
z

z

z z

10th November 2022

7th UK LArTPC Software & Analysis Workshop

Edward Tyley & Rhiannon Jones
e.tyley@sheffield.ac.uk & r.s.jones@sheffield.ac.uk

#larsoft_analysis

Writing your first analyzer

Overview & aims of this session

● Learn how to do some physics with the reconstructed events you produced
○ Don’t worry if you didn’t manage to make the files, I’ll point you to some we’ve made

● Learn how to access the reconstructed neutrino information
○ There is a generic procedure for accessing almost all of the neutrino information you

have in every file you’ve made this week

● We’ll look at:
○ Reconstruction objects produced by Pandora and downstream reconstruction
○ Associations of these objects to higher-level information
○ Take your time & try to understand everything you do

● Hopefully we’ll be able to make some plots
2

Side note

● I have included what I think will be far too much to achieve in these
sessions

● But hopefully it’s all structured clearly enough that you can continue
with the exercises in your own time

● So please don’t worry if you don’t make it hugely far through this
tutorial, there’s supposed to be too much content

● If you are reading these slides as a PDF, you might prefer to look at the
Google Slides link explicitly, as some code blocks render better there

3

https://docs.google.com/presentation/d/102z2OQ1IKL6VIt8LaCn2g3Sm6uK7P2gNEkqWHgVgXDc/edit?usp=sharing

Thanks to all who have
given this tutorial over the
last few years, these slides
have been adapted from
those previous versions.

And yep, we absolutely are
thanking ourselves here.

z

z z

The empty ‘analyzer’

5

Initial navigation

Once you’re setup, navigate here:

there should be a CMakeLists.txt and a build.sh file.

I have been updating the contents of this directory so you will need to pull
any changes from git:

If you have any issues after running this command, please let me know!

cd $MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis

6

git pull

The skeleton analysis module

There are 2 ways of getting your skeleton analyzer

1. Using a command like this:

We will use this next: It’s great for starting something brand new

2. Copying an analyzer you’ve made previously & removing anything unnecessary
This is great if you want to do something similar to a previous analyzer

e.g. As you learn what headers you often need and how to access LArSoft products you use frequently

7

cetskelgen -v -d /path/to/your/directory -e beginJob -e endJob analyzer namespace::ModuleName

The skeleton analysis module

There are 2 ways of getting your skeleton analyzer

1. Using a command like this:

We will use this next: It’s great for starting something brand new

2. Copying an analyzer you’ve made previously & removing anything unnecessary
This is great if you want to do something similar to a previous analyzer

e.g. As you learn what headers you often need and how to access LArSoft products you use frequently

8

cetskelgen -v -d /path/to/your/directory -e beginJob -e endJob analyzer namespace::ModuleName

These are optional functions which
will be added to your analyzer, we’ll
look at them in the next few slides

Choose something sensible
here, e.g. test::AnalyzeEvents

For more information, see:
https://cdcvs.fnal.gov/redmine/projects/cetlib/wiki/Cetskelgen

https://cdcvs.fnal.gov/redmine/projects/cetlib/wiki/Cetskelgen

The skeleton analysis module

If you are using a fresh terminal you will need to setup again:

1. Navigate here:

2. Type this command:

cd $MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis

cetskelgen -v -d . -e beginJob -e endJob analyzer test::AnalyzeEvents

The full stop tells cetskelgen to place the
analysis module in the current directory

source /cvmfs/sbnd.opensciencegrid.org/products/sbnd/setup_sbnd.sh
source $MRB_TOP/localProducts*/setup
mrbslp

What do we have so far?

You should now have a file called
AnalyzeEvents_module.cc and the
CMakeLists.txt in your directory

Open your analyzer module!

The top section should look something
like the snippet on the right

1010

This is some information to explain what’s in the
file to someone who might want to use it
Or just for your forgetful, future self

11

These are the default headers which should
hopefully allow the empty analyzer to build
You’ll add to these later!

Setting up the class you’ve just created
You shouldn’t need to touch these

These are the functions you’re going to modify
for the analysis

What do we have so far?

