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Outline

• This talk will give an overview of how LArSoft
deals with simulating light and why it's hard.

• I will mention a bit about reconstruction

• Next, Patrick will go through few a couple 
examples in the tutorial.

2



3

e.g. DUNE 
Horizontal Drift 
and MicroBooNE
use this
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DUNE Vertical 
Drift and SBND
use this



Elements of Light Sim in a Nutshell

• Light source:
– How many 

photons are 
generated?

– What is their 
time 
distribution?

– What is their 
wavelength?

• Transport:
– How many 

photons make it to 
the detector?

– How long does it 
take them? 

– Do they 
scatter/get 
absorbed etc?

• Detection:
– What is our 

detection efficiency?

– Does it depend on 
position on 
detector?

– Are there any extra 
timing effects?
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Different modes of simulation

• Full optical simulation (extremely slow)

– Requires definition of all optical properties.

• Fast optical simulation (faster, but less precise)

– Still need to run full optical at least once

– Majority of optical properties "burned in"

– Three primary methods exist: Semi-analytic, 
optical library, GANN.
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Full optical light simulation

Optical photons undergo:
• Rayleigh scattering
• Wavelength shifting 
• Reflection /refraction at medium boundaries 
• Bulk absorption

Isotropic emission: Rayleigh scattering: <λRS> ≈ 100cm 

Boundary processes:
Reflections and WLS 
before absorption 
Labs = 20 m 

In large detectors, the tracking of each 
individual photon is prohibitively long: 
approaches need to be used →
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TPC Cathode plane

TPC Anode plane

TPC length (z)TPC height (y) TPC length (z)TPC height (y)

Fast optical model: Optical Library

• Resolution depends on voxel sizes: 
granularity effects at short distances

• Optical library size scales with detector size 
and number of photon detectors

1000 cosmics in SBND

• Prohibitive memory use for events with large energy depositions (i.e. cosmics)
• Difficult to get working in SBND and DUNE, so different approach currently used.



• Given a dEdx in a point (x, y, z) we want to 
predict the number of hits in our optical 
detector (xi, yi, zi)

• Isotropic scintillation emission makes the 
problem “almost” geometric
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Fast optical model: Semi-Analytic

𝜆𝑅𝑆 → ∞

• “Almost” because we 
have Rayleigh scattering

• We need to correct for it 
(and we do)

𝜆𝑎𝑏𝑠
= LAr absorption length

𝑆𝛾 = Scintillation Yield

= Electric Field

Ω = Solid angle



Full Optical Sim vs FastSim knobs

• This table is for reference – we'll come back to it 
later. 10



Emission
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Scintillation mechanism in LAr 

• Self-trapped excitation luminescence

Ar* + Ar         Ar*
2  2Ar + hv

Ar+ + Ar         Ar+
2

Ar+
2 + e         Ar*

2  2Ar + hv
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• Recombination luminescence 



Scintillation wavelength in LAr
Ph. Rev. B 56 (1997), 6975 

In liquid argon, the overall spectrum is well 
represented by a gaussian shape, peaking 
around λ = 128 nm (FWHM ≃ 6 nm)
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Scintillation signal shape in LAr
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• In all measurements the overall scintillation light emission exhibits a double exponential
behavior in time

• this is a result of excimer decays (at 90 K) characterized by two very different components: a
fast component, with a time constant of τS ≈ 6ns, and by a slow component, with a time
constant of τT ≈ 1.3μs

Warning: In the refactored 
LArG4 decay times are 
defined in a different place(*)

(*)

This is where SBND-specific parametrizations 
live now:

sbndcode/sbndcode/LArSoftConfigurations/opticalpr
operties_sbnd.fcl

Note:
A slow time constant value convolved with the 

WLS-delay, results in a larger value.

