HEAVY FLAVOUR 2016 Quo Vadis?

Thomas Mannel

Theoretische Physik I Universität Siegen

HF2016QV in Islay, July 11th, 2016

T. Mannel, Siegen University Heavy Flavour 2016: Quo Vadis?

Contents

Where do we stand?

The Current "Tensions"

- Lepton non-universality in $B \to K \ell \ell$
- Angular distribution in $B \to K^* \ell \ell$
- Problems in Semileptonics

3 More Stuff

★ 문 ► ★ 문 ►

Where do we stand?

T. Mannel, Siegen University Heavy Flavour 2016: Quo Vadis?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Standard Model passed all tests up to $\mathcal{O}(100 \text{ GeV})$
- LEP: test of the gauge Structure
- Flavour factories: test of the Flavour Sector

T. Mannel, Siegen University

Heavy Flavour 2016: Quo Vadis?

There has been tremendous progress in Flavour Physics

- Experimental facilities for precision measurements in strange, charm and bottom
- Theoretical methods have been refined to the precision level:
 - Lattice
 - Effective Field Theories
 - QCD sum rules
 - (Models)

• Close cooperation between experiment and theory!

Progress is best documented by the "CKM movie": (CKM Fitter)

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

1

1995 (pre-B factory era)

E → < E → </p>

æ

2001

ヘロト 人間 とくほとく ほとう

₹ 990

2004

ヘロト 人間 とくほとくほとう

₹ 990

2006

ヘロト 人間 とくほとくほとう

æ –

2009

ヘロト 人間 とくほとくほとう

æ –

2011

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

2015

ヘロト 人間 とくほとくほとう

₹ 990

Triumph of the Standard model (?)

- LHC discovered a Higgs:
 - It has non-universal (i.e. mass dependent) couplings!
 - Is it THE Higgs? It looks pretty SM like!
 - ... or is ewk. symmetry breaking more complicated?
 - 750 GeV anomaly: the first hint at something new?
- Nevertheless, the Higgs discovery completes the SM, Despite of naturalness
- The SM could be valid up to extremely high scales
- No significant(!) hint at "new physics" yet

・ロン ・厚 と ・ ヨ と ・ ヨ と …

1

Particle Physics at the crossroads

LHC finds New Particles

- Find our what it is!
- How does this become compatible with the precision data?
- Why do we have MFV?
- ... and where does it come from?

LHC finds no New Particles

- Era of indirect searches
- Quark and Lepton Flavor Physics

ヘロト 人間 ト ヘヨト ヘヨト

- Indirect searches at highest energies
- "Precision Colllider Physics" at LHC

We will know soon! (at least about the 750 GeV bump)

• (Ubiquitous) effective field theory picture

$$\mathcal{L} = \mathcal{L}_{\dim 4}^{\textit{SM}} + \mathcal{L}_{\dim 5} + \mathcal{L}_{\dim 6} + \cdots$$

 $\bullet \ \mathcal{L}_{dim\,n}$ are suppressed by large mass scales

$$\mathcal{L}_{\dim n} = rac{1}{\Lambda^{n-4}} \sum_i C_n^{(i)} O_n^{(i)}$$

 $O_n^{(i)}$: Operators of dimension *n*, $SU(3)_C \times SU(2)_W \times U(1)_Y$ gauge invariant $C_n^{(i)}$: dimensionless couplings

• What can we know about this mass scale?

▲撮♪ ▲ 注♪ ▲ 注♪

From neutrino physics:

 Majorana masses for the ν's are generated by a unique dim-5 operator:

$$\mathcal{L}_{\mathrm{dim}\,5} = rac{1}{\Lambda_{\mathrm{LNV}}} \sum_{ij} C_5^{ij} (ar{L}_j H^c)^c (H^{c,\dagger} L_i)$$

- Generates a mixing matrix for the leptons (PMNS Matrix), analogous to the CKM Matrix
- This term is Lepton Number Violating, related to the scale Λ_{LNV}
- Small Neutrino masses: $\Lambda_{\rm LNV} \sim 10^{14}~GeV$, almost as big as the GUT scale?
- Hopefully Λ_{QFV} and Λ_{LFV} is not that high!