11

12

What do we have so far? Scroll down to the next chunk of code
in your analyzer module

This is the constructor, we’ll access configuration
parameters here later on

This is the analyze function, it’s called for every
event you give it in the LArSoft job

These optional functions are called once, before
and after any and all events are analyzed

Macro to tell art that this module exists
This is used in the fcl configuration in a few slides You should now have reached the

end of the file
12

z

z z

Adding an output (T)Tree →
Compiling and running the code

13

Adding an output tree

We will be modifying various elements of the
code before compiling

14

Add relevant LArSoft & ROOT headers

Declare TTree and event-based variables

Access our event ID from the LArSoft event we’re
analysing & fill the TTree

Create your TTree & add branches for the
variables we want to fill

Note: The order follows how the file reads

Running the analysis module

In order to be able to run the analyzer, we now need to write 2 fhicl files

● The first will configure our analysis (An include fcl)
○ This is where we point the analyzer to the objects/parameters we want to access

from the input files

● The second will be used to run our analysis (A run/job fcl)
○ This links together the configuration file and the analysis module

15

Fhicl 1: Configuring the analyzer. Open up a file, e.g. analysisConfig.fcl & fill it with this:

Your chosen name for this
parameter set Links the fhicl file to the analysis

module using the name you
gave your analyzer class

See what this does (and
more best practices) here

https://indico.fnal.gov/event/11857/sessions/1051/attachments/6785/8812/LArSoftUsability_workshop_June2016_knoepfel.pdf

Fhicl 2: Running the module

16

Include your analyzer configuration fhicl

Name this process
Must not include any underscores

Tell it to expect a ROOT input file

Output filename

ana sets our module analyzeEvents as part of the
workflow
Note, this matches the name in the configuration fcl file

Open up another file, e.g.
run_analyzeEvents.fcl

& fill it with this:

z

z z

Let’s try running it

17

Pre-made reconstructed events

Don’t panic!

The location of the pre-made reconstruction file is:

/home/share/november2022/reconstruction/

18

Compiling and running your code

First, compile what you’ve written so far
From the $MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis directory:

Then (when successful) run your analyzer!

Let’s see what we’ve got in the output file...

19

lar -c run_analyzeEvents.fcl -s /path/to/input/file.root -n 10

source build.sh

root -l analysisOutput.root

This has each build command in one place, have a look to
make sure you’re comfortable with what it does before using it

Compiling and running your code

First, compile what you’ve written so far
From the $MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis directory:

Then (when successful) run your analyzer!

Let’s see what we’ve got in the output file...

20

lar -c run_analyzeEvents.fcl -s /path/to/input/file.root -n 10

source build.sh

root -l analysisOutput.root

This has each build command in one place, have a look to
make sure you’re comfortable with what it does before using it

Let’s just run over 10 events while
we make sure things build

We’ll run on the whole sample later

Looking at the output in ROOT

21

Here you can see that the name you gave to the
analyzer in the fhicl run script is the name of your
directory (ana): Open it with cd

Here you can see the output (T)Tree that we
created

Your tree exists and contains the eventIDs!
Success! (hopefully)

root -l analysisOutput.root

z

z z

Accessing PFParticles and adding
them to the output tree

22

Accessing the PFParticles

Add the new headers we need

23

Some new parameters to add to our
TTree
Including the label for the
PFParticle module

In the class constructor, extract the
label for the PFParticle producer
(pandora) from our configuration fhicl

Define the new branches in the TTree

We will discuss in detail
how to implement this in
the analyze function next!

This links to your
configuration fcl.

We’ll look at how later.

Accessing the PFParticles

Empty the counters at the start of the event

24

We’re now inside your analyze function

The analysis objects are always formatted such that we access them from a vector.
The art::Handle< std::vector< … > > is the art wrapper which holds each vector.

In our case, we want the PFParticles from the RecoBase, recob, using the appropriate
module label: pandora.

We then make sure the art::Handle is valid before filling the vector of objects to analyze.