In SBND we account for both decays separately



Scintillation yields
• The lifetimes of the fast and slow 

components agree within experimental 
uncertainties for different particles

• Light yield and fast/slow ratio depend on 
LET (the specific energy loss along the path)

Ph. Rev. B 27 (1983), 5279
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Jpn. J. Appl. Phys. Vol. 41 (2002) pp. 1538–1545 

true



L vs Q and Electric Field

• Electric Fields applied to the LAr medium 
also affect the intensity weights of the 
decay components by the recombination (R)

Phys. Rev. B 20, 3486
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mips

(Credit to W. Foreman)

Services.LArG4Parameters.IonAndScintCalculator: “Correlated”     (available from v09_09_03)



Propagation

17



Scintillation light propagation

• Scintillation photons have energy lower than the first excited state of the Ar atom, therefore 
pure LAr is transparent to its own scintillation radiation

• However, during propagation through LAr VUV photons may undergo elastic interactions on Ar 

atoms ⇒ Rayleigh scattering 

• Rayleigh Scattering affects, in a non negligible way, the light signals in our detectors in 
comparison with the “pure” emitted scintillation light

• It is important to understand/model it properly in liquid argon
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We need how to get our 
number of detected photons 

and their arrival times ⇒
Transport effects1300 ns

(1300 ns)



Rayleigh Scattering in LArSoft
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• Elastic scattering of photon with medium of 
particle ~1/10 size of the wavelength (change 
angle/direction)

• Small uncertainties in the index of refraction 
can drastically change the scattering length 

𝜆𝑅𝑆



• Given a dEdx in a point (x, y, z) we want to 
predict the number of hits in our optical 
detector (xi, yi, zi)

• Isotropic scintillation emission makes the 
problem “almost” geometric
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Fast optical model: Semi-Analytic

𝜆𝑅𝑆 → ∞

• “Almost” because we 
have Rayleigh scattering 

𝜆𝑎𝑏𝑠
= LAr absorption length

𝑆𝛾 = Scintillation Yield

= Electric Field

Ω = Solid angle
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Transport corrections to light signals
Border effects:

Geometric estimation Transport correction



Time structure of detected signals

In “large” detectors transport effects will affect 
the effective time structure of the detected 
scintillation light
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1300 ns

1300 ns)

𝑡𝐸 = emission time

𝑡𝑡 = transport time

𝑡𝑊𝐿𝑆 = WLS delay time

𝑡𝑑𝑒𝑡 = detector time
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Time structure of detected signals
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(Digression): Enhancing the Light Yield in LArTPCs
1. WLS-Coated reflector foils 

2. Xenon doping
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Semi-Analytic model extensions (available)

Number of photons 
incident on the cathode

QWLS x Qfoil PD aperture as viewed 
by the bright spot

PD-location + border correction 

• LArSoft suits Semi-Analytic model 
simulation incorporating all of the 
extensions:

- LAr and LXe wavelengths 
(doping)

- Direct and Reflected light (foils)
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Fast optical model: Semi-Analytic

Detector 
specific

sbndcode/sbndcode/LarSoftConfigurations/opticalsimparameterisations_dune.fcl

More configurations 
below.



Hybrid model for the photon propagation

• Semi-Analytic model has a limitation: only applicable inside the active volume (geometric 

approach)

• Simple idea to overcome the problem ⇒ Hybrid model: Semi-Analytic model inside the 

TPC + Op-Library outside
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Currently implemented in 
DUNE –VD and SBND



E-Field map in a TPC (SBND case example)

2D E-Field map at the top of the SBND TPC SBN-doc-1317
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• Inside the active volume EF is constant @ 0.5 kV/cm (nominal)

• In the top of the TPC EF values range from few kV/cm at the CPA location 
decreasing to ~0 at the APA. 

• Behind APA (PD-plane) EF = 0 is a good approximation (almost constant)

Warning: Light yield strongly depends on the Electric Filed value

https://sbn-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=1317&filename=SBND_TPC_Field_Cage_TDR_v3.pdf&version=3


(Digression): Cherenkov radiation in LAr

• A particle propagating in a medium with velocity greater than 
that of light in the medium produces an electromagnetic 
shock-wave with conic wavefront 

• Photons are emitted with a precise angle with respect to 
particle direction

→ Can be considered a second order effect with respect to scintillation light emission
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NIM

⇒ ∫
109𝑛𝑚(LAr absorbed)
600𝑛𝑚(hard to detect)

⇒

sbndcode/sbndcode/LArSoftConfigurations/opticalproperties_sbnd.fcl



Detection
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Wavelength shifter in LArSoft
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V
U

V



Wavelength shifter time delay
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Geant4 (G4OpWLS class) only simulates Delta or Exponential model (none is the case for TPB)

Measurement

𝜏 = 6.2𝑛𝑠

𝜏 = 2.5𝑛𝑠

• If we want to use the Geant4 class then we
would have to approach it by a single
exponential (~6.2 ns):

- We know this is not what we
measure

- It would also require adding a line in
OpticalPhysics (model switching not
possible via .fcl).