< 回 > < 回 > < 回 > … 回

From Quark Flavour Physics:

- For Quarks there is no contribution to $\mathcal{L}_{dim\,5}$
- Look at $\Delta F = 2$ flavour transitions:

- With generic couplings $\mathcal{O}(1)$:
 - $\Lambda \sim 1000$ TeV from Kaon mixing ($C_i = 1$)
 - Λ ~ 1000 TeV from D mixing
 - $\Lambda \sim 400$ TeV from B_d mixing
 - $\Lambda \sim 70$ TeV from B_s mixing

ヘロン 人間 とくほ とくほ とう

How to get TeV Scale new physics?

Concept of "Minimal Flavour Violation" (MFV)

• In the SM:

The only source of Flavour (and CP) violation is the non-alignement of the mass matrices.

- This generates the (hierarchical) CKM structure
- This also generates a supression of FCNC processes

MFV: Assume that this is true also for new physics models $_{\scriptscriptstyle (Ali, \; \textsc{Buras})}$

- Implemented by a spurion analysis D'Ambrosio at al., Zupan et al., Feldmann et al.
- Generates a supression of the dim-6 couplings in \mathcal{L}_{eff} .

MFV is NOT a Theory of Flavour

??? Many Open Questions ???

• Our Understanding of Flavour is unsatisfactory:

- 22 (out of 27) free Parameters of the SM originate from the Yukawa Sector (including Lepton Mixing)
- Why is the CKM Matrix hierarchical?
- Why is CKM so different from the PMNS?
- Why are the quark masses (except the top mass) so small compared with the electroweak VEV?
- Why do we have three families?
- Underlying principle for the flavor structure? like the gauge principle for the fundamental forces?
 - ... a broken (how?) flavour symmetry
 - ... extra dimensions
 - ... new gauge interactions

ヘロン 人間 とくほ とくほ とう

 $\begin{array}{ll} \mbox{Where do we stand?} & \mbox{Lepton non-universality in } B \to K\ell\ell \\ \mbox{The Current "Tensions"} & \mbox{Angular distribution in } B \to K^*\ell\ell \\ \mbox{More Stuff} & \mbox{Problems in Semileptonics} \end{array}$

The Current "Tensions"

T. Mannel, Siegen University Heavy Flavour 2016: Quo Vadis?

イロト 不得 トイヨト イヨト 二日 二

Lepton non-universality in $B \to K\ell\ell$ Angular distribution in $B \to K^*\ell\ell$ Problems in Semileptonics

・ 同 ト ・ ヨ ト ・ ヨ ト

The current tensions

For the time being,

let's get excited about the current "tensions"

- $b \rightarrow s \ell \ell$ Anomalies:
 - R_{K} : Lepton non-universality in $B \rightarrow K \ell \ell$
 - P'_5 : Angular distribution in $B \to K^* \ell \ell$

• Rates for $B \rightarrow K \mu \mu$ and $B_s \rightarrow \phi \mu \mu$

• R(D) and $R(D^*)$: Rates for $B \to D^{(*)} \ell \bar{\nu}$

• V_{xb}^{incl} vs. V_{xb}^{excl} : $b \to q \ell \bar{\nu}$ transitions

Step 1: Scrutinize the Standard Model Step 2: Invent a New Physics Model

Lepton non-universality in $B \to K\ell\ell$ Angular distribution in $B \to K^*\ell\ell$ Problems in Semileptonics

イロト イポト イヨト イヨト

The current tensions

For the time being,

let's get excited about the current "tensions"

- $b \rightarrow s \ell \ell$ Anomalies:
 - R_{K} : Lepton non-universality in $B \rightarrow K \ell \ell$
 - P'_5 : Angular distribution in $B \to K^* \ell \ell$

• Rates for $B \rightarrow K \mu \mu$ and $B_s \rightarrow \phi \mu \mu$

• R(D) and $R(D^*)$: Rates for $B \to D^{(*)} \ell \bar{\nu}$

• V_{xb}^{incl} vs. V_{xb}^{excl} : $b \to q \ell \bar{\nu}$ transitions

Step 1: Scrutinize the Standard Model (work) Step 2: Invent a New Physics Model (fun)