Accessing the PFParticles

25

Accessing the PFParticles

26

We can now loop over the PFParticles for events in which they have been
produced.
IsPrimary() returns true for the reconstructed neutrino. NumDaughters() used
here tells us the number of daughters the neutrino PFParticle has.
To check the available functions within a class you can check the doxygen:
https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1PFParticle.html

https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1PFParticle.html

Accessing the PFParticles

27
The entire code-block for this section of the analyze function

Fhicl configuration file linking & running

28

lar -c run_analyzeEvents.fcl -s /path/to/input/file.root -n 10

source build.sh

root -l analysisOutput.root

Add the PFParticle module label
"pandora" to the configuration file
Note that the parameter name matches the string
we passed to the constructor of the analyzer
Running eventdump.fcl prints the
products and the modules names

Compile changes

Run analyzer

Check output

What the output looks like now

Our tree should now have 3
new branches

We can check that
everything looks sensible:

nPrimaries should be
0 or 1 in our sample
0 if we didn’t reconstruct anything

nPFParticles != nPrimaries +
nPrimaryDaughters
As we can have some
non-primary particles

nPFParticles tells
us how many

particle we have
reconstructed

nPrimaries is
the number of

neutrinos
nPrimaryDaughters is

the number of
primary particles
(Daughters of the

Neutrinos) we have
reconstructed

root -l analysisOutput.root

ana->cd

Open the output file

Move into the output directory

z

z z

Associations

30

What is an association?

31

LArSoft uses associations to make links between different objects
● The recob::PFParticles have associations to other objects
● Below is an example of how some are linked to them, producer names are defined in " … "

PFParticle

"pandora"

Track

"pandoraTrack"

Shower

"pandoraShower"

Cluster

"pandora"

Space Point

"pandora"

Calorimetry

"pandoraCalo"

ParticleID

"pandoraPid"

Hits

"gaushit"

Track-shower ID

... ...

There are many other
associations you can

consider in your analysis

Looking at an ‘eventdump’
of your reco file will show

you what’s available

What is an association?

32

Don’t panic! We won’t look at all of these.

PFParticle

"pandora"

Track

"pandoraTrack"

Shower

"pandoraShower"

Cluster

"pandora"

Space Point

"pandora"

Calorimetry

"pandoraCalo"

ParticleID

"pandoraPid"

Hits

"gaushit"

Track-shower ID

... ...

There are many other
associations you can

consider in your analysis

Looking at an ‘eventdump’
of your reco file will show

you what’s available

There are many other
associations you can

consider in your analysis

Looking at an ‘eventdump’
of your reco file will show

you what’s available

What is an association?

33

To start with, we’ll simply access recob::Track associations to recob::PFParticles
- since we are interested in finding a muon and a proton

PFParticle

"pandora"

Track

"pandoraTrack"

Shower

"pandoraShower"

Cluster

"pandora"

Space Point

"pandora"

Calorimetry

"pandoraCalo"

ParticleID

"pandoraPid"

Hits

"gaushit"

Track-shower ID

... ...

PFParticle

"pandora"

Track

"pandoraTrack"

Track-shower ID

Finding the associations in an event

Running eventdump.fcl will show us not only the products in the event but the
associations between them. Here is everything produced by pandoraTrack

34

The process_name
set in the fcl

The name of the
producer that was run

The type of products
that were created

The number of each
product created

Running eventdump.fcl will show us not only the products in the event but the
associations between them. Here is everything produced by pandoraTrack

We want the association between recob::PFParticle and recob::Track

Finding the associations in an event

35

The process_name
set in the fcl

The name of the
producer that was run

The type of products
that were created

The number of each
product created

Now let’s apply this to the analysis

These are the additional headers you’ll need.
FindManyP is the class which ‘finds many’ pointers to a certain type of object.
In our case, this is used initially as follows:

36

Here we are accessing the recob::Track objects associated with everything in the
pfpVec.
The recob::Track objects we want have been produced by the fTrackLabel module.
Once again, this will be linked to the configuration file shortly.

In analysisConfig.fclThe details (bitty part)

37

In the configuration file add the label
of the track producer

Add a new output to store the lengths
of the reconstructed tracks

Initialise the TrackLabel from the
configuration

In analyzeEvents_module.cc

Add a new field to store the
TrackLabel that we set in the fcl above

Creating the output

Reset the values stored in the vector
for each event

Add a new branch to the TTree using
the vector defined on the previous
slide

38

beginJob()

analyze(…)

The details, in analyze

This is where you use FindManyP (from
previous slide)

Checking that the parent of the
current PFParticle is the neutrino

Defining the vector of Track objects
associated to the current PFParticle
There should be only a single track
associated with each PFParticle

Filling the vector of Track lengths we
declared earlier
Done for every PFParticle with an
associated Track

39

z

z z

A little more of an in depth
analysis of the output

40

Let’s look at the track lengths

41

Once you have compiled and run your analysis module once more, this time over all
your events, open the output file
We’ll open a TBrowser and have a look at the distribution of track lengths

Run over all your events by removing -n 10 from the command like this:

When you are inside the output file, open up a TBrowser like this:

lar -c run_analyzeEvents.fcl -s /path/to/input/file.root

root[0] new TBrowser

In your TBrowser

Hopefully you’ll see
something like this

open up

42

In your TBrowser

Navigate into your
file and find the tree

43

In your TBrowser

Open up the
daughterTrackLengths

branch

You can almost make
out what is likely to be

separate muon and
proton distributions!

