ParticleSelectionMode: "singleRandom" #randomly select one particle from the list

argoneut_singlep: @local::standard_singlep

microboone_singlep: @local::standard_singlep
microboone_singlep.Theta0YZ: [0.0] # beam is along the z axis.
microboone_singlep.X0: [125] # in cm in world coordinates, ie x = 0 is at the wire plane
microboone_singlep.Z0: [50] # in cm in world coordinates

END_PROLOG

Remember about the
hierarchical structure
and… voilà!

We are simulating a
muon, PDG = 13

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

What am I simulating? (solution 2)

Another possibility is to use the fhicl-dump command, that prints the entire set of configured
parameters in the entire hierarchy:

28

fhicl-dump sim_tutorial_gen.fcl > sim_tutorial_gen_dump.txt

The output can be long,
so best put it into a text

file where you can
search easily

Produced from 'fhicl-dump' using:
Input : sim_tutorial_gen.fcl
Policy : cet::filepath_maker
Path : "FHICL_FILE_PATH"

outputs: {
 out1: {
 compressionLevel: 1
 fileName: "prodsingle_sbnd_%p-%tc.root"
 module_type: "RootOutput"
 saveMemoryObjectThreshold: 0
 }
}
physics: {
 end_paths: [
 "stream1"
]
 producers: {
 generator: {
 AngleDist: "Gaussian"
 P0: [
 6
]
 PDG: [
 13
]
 PDist: "Gaussian"
 PadOutVectors: false
 ParticleSelectionMode: "all"
 PosDist: "uniform"
 SigmaP: [
 0
]
(...)

The configured
parameters defined in
the previous slide will

be displayed here.

Input file

Output of the fhicl-dump
command, saved in
sim_tutorial_gen_dump.fcl

A muon is being
simulated

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

What if I don’t want to simulate a muon?

One of the beauties of FHiCL files is that you can override parameters on the fly.

First, identify where the parameter is declared and define its “path”. Example: particle ID

29

BEGIN_PROLOG

#no experiment specific configurations because SingleGen is detector agnostic

standard_singlep:
{
 module_type: "SingleGen"
 ParticleSelectionMode: "all" # 0 = use full list, 1 = randomly select a single listed
particle
 PadOutVectors: false # false: require all vectors to be same length
 # true: pad out if a vector is size one
 PDG: [13] # list of pdg codes for particles to make
 P0: [6.] # central value of momentum for each particle
 SigmaP: [0.] # variation about the central value
 PDist: "Gaussian" # 0 - uniform, 1 - gaussian distribution

(...)

}

(...)

#include "singles.fcl"

BEGIN_PROLOG

sbnd_singlep: @local::standard_singlep

Particle generated at this time will appear in main drift window at trigger
T0.
physics.producers.generator.T0: [1.7e3] # us

physics.producers.generator.P0: [-1.0] # GeV/c
physics.producers.generator.SigmaP: [0.0] # GeV/c
physics.producers.generator.PDist: 0
physics.producers.generator.X0: [150.0] # cm
physics.producers.generator.Y0: [150.0] # cm
physics.producers.generator.Z0: [-50.0] # cm
physics.producers.generator.Theta0XZ: [15.0] # degrees
physics.producers.generator.Theta0YZ: [-15.0] # degrees
physics.producers.generator.SigmaThetaXZ: [0.0] # degrees
physics.producers.generator.SigmaThetaYZ: [0.0] # degrees

END_PROLOG

singles.fcl

singles_sbnd.fcl

#include “singles_sbnd.fcl”

(...)

physics:
{
 producers:
 {
 rns: { module_type: “RandomNumberSaver” }
 generator: @local::sbnd_singlep
 }
 analyzers: { }
 filters: { }
 simulate: [rns, generator]
 stream1: [out1]
 trigger_paths: [simulate]
 end_paths: [stream1]
}

(...)

sim_tutorial_gen.fcl

This is the line in your FHiCL file
responsible for including the
information about the particle feature,
and you can access it under:
physics.producers.generator

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Overriding parameters

You can overwrite a parameter in your FHiCL file (the ones displayed when you run fhicl-dump)
after you define them by adding the following line at the end of your FHiCL file:

This is true for any other parameter and for N≠1 particles:

30

physics.producers.generator.PDG: [11] # this is an electron

Modify the particle ID in your FHiCL
and check the new fhicl-dump
output. Do it for an electron and for
a pair of particles. (~10 min)

physics.producers.generator.PDG: [11, 13] # electron and muon
physics.producers.generator.P0: [0.7, 0.8]

Make sure to include the initial
parameters for all particles

Understanding the
Simulation Flow

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Generating Particles

The first step is to generate the particles we want to simulate, there are a few options:

1. Single particle gun: specify the topology of the collection of particles you want to study

2. Generators: use an input flux and/or physics model to simulate interactions
a. GENIE: for generating neutrinos
b. CORSIKA: for cosmic rays
c. MARLEY: for supernova and solar neutrinos
d. People doing BSM either write custom generators or develop additions to GENIE

This tutorial focuses on the single particle gun (developed FHiCL file so far in the tutorial). This
generates a particle with some initial parameters: start position, start momentum, PDG code,
energy…

The output of this is a list of simb::MCParticle objects.

