Recent ATLAS results from the Edinburgh group

Corrinne Mills,

on behalf of the group

(with particular thanks to Flavia for the diboson slides!)

Edinburgh All-PPE meeting 6 June 2016

Introduction

- Year of transition for the ATLAS Edinburgh group
 - \rightarrow Run 1 winding down, first Run 2 data analysis
- Run 1: Full exploration of Higgs data
 - \rightarrow H \rightarrow WW differential cross section
- Run 2: Search for new phenomena
 - → Diboson resonance search

$H \rightarrow WW$ differential

$H \rightarrow WW$ differential

- Build off of the Run 1 "legacy" analysis
 - → Object & event selection, background estimates, systematics
- Three signal regions targeting ggF production

- Optimized cut on event discriminant, the transverse mass $M_{\rm T}$

$H \rightarrow WW$ differential

Answer questions about the behavior of QCD

- What is the transverse momentum (p_T) of the Higgs boson?

- What is the rapidity of the two-lepton system?

- How many jets are produced in these events?

- What is the transverse momentum (p_T) of the leading jet?
- How often is there no reconstructed jet?

The data

- Summed over the three signal regions
- Estimate signal yield = data background in each bin

Reconstruction and Resolution

- p_T of the H = vector sum of neutrino + charged lepton p_T
- Neutrinos: missing transverse energy vector opposite of all other momenta in the event, including leptons

Unfolding detector effects

- Response matrix from signal MC connects reco <-> truth
 - \rightarrow "truth" is defined using stable particles (hadrons, leptons)
- Large migrations between Njet categories, bins in $p_T(H)$
- Cartoon example: jet multiplicity
 - → Each column a probability distribution

- Bayesian iterative unfolding
- Iterations remove bias from
 prior but inflate stat. uncertainty
- Two-dimensional unfolding accounts for correlation between Njet, p_T(H)

Njet and $p_T(H)$

Normalized to unit integral Compared to NLO MC with Pythia8 parton shower

c. mills (Edinburgh)

Jet veto efficiency

Probability to have no reconstructed jets in the event as a function of the $p_{\rm T}$ threshold applied

ST = most conservative (but widely accepted) Stewart-Tackmann approach, NNLO

JetVHeto = includes resummation calculation to account for softer parton radiation

25 GeV* indicates 30 GeV threshold for $2.5 < |\eta| < 4.5$

 \rightarrow analysis cuts

Results

• Measured fiducial cross section:

 $\sigma_{ggF}^{fid} = 36.0 \pm 7.2 (stat) \pm 6.4 (sys) \pm 1.0 (lumi) \text{ fb}$

- → Dominant uncertainties are statistical (20%), WW background theory model (14%)
- → Both can improve, WW background will be challenging (requires improvement in parton-shower tuning and matching with matrix-element calculations in concert with analysis optimization)
- NNLO+NNLL from Higgs XS WG:

$$\sigma_{ggF}^{fid}$$
 = 25.1 $^{+1.8}_{-2.0}$ (scale) $^{+1.9}_{-1.7}$ (PDF) fb

analysis lead by Edinburgh + Oxford (Paul, CM, Victoria from EDI)

Diboson searches

Diboson Searches Overview

- High mass diboson resonances
 - → Predicted in many extensions of SM
 - → Spin 0 (Higgs-like scalars), spin 1 (W', HVT), spin 2 (RS gravitons)
- At least one boson decaying into quarks
 - \rightarrow *llqq, lvqq, vvqq, qqqq and combination*
- Bump hunt: search for localised excess in the invariant mass (or transverse mass) distribution
- Reject X+jets background by identifying "boosted" signature of high-p_T boson decaying to quarks

m

Boosted Boson Tagging

- All channels require at least one large-R jet:
 - → Small-radius jet finding with anti- k_t , R = 1.0, R = 0.2 sub-jets trimmed if $p_T^i > 0.05 p_T^J$
 - $\rightarrow p_T(J) > 200 \text{ GeV}, |\eta| < 2$
- R2D2 boson tagger:
 - \rightarrow "medium" working point: 50% eff, 98% BG rejection
 - m(J): 15 GeV mass window centered in 83.2 GeV for W and 93.4 GeV for Z
 - Substructure variable: D₂^(β=1) (J): 4th order polynomial, p_T dependent
 Tim, Yanyan, Ben W, Flavia