Probably with some
amount of contamination

44

Let’s write that histogram to our output file

45

Rather than creating a
TTree then creating a
histogram from the
TTree we can create
histograms in the
analyser module

TTrees generally give
greater flexibility but
directly creating
histograms can be
useful in some cases

Use what you’ve learnt so far to

implement these lines in the

appropriate places...

Check your work!

Compile and run!

Check that the output file now has a new entry:

46

Compare your histogram with the one you saw in the TTree.

They should be identical! (Up to maybe different binning)

z

z z

Associations: Going a little deeper

47

Particle Ionisation

 [2007.06722] First results on ProtoDUNE-SP....

48

A plot from ProtoDUNE-SP
LArTPC showing the 2D dE/dx
vs. residual range distributions
for Muons and Protons produced
in a test beam at CERN.

The theoretical distributions for
each particle type are given by
the lines.

Good separation between
Muons & Protons due the large
difference in mass.

https://arxiv.org/abs/2007.06722

Accessing energy information

49

PFParticle

"pandora"

Track

"pandoraTrack"

Shower

"pandoraShower"

Cluster

"pandora"

Space Point

"pandora"

Calorimetry

"pandoraCalo"

ParticleID

"pandoraPid"

Hits

"gaushit"

Track-shower ID

... ...

PFParticle

"pandora"

Track

"pandoraTrack"

Track-shower ID

Associating the anab::calorimetry objects to recob::Tracks will give us energy
information

Calorimetry

"pandoraCalo"

PFParticle

"pandora"

Track

"pandoraTrack"

Track-shower ID

What is a calorimetry object

We are now looking inside your loop over the recob::Track associations from recob::PFParticles

50

In contrast to the Tracks
associated to the
PFParticles where there
was maximum 1 entry in
the vector, the Calorimetry
object can have 3: 1 for
each plane in the detector.

The dE/dx &
ResidualRange objects we
want have entries for every
trajectory point in the track
and have type
std::vector<float>
See doxygen for details

As you did previously, define a vector of art pointers to the
calorimetry objects & check if they’re valid.

Then you can loop
over the calorimetry
objects, make sure you
can access the plane
ID, and only look at the
collection plane (plane
number 2) for ease.

This is great, we can
pass the vector of
dE/dx &
ResidualRange objects
directly to the vector
(of vectors) we already
defined!

https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

● We will use techniques you have already seen to access the calorimetry
objects
○ With a couple of slight differences

● You once again need to
○ Add the relevant header for the anab::Calorimetry object
○ Add the module label to your configuration file and access it in the constructor
○ Add any declarations for new variables you want to push to your tree along with

a new branch
○ Access the list of anab::Calorimetry objects from the list of recob::Track

objects using art::FindManyP
○ If you are feeling confident have a go on your own now

How this is implemented

51

In analysisConfig.fclOnce again, the little
bits before we analyze

52

In the configuration file

The module label and any other
vectors of variables you want to
declare and initialise
Notice these are std::vectors of
std::vectors. It will become clear why
this is the case shortly

In analyzeEvents_module.cc

I have purposefully left out some things you’ve seen before:

● Initialising fCalorimetryLabel in the constructor
● Clearing the vectors at the start of every event

See slide 37 for hints!

The anab::Calorimetry header

Add the branches to the TTree
Despite these being std::vectors of
std::vectors the syntax is exactly the
same

Inside the analyze function

● We now need to access the calorimetric associations to recob::Tracks,
for this we need the art_ptr_vector of recob::Tracks
○ This is done using the same method as for the recob::PFParticles

53

● We can then use art::FindManyP in the same way we did for
recob::PFParticles and their associated recob::Tracks

Build, run, look at 2D histogram!