$b \rightarrow s\ell\ell$ anomalies: Lepton non-universality in $B \rightarrow K\ell\ell$

$$R_{\kappa} = \frac{BR(B^+ \to K^+ \mu^+ \mu^-)}{BR(B^+ \to K^+ e^+ e^-)} = 0.745 \begin{array}{c} +0.090\\ -0.074 \end{array} (stat) \pm 0.036(syst)$$

(SM: R_k=1.00, consistent at 2.6o)

★ E → ★ E →

ъ

(taken from J. Albrecht, Moriond 2016)

However

- There is a violation of lepton universality through the masses of the leptons
- QED Effects come with

$$rac{lpha_{
m em}}{\pi} \ln \left(rac{m_{\mu}^2}{m_{e}^2}
ight)$$

- These depend on the experimental set-up
- Major part is included by PHOTOS
- QED effect: $\Delta R_{\mathcal{K}} = +3\%$ (Isidori, 2016)
- Check other, related channels: $B \to K^* \ell \ell$, $B_s \to \phi \ell \ell$

・ロト ・ ア・ ・ ヨト ・ ヨト

What could be explanations in terms of BSM Physics?

- Leptoquarks with family-specific couplings
- Gauge extensions with e.g. gauged $L_{\mu} L_{\tau}$
- Extended Higgs Sectors

Attempts to explain all anomalies with a single model!

New Player: $B^+ \rightarrow K^+ \tau \tau$

$${
m Br}(B^+ o K^+ au au) \le 2.25 imes 10^{-3}$$

・ロト ・ 理 ト ・ ヨ ト ・

Lepton non-universality in $B \to K\ell\ell$ Angular distribution in $B \to K^*\ell\ell$ Problems in Semileptonics

ヘロト ヘアト ヘビト ヘビト

1

 $b \rightarrow s\ell\ell$ anomalies: Angular distribution in $B \rightarrow K^*\ell\ell$

• $B \to K^* \ell \ell \to K \pi \ell \ell$ contains a lot of information

- Angular distributions in the final state
- Set up clever ratios to reduce form-factor uncertainties

- Photon pole: Dominance of O₇
- Large Recoil: cc loop contribution below threshold
- Charmonia: $B \rightarrow J/\Psi K^* \rightarrow (\ell \ell) K^*$
- Low Recoil: Duality fo the cc loop
- The *cc* loop brings a non-local / non-form-factor like contribution into the game!

ヘロア 人間 アメヨア 人口 ア

э

Lepton non-universality in $B \to K\ell\ell$ Angular distribution in $B \to K^*\ell\ell$ Problems in Semileptonics

ъ

Anomalies in the angular distributions:

However, how well can we compute this?

- Form factor uncertainties (can be / is already fixed)
- Charm Loop contribution (????)

Needs additional scrutiny within the Standard Model!

Lepton non-universality in $B \to K\ell\ell$ Angular distribution in $B \to K^*\ell\ell$ Problems in Semileptonics

ヘロト ヘワト ヘビト ヘビト

э

 $b \rightarrow s\ell\ell$ anomalies: Rates in $B \rightarrow K\mu\mu$ and $B_s \rightarrow \phi\mu\mu$

Rates at low q^2 seem to be lower than the SM prediction!

Lepton non-universality in $B \to K\ell\ell$ Angular distribution in $B \to K^*\ell\ell$ Problems in Semileptonics

Fit of the data to the Wilson coeff. of $H_{\rm eff}$

(Descotes-Gennon et al., Altmannshofer, Straub)

$$\begin{aligned} \mathcal{H}_{\mathrm{eff}} &= \cdots + \mathcal{C}_{9} \, (\bar{s}_{L} \gamma_{\mu} b_{L}) (\bar{\ell} \gamma^{\mu} \ell) + \mathcal{C}_{10} \, (\bar{s}_{L} \gamma_{\mu} b_{L}) (\bar{\ell} \gamma^{\mu} \gamma_{5} \ell) \\ &+ \mathcal{C}_{9}' \, (\bar{s}_{R} \gamma_{\mu} b_{R}) (\bar{\ell} \gamma^{\mu} \ell) + \mathcal{C}_{10}' \, (\bar{s}_{R} \gamma_{\mu} b_{R}) (\bar{\ell} \gamma^{\mu} \gamma_{5} \ell) \end{aligned}$$