Results $-VV \rightarrow JJ$

- Background modelled by a fitting function
- No significant excess
 - \rightarrow Reminder: Run-1 had a ~3 σ local excess around 2 TeV

Yanyan, Ben W, Sebastian, Christos

- Background template taken from MC; Fit simultaneously signal and control regions, to constrain the normalisation
- No significant excess

Flavia, Andreas, Christos

Combination

- No significant excess observed
- Sensitivity improved by a factor 2, at 2 TeV, w.r.t. Run-1 analyses at 8 TeV
- Paper to be submitted in the next weeks ③

Flavia, Andreas

conclusions and next steps

Conclusions and next steps

- $H \rightarrow WW$ differential cross section wraps up Run 1
 - → Maximise physics output of Run 1, lay groundwork for Run 2
- Diboson searches using 13 TeV data
 - \rightarrow No corroboration of Run-1 excess at 2 TeV
 - \rightarrow 750 GeV $\gamma\gamma$ bump means that this will remain interesting!

New directions:

Search: Left-right symmetric models (Christos & co)

→ Restore parity to the Standard Model by introducing right-handed W, Z bosons (W_R , Z_R) and right-handed neutrinos ($N_R - N_e$, N_μ , N_τ), as well as extra Higgs Bosons

Measure: top-Higgs associated production (Phil, Victoria & co)

- → Direct test of the strongest predicted Yukawa coupling
 - Huge cross-section increase 8 \rightarrow 13 TeV, benefit from larger dataset
- → Build towards Higgs pair production searches and measurements
 - Measure H boson self-coupling will need HL-LHC data, complementary to upgrade efforts

Fiducial volume

- Define fiducial volume close to signal-region selection
 - → But common across jet bins, using only leptonic information
 - → No m_T cut because of large truth <-> reco migrations

Object selection	
Electrons	$p_{\rm T}$ > 15 GeV, $ \eta < 1.37$ or $1.52 < \eta < 2.47$
Muons	$p_{\rm T} > 15 \text{ GeV}, \eta < 2.5$
Jets	$p_{\rm T} > 25 \text{ GeV if } \eta < 2.5, p_{\rm T} > 30 \text{ GeV if } 2.5 \le \eta < 4.5$
Event selection	
	$p_{\rm T}^{\rm lead}(\ell) > 22 \; { m GeV}$
Preselection	$m_{\ell\ell} > 10 \text{ GeV}$
	$E_{\rm T}^{\rm miss} > 20 { m ~GeV}$
Topology	$\Delta \phi_{\ell\ell} < 1.8$
Topology	$m_{\ell\ell} < 55 \text{ GeV}$

Table 6: Summary of selection cuts which define the fiducial region for the cross-section measurements.

Correction for detector effects

- AKA "Unfolding" from reconstructed to particle-level quantities
- Large migrations between Njet categories and bins of p_T^H, p_T^{lead jet}
 - → Iterative Bayesian unfolding to correct for detector resolution
 - → Technical advances needed to integrate this with profile likelihood fit → cut-andcount, no fit used in this analysis

Uncertainties

- Statistical: treated with pseudoexperiments
 - → Except statistical uncertainty from CR yields: direct propagation
- Experimental systematics: exactly as in ggF+VBF paper
- BG theoretical systematics: re-evaluated for modified SR
 - \rightarrow Shape systematics for Y(II), pT(IIMET), pT(leadjet)
- Signal theoretical systematics:
- Unfolding procedure: use nominal response object to unfold "Asimov" data created by reweighting signal MC so that it matches the observed signal = data – BG
- In all cases, correlations are preserved when summing backgrounds, jet bins, etc.

Unfolding uncertainties

Test dependence of our results on the similarity of our signal MC to the truth

Use nominal response
 object to unfold "Asimov" data
 created by reweighting signal
 MC so that it matches the
 observed signal = data - BG

reco-level p_T(II+MET)

2) Then compare at truth level the reweighted signal MC truth distribution with unfolded results: few % or better typical

blue vs. black is the systematic (also ratio plot) red vs blue shows the size of the reweighting