● I won’t recall the way you build and run, hopefully that’s clear from
previous slides/times you’ve done it

● But I will show you how to quickly plot a 2D histogram in ROOT

54

root[0] ana->cd()

root[1] TH2D *h = new TH2D("h","dE/dx vs. Residual Range", 200, 0, 50, 200, 0, 30)

root[2] tree->Draw("daughterTrackdEdx:daughterTrackResidualRange>>h", "", "colz")

You should see something like this!

What do you find most interesting about the distribution?

55Please note that I added the axes labels myself in the canvas window

You should see something like this!

What do you find most interesting about the distribution?

56We’ll try and get to the bottom of this now

Could this indicate
some proton-muon
separation power?

z

z z

A very simple PID

57

Finding the longest track

58

● Since we have generated a single muon and proton with defined
momenta, we can be reasonably confident that they will be very
different lengths in each event

● So! Let’s use this as a very simple particle identification technique for
our sample

● We need to loop over all the recob::Tracks associated to the
recob::PFParticles which are daughters of the neutrino once again,
but we’ll do this independently from our main analysis loop

Finding the longest track

Declare a vector of booleans
Add a corresponding branch to your tree

59

Start by initialising a float to be
unphysically small as the longest length
and an invalid ID integer as the initial ID of
the longest track, longestID

In a standalone loop over the neutrino
daughter tracks
If the current track length is longer than
the ‘longest’: Redefine longest to be that
track length and the longestID to be the
ID of that track

Fill the boolean vector in your main
analysis loop

Current status of your output tree

Your new list of branches should look something like this:
Once again this is looking inside the TBrowser

The added vector of booleans means we can now look at each
track-based variable with conditional formatting:
Check if each track is the longest in the event in the Draw function

60

root[0] ana->cd()

root[2] TH2D *hShort = new TH2D("hShort","dE/dx vs. Residual Range", 200, 0, 50, 200, 0, 30)

root[1] TH2D *hLong = new TH2D("hLong",dE/dx vs. Residual Range", 200, 0, 50, 200, 0, 30)

Current status of your output tree

61

root[3] tree->Draw("daughterTrackdEdx:daughterTrackResidualRange>>hLong", "daughterLongestTrack", "")

root[4] tree->Draw("daughterTrackdEdx:daughterTrackResidualRange>>hShort", "!daughterLongestTrack", "same")

Drawing the 2 histograms with the relevant conditions:

root[5] hLong->SetMarkerColor(kViolet)

root[6] hShort->SetMarkerColor(kBlue)

Changing the marker colours so we can distinguish between the 2!

root[6] c1->Modified()

Alternative colour options are here: https://root.cern.ch/doc/master/classTColor.html

Tell the canvas (default c1) to implement these changes and redraw the canvas

Redraw the canvas!

We’ll see how this affects both your energy and track length plots next!

z

z z

Let’s look at some final plots

62

N
um

be
r o

f t
ra

ck
s

Track lengths

A quick comparison of track
lengths for the longest track
and everything else confirms
there is never any ambiguity
within a single event as to
which track might be the
muon.
The longest track is always
significantly longer than
everything else.

63

This peak is due to
the fixed initial

momentum

Energy distributions

64

An even better indication of
particle flavour occurs when
we plot the dEdx vs residual
range of the tracks.

Here you can see there is a
reasonably clear separation
between the longest and
shorter tracks!

Energy distributions

65

arXiv:1205.6747v2 [physics.ins-det] 5 Jun 2012

Plot from ArgoNeuT showing the theoretical separating power of the
average dE/dx vs. residual range distributions.
The theoretical distributions for each particle type are given in varying
colours, the energy loss of a stopping track in the ArgoNeuT detector is
shown by the black dots

Given the ArgoNeuT plot on the left:
We can select our longest track as
the muon and call everything else a
proton with a reasonable level of
confidence - as we hoped

Given the ArgoNeuT plot on the left:
We can select our longest track as
the muon and call everything else a
proton with a reasonable level of
confidence - as we hoped

Energy distributions

66

arXiv:1205.6747v2 [physics.ins-det] 5 Jun 2012

Plot from ArgoNeuT showing the theoretical separating power of the
average dE/dx vs. residual range distributions.
The theoretical distributions for each particle type are given in varying
colours, the energy loss of a stopping track in the ArgoNeuT detector is
shown by the black dots

If you get here ahead of schedule, try
playing around with different cuts in
the tree and see if you can see
anything to identify these events

z

z z

Recovering t0

67

Detector system associations

68

Calorimetry
"pandoraCalo"

PFParticle
"pandora"

Track
"pandoraTrack"

Track-shower ID

We have previously looked at associations
between reconstructed quantities for the
purpose of accessing geometry and
calorimetry information about the particles in
our events

Detector system associations

69

We can also look at associations between the
different detector systems: TPC, PDS, CRT to
access quantities like hit and cosmic ray timing
information. We use the recovered t0 to extract
the relative time → x-position of hits.