Where do we stand?	Lepton non-universality in $B \to K \ell \ell$
The Current "Tensions"	Angular distribution in $B \to K^* \ell \ell$
More Stuff	Problems in Semileptonics

(from S. Descotes-Genon at FPCP2016)									
		Rĸ	$\langle P'_{5} \rangle_{[4,6],[6,8]}$	$BR(B_s \rightarrow \phi \mu \mu)$	low recoil <i>BR</i>	Best fit now			
<i>∂</i> NP	+								
C ₉	_	\checkmark	\checkmark	\checkmark	\checkmark	X			
CNP	+	\checkmark		\checkmark	\checkmark	X			
C10	_		\checkmark						
$\mathcal{C}^{NP}_{9'}$	+			\checkmark	\checkmark	X			
	_	\checkmark	\checkmark						
CNP	+	\checkmark	\checkmark						
C10'	_			\checkmark	\checkmark	X			
• $C_{0}^{NP} < 0$ consistent with all anomalies									
A second seco									
Also consistent with different treatments of the charm loop									
Note: $\mathcal{C}_9^{ ext{NP}} \sim \mathcal{O}\left(rac{v^2}{\Lambda^2} ight)$: Hints at a low NP scale									
			× /						

くりょう 小田 マイボット 山下 シックション

ヘロト 人間 ト ヘヨト ヘヨト

NP interpretations

SM explanations seem contrived

- hadronic effects (for $B \rightarrow K^* \mu \mu$, $B_s \rightarrow \phi \mu \mu$)
- statistical fluctuation (for R_K)
- bad luck (C9 can accomodate all discrepancies by chance)

NP models quite successful with new scale around TeV

- Z' boson (larger gauge group, e..g, $SU_C(3) \otimes SU_L(3) \otimes U_Y(1)$)
- Partial compositeness (mixing between known and extra fermions transforming under SU_C(3) ⊗ SU_L(2) ⊗ SU_R(2) ⊗ U_Y(1))
- Leptoquarks (coupling to a quark and a lepton, like (3,2,1/6))
- MSSM susy definitely not favoured ...

(from S. Descotes-Genon @ FPCP2016)

Lepton non-universality in $B \to K\ell\ell$ Angular distribution in $B \to K^*\ell\ell$ Problems in Semileptonics

$B ightarrow D^{(*)} auar{ u}$

Tension in the exclusive semileptonic $B
ightarrow D^{(*)} au ar{
u}$ decays

$$R(D) = rac{\Gamma(B o D auar
u)}{\Gamma(B o D\ellar
u)} \quad R(D^*) = rac{\Gamma(B o D^* auar
u)}{\Gamma(B o D^*\ellar
u)}$$

However:

• Inclusive rate $B \rightarrow X_c \tau \bar{\nu}$ can be calculated within OPE (Ligeti, Tackmann)

 $Br(B \to X_c \tau \bar{\nu}) = (2.42 \pm 0.06)\%$

There is a measurement of the inclusive rate by LEP (B hadron admixture)

 $Br(B \to X_c \tau \bar{\nu}) = (2.41 \pm 0.23)\%$

Theoretical predictions for the exclusive channels (Kamenik, Fajfer)

 $\operatorname{Br}_{\operatorname{th.}}(B \to D\tau \overline{\nu}) + \operatorname{Br}_{\operatorname{th.}}(B \to D^* \tau \overline{\nu}) = (2.01 \pm 0.07)\%$

On the other hand: (BaBar 2012, Compatible with LHCb 2015)

 $Br_{expt.}(B \rightarrow D\tau \bar{\nu}) + Br_{expt.}(B \rightarrow D^* \tau \bar{\nu}) = (2.78 \pm 0.25)\%$

... and more recently: (Belle 2015)

 $\mathrm{Br}_{\mathrm{expt.}}(B \rightarrow D\tau \bar{\nu}) + \mathrm{Br}_{\mathrm{expt.}}(B \rightarrow D^* \tau \bar{\nu}) = (2.39 \pm 0.32)\%$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Nevertheless, let's look into the fun part: Possible interpretations in terms of new physics

