
Prospects for  
heavy hadron lifetimes  

on the lattice
Matthew Wingate 

DAMTP, Cambridge 

Heavy Flavours 2016: Quo Vadis? 
Ardbeg, Islay



B lifetimes

• Motivation 

• Lifetime differences 

• Lifetime ratios

[apologies for shortage of references]



Motivation

• Improve Standard Model predictions 

• Ultimately search for new physics 

• Test theoretical methods 

• Categorize discrepancies
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hadrons

but can assume  
quark-hadron duality



Mass difference
See talk by A. El-Khadra

�Ms =
1

2mBs

hB̄s|H�B=2
e↵ |Bsi

Q2 = (b̄↵(1� �5)s↵)(b̄�(1� �5)s�)

Q1 = (b̄↵�µ(1� �5)s↵)(b̄��µ(1� �5)s�)

Q3 = (b̄↵(1� �5)s�)(b̄�(1� �5)s↵) Q5 = (b̄↵(1� �5)s�)(b̄�(1 + �5)s↵)

Q4 = (b̄↵(1� �5)s↵)(b̄�(1 + �5)s�)

H�B=2
e↵ = (V ⇤
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In the Standard Model:                for i � 2Ci = 0



Lifetime difference & HQE

• Γ12 from imaginary part (optical theorem) 

• Assumes quark-hadron duality 

• Large momentum through loop 

• Operator product expansion: Heavy Quark Expansion (HQE)

H�B=1
e↵

H�B=1
e↵

b

s

b

s

H�B=1
e↵

H�B=1
e↵

b

s

b

s

u, c

u, c u, c



HQE expressions
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2.1 New operator basis

When calculating Γ12 to leading order in Λ/mb, one first encounters a third operator Q̃S

in addition to Q and QS defined in eqs. (1.5) and (1.8):

Q̃S = sα(1 + γ5)bβ sβ(1 + γ5)bα, (2.7)

However, a certain linear combination of Q, QS and Q̃S is a 1/mb-suppressed operator [18].
This 1/mb-suppressed operator reads

R0 ≡ QS + α1Q̃S +
1
2
α2Q, (2.8)

where α1,2 contain NLO corrections, which are specific to the MS scheme used by us [19]:

α1 = 1 +
αs(µ2)

4π
Cf

(
12 ln

µ2

mb
+ 6
)

, α2 = 1 +
αs(µ2)

4π
Cf

(
6 ln

µ2

mb
+

13
2

)
. (2.9)

Here Cf = 4/3 is a colour factor and µ2 is the scale at which the operators in eq. (2.8) are
defined. The coefficients G and GS in eq. (2.3) depend on µ2 and this dependence cancels
with the µ2-dependence of ⟨Bs|Q(µ2)|Bs⟩ and ⟨Bs|QS(µ2)|Bs⟩. In lattice computations
the µ2-dependence enters in the lattice-continuum matching of these matrix elements. In
our numerics we will always quote the results for µ2 = mb. In [18 – 20] eq. (2.8) has been
used to eliminate QS in favour of R0 leading to the result in eq. (1.9). The matrix element
of Q̃S reads

⟨Bs|Q̃S(µ2)|Bs⟩ =
1
3
M2

Bs
f2

Bs
B̃′

S(µ2). (2.10)

In analogy to eq. (2.6) we define

B̃′
S(µ2) =

M2
Bs

(mb(µ2) + ms(µ2))2
B̃S(µ2). (2.11)

For clarity we have explicitly shown the µ2-dependence in eqs. (2.10) and (2.11), which was
skipped in eqs. (1.6), (2.5) and (2.6). In VIA B̃S = 1 and ⟨Bs|Q̃S |Bs⟩ is much smaller than
⟨Bs|Q|Bs⟩ and ⟨Bs|QS |Bs⟩. The small coefficient 1/3 in eq. (2.10) is the consequence of a
cancellation between the leading term in the 1/Nc expansion, where Nc = 3 is the number
of colours, and the factorisable 1/Nc corrections: 1/3 = 1 − 2/Nc. One naturally expects
that the bag factor B̃S substantially deviates from 1. However, a lattice computation
found B̃S = 0.91± 0.08 [22], showing that the matrix element of Q̃S is indeed small. Thus
⟨Bs|R0|Bs⟩ = Λ/mb implies a strong numerical relationship between B and BS which can
be used to constrain BS/B entering ∆Γs/∆Ms. Yet it is more straightforward to use
eq. (2.8) to eliminate QS altogether from Γ12 in favour of Q̃S . The coefficient of B will
change and and the coefficient of B̃′

S is expected to be small in view of the factor of 1/3 in
eq. (2.10). Using further the bag parameters of eqs. (1.6) and (2.5), Γab

12 of eq. (2.3) now
reads

Γab
12 =

G2
F m2

b

24π
MBs f2

Bs

[(
Gab +

α2

2
Gab

S

) 8
3
B + Gab

S α1
1
3
B̃′

S

]
+ Γ̃ab

12,1/mb
. (2.12)
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Expressions from Lenz & Nierste, JHEP 06 (2007) 072
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quantities in the Bd-system. In section 4 we show how the expressions for the mixing
quantities change in the presence of new physics. Here we discuss how to combine different
present and future measurements to constrain |M s

12| and φs and advocate a novel method to
display the constraints on possible new short-distance physics in Bs−Bs mixing. Section 5
gives a road map for future measurements and calculations and section 6 summarises our
results.