Calorimetry
"pandoraCalo"

PFParticle
"pandora"

Track
"pandoraTrack"

Track-shower ID

T0
"opt0finder"

PFParticle
"pandora"

Slice
"pandora"

We have previously looked at associations
between reconstructed quantities for the
purpose of accessing geometry and
calorimetry information about the particles in
our events

Recovering t0

70

Use FindManyP to access Slice
associations to PFParticles and T0
associations to the slices

Start by getting the Slice for the current
neutrino PFParticle, and check there is
only one
Note: This isn’t necessarily always the case

Once you have the slice, access the
vector of T0 objects associated to it

Finally, once you have selected the single
T0 object for the current slice, fill your T0
branch with the Time()

In analyzeEvents_module.cc

Additional things to add

As always, you also need to:

● Add the relevant header files for the recob::Slice and anab::T0 objects

● Add the module labels to your configuration file and access them in the
constructor

○ See slide 69 for the labels

● Duplicate the recob::Track loading block and modify the copy so that you load
in the recob::Slice

● Add any declarations for the new variable, fT0

● Add the fT0 branch to your tree Good luck!
71

What did you get for t0?

You defined t0 to be 1600 ns

Reconstructed t0 range:
1808 → 1814 ns

This spread is due to:
Cable time = 135 ns
PMT transit = ~55 ns

γ propagation = ~20 ns
depending on detector position

Total offset ≃ 210 ns

Corrected, reconstructed
t0 range:

1598 → 1604 ns
< 1 % spread 72

You defined t0 to be 1600 ns

Reconstructed t0 range:
1808 → 1814 ns

This spread is due to:
Cable time = 135 ns
PMT transit = ~55 ns

γ propagation = ~20 ns
depending on detector position

Total offset ≃ 210 ns

Corrected, reconstructed
t0 range:

1598 → 1604 ns
< 1 % spread

What did you get for t0?

73

Note: We did not know about these offset factors, and spent the
whole of Tuesday working together (~6 of us) with someone else
on SBND to figure out why we were seeing the 210 ns offset!

All that is to say: Even we still have to find the right person to ask
about certain things.

This should probably be your main take away from this week:
1. You’re probably never going to learn all of this stuff
2. There is likely always an expert on the topic you are

struggling with
3. Never be too afraid to ask for help!

z

z z

Final notes

74

ROOT Workflows

● These tutorials focus on using ROOT via a VNC connection

● Trying to open root files (or any visualisation) via a standard ssh
connection will result in bad times

● You can often set up a VNC over an ssh connection (e.g. to the
Fermilab GPVMs)

● You can also copy root files to your local machine and run root macros
locally (the TTree files are much smaller than the art files and root can
be compiled on a laptop fairly easily with minimal dependencies)

75

Documentation and additional information

76

The documentation for each art object/tool we have looked at lives here:

● recob::PFParticle - https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1PFParticle.html
● art::FindManyP - https://nusoft.fnal.gov/larsoft/doxsvn/html/classart_1_1FindManyP.html
● recob::Track - https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1Track.html
● anab::Calorimetry - https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

Remember you can look at all of the objects and their corresponding
producers in any reco file by looking at an event dump:

lar -c eventdump.fcl -s /path/to/reco/file.root -n 1

https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1PFParticle.html
https://nusoft.fnal.gov/larsoft/doxsvn/html/classart_1_1FindManyP.html
https://nusoft.fnal.gov/larsoft/doxsvn/html/classrecob_1_1Track.html
https://nusoft.fnal.gov/larsoft/doxsvn/html/classanab_1_1Calorimetry.html

Some important file locations

Our version of the code lives here:

77

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/AnalyzeEvents_module.cc

Please note:
There is some additional material on the following slides for anyone who finishes early. These also
contain some versions of the code with additional functionality and refactoring the code to make it
more modular and efficient.