• Two Higgs Doublet model (SUSY Type) excluded:

ヘロト ヘヨト ヘヨト

• Leptoquark Interpretations: (Tanaka, Watanabe, Sakaki)

Operator Basis:

					_				$O_{V_1}^l$	$O_{V_2}^l$	$O_{S_1}^l$	$O_{S_2}^l$	O_T^l
	S.	S2	V_2	Ra	U_1	U_2	s F	S_1	•			•	- •/4
enin	0	0	1	0	1	1	Scala Scala	S_3	•				
F = 3B + L	-2	-2	-2	0	0	0	Š	R_2				•	●/4
$SU(3)_c$	3*	3*	3*	3	3	3	d ²	V_2^{μ}			•		
$SU(2)_L$	1	3	2	2	1	3	ix	U_1^{μ}	•		•		
$U(1)_{Y=Q-T_3}$	1/3	1/3	5/6	7/6	2/3	2/3	v >	U_3^{μ}	•				

• Single scalar Leptoquark explains R_K and $R(D^{(*)})$

• LUV proportional to the lepton masses?

ヘロア 人間 アメヨア 人口 ア

ъ

Lepton non-universality in $B \to K\ell\ell$ Angular distribution in $B \to K^*\ell\ell$ Problems in Semileptonics

V_{cb}^{incl} versus V_{cb}^{excl}

 Inclusive V_{cb} from the Heavy Quark Expansion: Precision at the level of 1.5% theoretical uncertainty

 $|V_{cb}| = (42.09\pm0.79) imes10^{-3}$ (Gambino, Healy, Turczyk)

• Exclusive V_{cb} from $B \rightarrow D^* \ell \bar{\nu}$ endpoint:

 $|\textit{V}_{\textit{cb}}| = (39.04 \pm 0.75) imes 10^{-3}$ (fnal/milc)

• Exclusive V_{cb} from $B \rightarrow D \ell \bar{\nu}$ rate

 $|V_{cb}| = (40.49 \pm 0.99) imes 10^{-3}$ (Gambino)

• Tension with exclusive V_{cb} from $B o D^* \ell \bar{
u}$ endpoint

Lepton non-universality in $B \to K\ell\ell$ Angular distribution in $B \to K^*\ell\ell$ Problems in Semileptonics

イロト イポト イヨト イヨト

V_{ub}^{incl} versus V_{ub}^{excl}

• Inclusive V_{ub} depends on non-perturbative functions: \rightarrow Precision is less than in $b \rightarrow c$

$$egin{array}{rcl} |V_{ub}| &=& (4.49\pm 0.16^{+0.16}_{-0.18}) imes 10^{-3} & {}_{
m (PDG)} \ |V_{ub}| &=& (4.03^{+0.20}_{-0.22}) imes 10^{-3} & {}_{
m (new \, BaBar \, result)} \end{array}$$

• Exclusive V_{ub} from $B \to \pi \ell \bar{\nu}$

$$|V_{\textit{ub}}| = (3.72 \pm 0.19) imes 10^{-3}$$
 (PDG)

- Persistent tension in V_{ub}, however, slightly receeding due to new data
- New Input from $\Lambda_b \rightarrow p \ell \bar{\nu}$ (LHCb)

Summary of the current situation (Ruth van der Water @ FPCP2016)

(Fit by Andreas Kronfeld)

・ロト ・ 理 ト ・ ヨ ト ・

ъ

 Where do we stand?
 Lepton non-universality in B -

 The Current "Tensions"
 Angular distribution in $B \rightarrow K$

 More Stuff
 Problems in Semileptonics

Interpretation in terms of new physics

Right-Handed Admixture

(From Paolo Gambino's talk at BEAUTY 2016)

ъ

More Stuff Mixing, Top, Neutrinos, Charged Leptons

T. Mannel, Siegen University Heavy Flavour 2016: Quo Vadis?

ヘロン 人間 とくほ とくほ とう

E DQC

$B-\overline{B}$ Mixing

New lattice results for B-B Mixing (R. van der Water @ FPCP2016)