32

https://nusoft.fnal.gov/larsoft/doxsvn/html/classsimb_1_1MCParticle.html

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Geant4

The next step is to propagate the particles through the detector, this is done with Geant4

Geant4 simulates all the physical processes that happen in the detector:

● Collisions with argon atoms
● Ionisation processes
● Showers
● Decays
● Etc…

The output is a also list of simb::MCParticle objects.

33

https://geant4.web.cern.ch/

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Detector Simulation

The last simulation step covered in this tutorial is the detector simulation. This step returns the
detector response to the charge and light generated in the detector during the propagation.

The output of this stage if the raw::RawDigit which is a collection of digitised charge vs time
from a wire.

34

https://nusoft.fnal.gov/larsoft/doxsvn/html/classraw_1_1RawDigit.html

How to interact
with LArSoft

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

lar commands

To do anything with LArSoft you need to use the lar command.

A typical LArSoft command looks like:

The most important flags you can pass to a lar command are:

● -c (--config): the FHiCL file you are running
● -s (--source): the source file (a ROOT file made by some previous stage)
● -n (-nevts): the number of events to run (use -n -1 if you want to run over all events)
● -o (--output): the name of the output art-root file (overrides the default)
● --nskip: the number of events to skip

Detailed usage can be found with lar -h

36

lar -c your_fhicl.fcl -s inputFile.root -o outputFile.root -n 5

This is how you run a
simulation. For the SingleGen
stage, for instance, there is no

input file.

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Running the full simulation chain

As explained, the full simulation chain consists of three stages (generator, propagation,
detector simulation), and as you might imagine, there is a FHiCL responsible for each of them:

Path: $MRB_SOURCE/sbndcode/sbndcode/Workshop/TPCSimulation/

● Generator: sim_tutorial_gen_non0_T0.fcl
● Propagation: g4_workshop.fcl
● Detector Simulation: detsim_workshop.fcl

Note that the generator output file is used as an input for the propagation stage, and so on…

Hint: use the -o flag to name the output files
in a way that makes sense to you

37

Based on the previous slide, what is
the lar command for each of the
steps above?

For SBND:
● standard_g4_sbnd.fcl
● standard_detsim_sbnd.fcl

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

lar commands: solutions

Have you given a thought on the previous task?
If not, what are you doing here? Go back to the task!

A full simulation chain will look like this:

38

lar -c sim_tutorial_gen_non_T0.fcl -n 20 -o output_gen.root

lar -c g4_workshop.fcl -s output_gen.root -o output_g4.root

lar -c detsim_workshop.fcl -s output_g4.root -o output_detsim.root

Visualising Events

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Event Display

LArSoft has an event display that you can use to view the events and validate (by eye) your
simulation.

To run it use:

40

lar -c evd_sbnd.fcl -s your_detsim_output_file.root

It can be very slow when not using VNC
while working on the FNAL GPVMs

Running your own
Simulation

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Main task

● Copy the working FHiCL:
$MRB_SOURCE/sbndcode/sbndcode/Workshop/TPCSimulation/sim_tutorial_gen_non0_T0.fcl

● Simulate 10 events with 1 muon and 1 proton with the following requirements:
○ Muon: momentum = 0.7 GeV/c ; theta_xz = -10 degrees ; theta_yz = 0 degrees
○ Proton: momentum = 0.8 GeV/c ; theta_xz = 35 degrees ; theta_yz = 10 degrees
○ Start position of both particles (x0, y0, z0) = (-100, 0, 150) cm
○ T0 of both particles = 1,600 ns
○ Set all variations (vertex position, momentum, angles, time) to 0
○ Set all distributions to “uniform” (vertex position, time, angle)
○ Set particles being created from the same vertex (SingleVertex:true)

● Run Geant4 over the produced particle file
● Run DetSim over the Geant4 file
● Run the Event Display over the DetSim file
● Repeat everything above with a gaussian variation to the angles

42

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Bonus task

1. Repeat the main task and make 10 events with an electron instead of a muon

1. Generate 10 electron-neutrino events in the SBND active volume,
2. Run the Geant4 and Detsim stages
3. Open the events in the event display
4. Identify the electron shower and any other particles along with it

43

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Extra material

● Quick Start Guide for FHiCL 3: The Fermilab Hierarchical Configuration Language

Solutions:

● $MRB_SOURCE/sbndcode/sbndcode/Workshop/TPCSimulation/.solutions/
○ sim_tutorial_gen_non0_T0_complete.fcl →FCL for the main task
○ run_full_simulation.sh → set of commands to run a full simulation using LArSoft

44

http://cdcvs.fnal.gov/redmine/attachments/download/29136/quick_start_v3.pdf

M. Reggiani-Guzzo - 7th UK LArSoft Workshop

Vim

If you are not familiar with opening/editing a text file on the terminal, you can use vim.

● Open file: vim my_text.txt
● Edit file: esc + i (it will display -- INSERT -- on the bottom)
● Save file: esc + :w
● Save file and close file: esc + :wq
● Close file: esc + :q

45

Thanks!