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/analysisConfig.fcl

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/run_analyzeEvents.fcl

Type ls -a in the directories to see hidden files and directories

Previous tutorials (SBND-based)

Ed Tyley & Rhiannon Jones’ tutorial from 2021 is here:
https://indico.ph.ed.ac.uk/event/91/contributions/1417/

Owen Goodwin’s tutorial from 2020 is here:
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=12&sessionId=4&resId=0&mat
erialId=slides&confId=5856

Rhiannon Jones’ tutorial from 2019 is here:
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=4&resId=0&mat
erialId=slides&confId=5544

Leigh Whitehead’s tutorial from 2018 is here:
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=2&resId=0&mat
erialId=slides&confId=5372

78

https://indico.ph.ed.ac.uk/event/91/contributions/1417/
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=12&sessionId=4&resId=0&materialId=slides&confId=5856
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=12&sessionId=4&resId=0&materialId=slides&confId=5856
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=4&resId=0&materialId=slides&confId=5544
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=4&resId=0&materialId=slides&confId=5544
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=2&resId=0&materialId=slides&confId=5372
https://indico.hep.manchester.ac.uk/getFile.py/access?contribId=13&sessionId=2&resId=0&materialId=slides&confId=5372

Additional Material

79

Additional Material

If anyone has finished all of the material so far there is an additional task in
the upcoming slides

This looks at how to match between reconstructed and true (simulated)
objects. This allows us to look at the reconstructed information for different
particle types, as well as assessing the performance of reconstruction.

This procedure is generally referred to as "BackTracking"

There is a BackTracker service that you can use but Dom created some
handy utility functions to make it simpler that we will use today.

80

In order to use the backtracking and truth information we need to add the
following includes:

And add the following services our run_analyzer.fcl:

You will also need to add this line to the bottom of run_analyzer.fcl:

Adding the new includes

81

Writing the code:

82

Add a new variable to store the
true PDG code

Configure the services we need

Add an association between
hits and tracks

Use the utilities to get the true
particle

Some of the steps like clearing the vector, adding it
to the tree and adding the hit header are missing, but
you should know them by now if you made it this far

This probably won’t compile,
see the next slide to see why

About CMake

CMake is a way of telling the compiler which libraries need to be built and
linked together, specified via the CMakeLists.txt

When adding a new include you often need to add the corresponding
library to the CMakeLists.txt

So far this has always been done for you in the provided CMakeLists.txt

Often, people will copy a CMakeLists.txt that they know from a similar
project

83

Breaking things

When trying to build you will probably get the following error:

We can overcome this by using the setting up larutil:

Then running the following:

84

setup larutils v1_28_02

find_global_symbol.sh -f -d "TruthMatchUtils::Valid"

Fixing things

Running the command on the previous slide gives us the following output:

You will need to go through this procedure a few times to get the truth

matching working. If you get stuck the answer is on the next slide
85

The name to add to your CMakeLists is this without the “lib” at the start or the “.so” at the end, so in this case larsim_Utils

Checking the output

86

The libraries you should have
added to CMakeLists.txt

You can check what these
mean here:
https://pdg.lbl.gov/2007/revie
ws/montecarlorpp.pdf

The daughterTrackTruePDG
should be made up of 13 and
2212

Compare this to our simple PID
and see how well it works

https://pdg.lbl.gov/2007/reviews/montecarlorpp.pdf
https://pdg.lbl.gov/2007/reviews/montecarlorpp.pdf

Final final remarks

A finished version of the module with truth matching can be found here:

This includes updated fcls and CMakeLists.txt and fcls

There is also a refactored version of the module that modularises the code
and code and makes it more efficient and readable

87

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/.TruthMatchModule

$MRB_SOURCE/sbndcode/sbndcode/Workshop/Analysis/.FinishedModule/.ReorderedModule

z

z z

Neutrino examples simulation

88

1μ (0.812 GeV) 1p (1.054 GeV)

89

1 electron 0.747 GeV

1 proton 1.348 GeV

90

1 e (1.536 GeV) 2p (<1.139 GeV) 1π0 (0.57 GeV)

91

1μ (0.518 GeV) 2π± many p 1π0 (0.317 GeV)

92