New sum rule calculation for $B-\overline{B}$ Mixing

(Grozin, Klein, ThM, Pivovarov 2016)

• HQET Sum Rule for $\Delta B = B - 1$ (three loops) RG Invariant Bag factor \hat{B} :

$$\hat{B}=1.34\pm0.06$$

• Latest Lattice calculation: (FERMILAB / MILC)

$$\hat{B}=1.38\pm0.13$$

FLAG Result

$$\hat{B}=1.27\pm0.10$$

 QCD SR uncertainty is small, since the uncertainty is in B(m_b) – 1

February 2016

(R. van der Water @ FPCP2016)

T. Mannel, Siegen University

Heavy Flavour 2016: Quo Vadis?

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

∃ 9900

Top and Flavor

Flavour Topic: Top FCNC's Small in the SM, but enhanced in many NP models

	\mathbf{SM}	\mathbf{QS}	2HDM	FC $2HDM$	MSSM	₿ SUSY
$t \to u Z$	8×10^{-17}	$1.1 imes 10^{-4}$	_	_	$2 imes 10^{-6}$	3×10^{-5}
$t \to u \gamma$	3.7×10^{-16}	7.5×10^{-9}	_	_	$2 imes 10^{-6}$	$1 imes 10^{-6}$
t ightarrow ug	3.7×10^{-14}	1.5×10^{-7}	_	_	8×10^{-5}	$2 imes 10^{-4}$
$t \to u H$	2×10^{-17}	4.1×10^{-5}	$5.5 imes 10^{-6}$	_	10^{-5}	$\sim 10^{-6}$
$t \rightarrow cZ$	1×10^{-14}	$1.1 imes 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	2×10^{-6}	3×10^{-5}
$t \to c \gamma$	4.6×10^{-14}	7.5×10^{-9}	$\sim 10^{-6}$	$\sim 10^{-9}$	2×10^{-6}	1×10^{-6}
$t \to cg$	4.6×10^{-12}	1.5×10^{-7}	$\sim 10^{-4}$	$\sim 10^{-8}$	8×10^{-5}	$2 imes 10^{-4}$
$t \to c H$	$3 imes 10^{-15}$	4.1×10^{-5}	$1.5 imes 10^{-3}$	$\sim 10^{-5}$	10^{-5}	$\sim 10^{-6}$

イロト イポト イヨト イヨト

3

750 GeV Bump

Summary of the various theory activities: (K. Zurek @ FPCP2016) WHAT DO WE LEARN?

- Composite (pion) of new confining gauge group
- Or weakly coupled resonance + vector-like quarks

- Both Work Well
- Both predict extraordinary levels of activity in LHC Run II

Collapse of the wave function expected later this year:

T. Mannel, Siegen University Heavy Flavour 2016: Quo Vadis?

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔅

Neutrinos

There is plenty of room form surprises: (A. de Gouvea @ FPCP2016) In Conclusion

The venerable Standard Model sprung a leak in the end of the last century: neutrinos are not massless! (and we are still trying to patch it)

- 1. We still **know very little** about the new physics uncovered by neutrino oscillations.
- 2. **neutrino masses are very small** we don't know why, but we think it means something important.
- 3. neutrino mixing is "weird" we don't know why, but we think it means something important.
- 4. we need a minimal ν SM Lagrangian. In order to decide which one is "correct" we **need to uncover the faith of baryon number minus** lepton number $(0\nu\beta\beta$ is the best [only?] bet).

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Charged Leptons I: $(g - 2)_{\mu}$

Current status: (T. Bowcock, T. Izubuchi @ FPCP2016)

- hadronic vacuum polarization:
 - Extraction form experiment
 - New lattice calculations
- New lattice calculations of light-by-light scattering

• Further reduction of the uncertainties foreseen!

There is still a tension in $(g - 2)_{\mu}$.

Charged Leptons II: Rare Processes

Good News:

- The presence of neutrino masses induces non-trivial charged lepton flavour physics
- The PMNS Matrix is not hierarchical
- LFV muon decays: $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$
- LFV τ decays: $\tau \rightarrow e/\mu\gamma$, $\tau \rightarrow 3\mu$, $\tau \rightarrow e2\mu$...