• In SBND we don’t use the Geant4 WLS
time simulation.



• SimPhotons objects (collections of OnePhoton) save detailed information about each 

detected photon

•while SimPhotonsLite objects reduce memory and size at the price of keeping only the 

number of photons at a time-slot. 

•The kind of object you want to save in your simulation is specified in the configuration 
file by the line:

Photon simulation output objects
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Full Optical Sim vs FastSim knobs

• Hopefully should make more sense now.
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Detector effects
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Reconstruction
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Optical signal reconstruction: OpHits
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• The first stage of the optical 
reconstructions looks for pulses in 
the raw waveforms. 

• The light pulses in LArSoft are 
stored in objects called OpHits.



Optical signal reconstruction: OpFlash
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Flash Matching: OpT0Finderexample
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Flash matching goals:
• Identify a neutrino interaction from 

cosmic backgrounds

• Provide T0 for each TPC interaction

The two ingredients for flash matching:
• Reconstructed Flashes
• TPC Objects (reconstructed objects in the TPC, 

i.e. Pandora’s recob::Slice) ⇒ The flash 
matching code should match a TPC Object with 
its flash

1. Estimate 3D points from the TPC object

2. Estimate 𝑁𝛾 for each 3D points

Courtesy of M. Del Tutto

3. Estimate how many  𝛾 are 
detected (reach a Photon Detector)

4. We end up having an estimate of 
expected number of PE in one 
photo-detector

5. We build a hypothesis Flash
6. Once we have the flash hypothesis, we can run a matching
between the hypothesis and all the reconstructed flashes to 
see which one matches the best 



Summary

• Optical simulation is tricky, need to cut some 
corners to get it working in LArSoft
(size, number of photons -> Memory, CPU).

• Corners are cut, so there is always room for 
improvement.

• Applications of scintillation light are not fully 
developed – always lots of opportunities to do 
new things.
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Have fun!
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PMT Gain fluctuation
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(Slide from  F.J. Nicolás)

• Number of secondary electrons generated at each dynode: random variable

• Toy example:
- Consider 1e hits one of the dynode (with gain gi)

- On average < 𝑚 >= 𝑔𝑖 with a standard deviation 𝜎 = 𝑔𝑖
- This leads to fluctuations in the SER

• Approximations (approach directly taken from icaruscode) ⇒ Only takes into account 
fluctuations at first dynode:

- <N>: average number of electrons at the end of the multiplication chain (anode)

- 𝜎𝑁
2: fluctuations in the total number of electrons at the anode 



Downstream reconstruction chain:

• Use standard OpHit and OpFlash finder algorithms to recover pulses ⇒ #PE, 
t0… using the deconvolved signals

• OpHit and OpFlash configuration file with refined parameters for deconvolved 
waveforms

⇒ Performance: resolution better than ~5% and unbiased at the level of few %

• In SBND we have PMT (and XARAPUCA) readout with AC coupling: bipolar SER ⇒ This makes accurate 
light reconstruction a challenge
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(Parenthesis): Light Signal Deconvolution

(by F.J. Nicolás)
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Optical Library parameters: 
voxelization scheme

Detector 
specific
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• Solves the problems of other 

approaches

• Photon propagation with no 

impact on memory (RAM) or 

simulation (CPU) time

• It models both (𝑁𝛾, time)

• used in SBND and DUNE-SP 

simulations

Semi-Analytic model performance

1000 cosmics in SBND



E-Field x Visibility map in a TPC (SBND case example)

X

Y

Upstream/Downstream visibility values ~0

Top visibility values ~0

Bottom visibility values ~0

• Only behind APA visibilities are significant

• Current EF model in the hybrid approach: 500V/cm inside 
the TPC & 0V/cm anywhere else 47


