
Neutrino interaction 
classification with 
ResNet18

Andy Chappell

08/11/2022 LArSoft Workshop



2Introduction

• An overview of transfer learning
• We’ll be working with a pretrained ResNet18

• How was the ResNet trained previously?

• What happens when you introduce never-seen-before classes?

• Task 1: Introduce quasi elastic and resonant neutral current interactions to a 
network that has never seen them before

• Task 2: Investigate the network performance

• Task 3: Fine-tune the network to improve performance

• Task 4: Re-investigate the network performance



3An aside

• In this tutorial we’ll be introducing you to the practical use of transfer learning

• This is in part to encourage you to make use of transfer learning, because we don’t 
do it enough in neutrino physics – GPUs are expensive and resource hungry, and it’s 
no fun to wait 3 days for your results

• When available, transfer learning can save you a tremendous amount of time in 
achieving high performance

• Some training tasks won’t even be tractable without it (e.g. limited training sample)

• However, today we need to come up with a task that can be undertaken in an 
afternoon using resources available on Google Colab
• This necessarily requires that the task is quite simple

• As such, transfer learning here is not likely to be obviously superior to training from scratch

• However, the mechanics of the process are ‘real-world’ and so will transfer to your real-
world use cases

• It also means we won’t have a test set, only training and validation (why is this potentially 
problematic?)



4ResNet18

• ResNet18 is one of many pretrained networks available through PyTorch torchvision
• Pretrained on ImageNet – a database of millions of photographs, comprising 1000 classes

• 11,178,051 trainable parameters (this is the smallest ResNet)

• I don’t recall ever seeing a puppy in a LArTPC, how is this relevant to 
neutrinos?
• Networks learn features at different scales

• Shallow layers learn the most primitive structures

• Deep layers learn the most abstract features

• Those early layers are still relevant in neutrino
interactions

arXiv:1311.2901v3puppy detectors

https://image-net.org/index


5Adapting ResNet18 to new use cases

• The standard pretrained ResNet18 targeted the 1000 classes from ImageNet
• That’s not what we want for classifying neutrino interactions

• The network that you’ll use as the starting point for the tasks was adapted to target two 
classes, quasi elastic and resonant charged current events

• What does this look like?

• ResNet is structured such that the simplest change we can make to adapt to our use 
case is to replace the fc (fully connected) layer

We want to change the number 
of output features, but we need 
to match the number of features 
output by the previous layer



6Adapting ResNet18 to new use cases

• The standard pretrained ResNet18 targeted the 1000 classes from ImageNet
• That’s not what we want for classifying neutrino interactions

• The network that you’ll use as the starting point for the tasks was adapted to target two 
classes, quasi elastic and resonant charged current events

• How do we modify the network?

• We now have a network where almost all of the weights are those determined from 
training on ImageNet, but we now have an untrained fc layer

Same number of input features, 
but 2 output features matching 
our two interaction classes



7Loading custom weights

• In the previous slides we took advantage of torchvision features to quickly and 
easily define our model architecture (ResNet18) and download and apply weights 
learned by training on ImageNet

• What if we have custom weights?

• We’ve already transfer learned the 1000-class ResNet to the 2-class network for you 
and stored the weights in a file called model_baseline.pt

• We can load custom weights via

• So, we now have a ResNet18 network initialized with weights that can classify CCQE 
and CCRES interactions



8Getting key files into Google Colab

• There are a few Python scripts, a baseline set of model weights and many training 
images that you need access to for this tutorial

• You can find all of these files in this location
https://drive.google.com/drive/folders/1M2KU1i8BtTeDAQdVYqyWBOJMOzhSyNlO?usp=sharing

• Log into your Google account so you can create a 
short-cut to this location within your own Google 
Drive

• You’ll need to move to the containing 
Transfer_Learning folder so you can see the 
larsoft_workshop_files folder

• Adding a shortcut will greatly ease the process of 
making these files accessible to Google Colab

• You should now see a folder in your personal 
Google Drive called larsoft_workshop_files, 
the notebook will handle the rest, you’ll just need 
to give Colab permission to access your Google 
Drive when it asks

https://drive.google.com/drive/folders/1M2KU1i8BtTeDAQdVYqyWBOJMOzhSyNlO?usp=sharing


9Working with the notebook

• You can find a template notebook at
• https://github.com/AndyChappell/larsoft_workshop_2022

• You can load this following the same approach 
from the previous tutorial

• The notebook is self-describing and includes 
both pre-existing support code, but also a 
number of # TASK comments indicating where 
you are expected to write new code

https://github.com/AndyChappell/larsoft_workshop_2022


10Working with the notebook

• The notebook references various helper 
functions defined in four Python scripts 
included at the start of the notebook
• If you start working with neural networks more in 

the future, you’ll quickly discover that a lot of 
work goes into defining truth information and 
managing datasets (torchvision provides a lot of 
help here too, but sometimes you need custom 
datasets and more rarely custom dataloaders – as 
in the vertex finding network)

• We’ve eliminated much of this overhead in this 
tutorial in the interest of time, but feel free to 
look through these scripts and ask questions if 
you’re interested



11Task 1: Classifying neutral current interactions 

• The network defined in model_baseline.pt has never seen a neutral current 
interaction

• We’ve provided you with a set of images containing, in addition to CC interactions, 
quasi elastic and resonant NC interactions

• Your task is to adapt the network so that, in addition to CC interactions, it can also 
classify these two new neutral current classes, but without modifying the weights in 
the feature extractor layers (that is, everything until the final, fully connected layer)

• To do this, you’ll need to freeze the existing network weights and modify the fully 
connected layer



12Task 2: Investigating network performance 

• Hopefully you have a trained network

• Now it’s time to assess its performance

• What is the classification accuracy?
• Are you impressed? Under-whelmed?

• What, if any, classes are being mixed up?
• Produce a confusion matrix from the validation set

• Do the errors make sense?



13Task 3: Finetuning the network

• The network you trained in task 1 only permitted changes to the classifier layer

• This is a particularly good way to train if you have some new examples from within 
existing classes that the network is familiar with
• Maybe all of your CCRES interactions had zero or one proton and now you have some two proton 

examples

• Primitive features of the network are unlikely to change, so you really just want it to learn the 
final classification step

• Freezing the early layers and training only the fc layer permits rapid tuning of a network

• Introducing NC interactions however will yield some more fundamental differences 
in topologies and so we probably want to be able to finetune the earlier layers too

• Your task is to unlock all of the network parameters and continue training
• What should the learning rate be?

• For how long should you train?



14Task 4: Re-investigating network performance 

• Same as task 2, but with your fully fine-tuned network