Bad News:

- If the dim-5 Operator is the only source of LFV (and LNV) these effects are super-small
- Naive counting

$$\mathcal{A}(\ell o \ell' \gamma) \propto rac{G_F}{16\pi^2} |V_{\mathrm{PMNS}}|^2 rac{\Delta m_{
u}^2}{M_W^2}$$

프 (프)

ъ

So we need new physics:

- This links to R_K and $R(D^{(*)})$
- Many models are thinkable, but need to enhance the amplitude tremendously!
- Such models exist:
 - Supersymmtry
 - Little Higgs
 - ...

ヘロン 人間 とくほ とくほ とう

3

(e.g. G. Cavoto @ FPCP2016)

(E)

ъ

News on CP Violation

T. Mannel, Siegen University Heavy Flavour 2016: Quo Vadis?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sources of CP violation in the SM:

 Strong CP violation: The QCD Vacuum generates the "θ term":

$$\mathcal{L}_{ ext{strong CP}} = oldsymbol{ heta} rac{lpha_{oldsymbol{s}}}{oldsymbol{8}\pi} oldsymbol{G}^{\mu
u,a} ilde{oldsymbol{G}}^{a}_{\mu
u}$$

Natural size would be $\theta \sim 1$, Limit from Neutron EDM:

$$d_N \sim heta imes 10^{-15} {
m e\,cm}$$
 thus $heta \le 10^{-10}$

• CKM CP Violation from the phase of the CKM matrix:

$$J = \operatorname{Im} V_{cs}^* V_{us} V_{cd} V_{ud}^*$$

There is only a single 4th order rephasing invariant

Leptons: PMNS Phases

ヘロト ヘワト ヘビト ヘビト

- Strong CP remains a mystery, can be removed by an additional symmetry (Peccei Quinn Symmetry)
- CP Phases in the leptonic sector are still unexplored

CPV in **B** Physics

Measurements get very precise!

Theory has (and will contiune to have) a hard time to keep up!

- Nonleptonic decays from QCD
 - Tackle the power corrections, but how?
 - Extension to three body decays Opens new roads to CPV studies

<ロ> <問> <問> < 回> < 回> < □> < □> <

(R. Silva Coutihno @ FPCP2016)

< ∃→

ъ

CPV in Kaons

New Lattice calculations of Kaon CPV (C. Kelly @ FPCP2016)

- Method to treat moving pions (Lellouch. Lüscher)
- Towards a quantitative understanding of $\Delta I = 1/2$
- $\operatorname{Re}(A_0)$ and $\operatorname{Re}(A_2)$ from expt.
- Lattice values for Im(A₀), Im(A₂) and the phase shifts,

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2\varepsilon}} \begin{bmatrix} \operatorname{Im} A_2 \\ \operatorname{Re} A_2 \end{bmatrix} \right\}$$
$$= \begin{array}{c} 1.38(5.15)(4.43) \times 10^{-4}, \quad \text{(this work)}\\ 16.6(2.3) \times 10^{-4} & \text{(experiment)} \end{array}$$

・ロト ・四ト ・ヨト・

[Lehner et al arXiv:1508.01801

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Instead of a Summary

Questions of be discussed: See also the List sent by Alex

- What (if true) is the explanation of the 750 Gev bump?
- Can we gain control over non-leptonic (two and more body) decays?
 - QCD factorization: Power Corrections
 - Flavour Symmetries
- Is there a coherent NP model explaining all anomalies?
- Are there correlations between different flavor observables?
- How far can the non-perturbative methods be improved?
 - QCD Sum rules
 - Lattice QCD
- What can be learned from LFV and LNV in *B* decays?

Or, some more global questions:

- What can we do with 70 ab⁻¹ of *B* factory data? There must be a B2TIP-reloaded at some point! addressing questions such as:
 - Very rare processes (e.g. LFV and LNV *B* decays)
 - Large data samples of "known" decays
 - How to improve theory?
- How do we exploit the full spectrum of ground state b hadrons produced at LHCb?

Are we getting towards a theory of flavour?

ヘロン 人間 とくほ とくほ とう

Where do we stand?

T. Mannel, Siegen University

SPEMMINESIDE

Heavy Flavour 2016: Quo Vadis?