LHCb photon detector testing

Silvia Gambetta

University of Edinburgh

June 6, 2016

Outline

- LHCb upgrade
- RICH upgrade challenges
- the Photon Detector Quality Assurance
- status and tests done in Edinburgh

The LHCb experiment

LHCb is a flavour factory: search for new physics in the decays of heavy hadrons containing quarks b and c

The LHCb experiment

LHCb is a flavour factory: search for new physics in the decays of heavy hadrons containing quarks b and c

	LHCera			HL-LHCera	
Run # (year)	Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-23)	Run 4 (2025-28)	Run 5+ (2030+)
Integrated luminosity	3fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	100 fb ⁻¹
LHCb up to LS2			after LHCb upgrade		

The RICH detector

Particle Identification: pion/kaon/proton separation needed to differentiate between kinematically nearly identical decays

- 2 detectors
- 2 radiators
- different energy range for PID

 same Photon Detector: Hybrid Photon Detector (with embedded front-end electronics)

RICH upgrade challenges

LHCb upgrade will take place in 2018 during the second long shutdown \Rightarrow higher luminosity: $2\times10^{33}\,\rm cm^{-2}s^{-1}$

Remove trigger limitations and readout detector⇒from 1 MHz to 40 MHz

- New readout electronics:
 - ullet fast electronics (dead time $< 25\,\mathrm{ns})$
 - low power consumption
 - radiation tolerance
- New photon detectors:
 - sensitive to single photons in the wavelength range between 200 and 600 nm
 - good spatial resolution
 - negligible cross talk between neighbouring pixels
 - negligible dark current rate
 - not affected by magnetic field
- significant modifications to RICH1 to reduce peak occupancy:
 - optics to be optimised
 - mechanics to be redesigned

The Photon Detectors for the RICH upgrade

Multi-anode Photomultiplier Tubes: fast, sensitive to single photons, large active area, excellent granularity, radiation hard

intense test campaign to select:

- Hamamatsu R11265: 1", 64 (8 × 8) pixels for RICH1 and RICH2
- Hamamatsu H12699: 2", 64 (8 × 8) pixels for RICH2 peripheral areas only (PID performance only slightly degraded, costs significantly reduced)

devices characteristics tested:

- single photon detection, gain and uniformity
- dark count rate
- cross-talk
- behaviour vs temperature
- tolerance to magnetic field
- ageing

The Photon Detector Quality Assurance

High number of units to be tested over two years:

- 3100 R11265: 1"
 - 450 H12699: 2"

Aim of the PDQA:

- verify minimum contractual specifications
- determine parameters for the selection of photon detectors
- gather initial calibration variables

Requirements for testing:

- reliability
- redundancy
- elevated automation

Two tests facilities:

- Edinburgh
- Padova

Test setup

Setup conceived, designed and produced in Edinburgh

The PDQA lab

Edinburgh test stations produced, installed and commissioned in 5207

The twin facility

Two more test stations produced, ready to be shipped to Padova

The pre-production

54 units of 1" MaPMTs and 20 units 2" MaPMTs received by Hamamatsu

The first tests

DAQ chain

- baseboard to power MaPMTs (Genova)
- adapter board to interface baseboard to front-end (Edinburgh)
- MAROC3 chip by Omega
- 64 channels chip designed to readout signal from MaPMTs
- ullet 2 fast digital channels + 1 slow analog channel available
- preamplification stage to adjust gain per pixel
- MAROC chip mounted on dedicated board (Cambridge)
- Chimaera board to readout MAROC output (Cambridge)

Test procedure

- MaPMTs loaded
- runs with no illumination to monitor dark counts
- runs at different values of HV
- fit all the data!

- pixel gain (at different HV)
- MaPMT gain uniformity
- signal loss
- peak/valley
- uniformity

Typical run

Preliminary analysis on pre-series

- quick analysis to have a global view ⇒ average gain
- first look at single peaks position ⇒ correlation with datasheet
- check minimum requirements on uniformity
- check minimum requirements on peak/valley

MaPMTs gain

Comparison of average gain measured with the average gain provided by Hamamatsu for 54 1" and 20 2":

- peak position extracted for each pixel of MaPMT
- average of peak position converted to charge and than gain
- no quality cut of single pixels

MaPMTs uniformity

Gain uniformity requirement: 1:4 for the R11265 and 1:3 for the H12699

- peak position extracted for each pixel of MaPMT
- peak positions normalised to the pixels with highest gain

Conclusion

- new laboratory setup in 5207 for the RICH upgrade PDQA
- MaPMTs pre-production received and tested
- green light to Hamamatsu for full production
- o new test boxes will be installed in Padova in few weeks
- MaPMTs production on its way: first delivery in July
- $\, \bullet \, \sim 150$ MaPMTs to be tested every 2 months for the next 2 years!!!

DAQ chain

- MAROC3 chip by Omega
- 64 channels chip designed to readout signal from MaPMTs
- 2 fast digital channels available
- 1 slow analog channel
- preamplification stage to adjust gain per pixel
- MAROC chip mounted on dedicated board designed by Steve Wotton (Cambridge)
- Chimaera board to readout MAROC output (designed by Steve Wotton)