2. Improved prediction of Γs
12

We write Γs
12 as [21]

Γs
12 = −

[
λ2

c Γcc
12 + 2λc λu Γuc

12 + λ2
u Γuu

12

]
(2.1)

= −
[
λ2

t Γcc
12 + 2λt λu (Γcc

12 − Γuc
12) + λ2

u (Γcc
12 − 2Γuc

12 + Γuu
12 )
]

(2.2)

with the CKM factors λi = V ∗
isVib for i = u, c, t. In eq. (2.2) we have eliminated λc in favour

of λt using λu + λc + λt = 0 to prepare for the study of Γs
12/M

s
12. Since |λu|≪ |λt| ≈ |λc|,

Γcc
12 clearly dominates Γs

12. For ab = cc, uc, uu we write [19, 21]

Γab
12 =

G2
F m2

b

24πMBs

[
Gab ⟨Bs|Q|Bs⟩ − Gab

S ⟨Bs|QS |Bs⟩
]

+ Γab
12,1/mb

(2.3)

The coefficients Gab and Gab
S are further decomposed as

Gab = F ab + P ab, Gab
S = −F ab

S − P ab
S . (2.4)

Here F ab and F ab
S are the contributions from the current-current operators Q1,2 while the

small coefficients P ab and P ab
S stem from the penguin operators Q3−6 and Q8. (Note that

in [19], where only the dominant Γcc
12 was considered, these coefficients had no superscript

’cc’.) Numerical cancellations render F cc small with |F cc/F cc
S | ≈ 0.03 which explains the

small coefficient of B in eq. (1.9).
We parameterise the matrix element of QS as

⟨Bs|QS |Bs⟩ = −5
3
M2

Bs
f2

Bs
B′

S . (2.5)

Formulae for physical quantities are more compact when expressed in terms of B′
S rather

than the conventionally used bag parameter BS . The two parameters are related as

B′
S =

M2
Bs

(mb + ms)2
BS . (2.6)

In the vacuum insertion approximation (VIA) the bag factors B and BS are equal to one.
Throughout this paper we use the MS scheme as defined in [19, 21] for all operators.
Therefore the masses mb and ms appearing in eq. (2.6) correspond to the MS scheme as
well.

Γcc
12,1/mb

comprises effects suppressed by Λ/mb. We will discuss it later, after trans-
forming to our new operator basis.
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Leading order:

where lattice QCD can give matrix elements of Q1  
and Q3

(B)
(B̃0

S)



NLO

J
H
E
P
0
6
(
2
0
0
7
)
0
7
2

The new 1/mb-corrections are related to Γab
12,1/mb

appearing in eq. (2.3) as

Γ̃ab
12,1/mb

= Γab
12,1/mb

+
G2

F m2
b

24πMBs

F ab,(0)
S ⟨Bs|R0|Bs⟩. (2.13)

Here we have taken into account that the result of [19, 20] includes the Λ/mb terms without
penguin contributions and to LO in αs: consequently we have changed −Gab

S to F ab,(0)
S ,

which is the LO approximation to F ab
S . Recalling |Gab| ≪ |Gab

S | and B, B̃′
S ≈ 1 one easily

verifies from eq. (2.12) that the first term proportional to B dominates over the second term.
Since Γab

12,1/mb
in eq. (1.9) is negative and the shift in eq. (2.13) adds a positive term our

change of basis also leads to |Γ̃ab
12,1/mb

| < |Γab
12,1/mb

|. Further the αs-corrections contained in

α1,2, which multiply Gab,(0)
S in eq. (2.12), temper the large NLO corrections of the old result.

These three effects combine to reduce the hadronic uncertainty in ∆Γs/∆Ms substantially.
In other words: the uncertainty quoted in [19, 20] is not intrinsic to ∆Γs/∆Ms but an
artifact of a poorly chosen operator basis.

2.2 A closer look at 1/mb corrections

At order 1/mb one encounters the operators R0 of eq. (2.8),

R1 =
ms

mb
sα(1 + γ5)bα sβ(1− γ5)bβ

R2 =
1

m2
b

sα
←−
Dργ

µ(1− γ5)Dρbα sβγµ(1− γ5)bβ

R3 =
1

m2
b

sα
←−
Dρ(1 + γ5)Dρbα sβ(1 + γ5)bβ (2.14)

and the operators R̃i which are obtained from the Ri’s by interchanging the colour indices
α and β of the two s fields [18]. At order 1/mb only five of these operators are independent
because of relations like R̃2 = −R2 + O(1/m2

b). Writing (for ab = cc, uc, uu)

Γ̃ab
12,1/mb

=
G2

F m2
b

24πMBs

⎡

⎣gab
0 ⟨Bs|R0|Bs⟩+

3∑

j=1

[
gab
j ⟨Bs|Rj |Bs⟩+ g̃ab

j ⟨Bs|R̃j |Bs⟩
]
⎤

⎦ (2.15)

the coefficients gab
j and g̃ab

j read [18, 23, 21]:

gcc
0 =

√
1− 4z(1 + 2z)C(0) 2

2 + F cc(0)
S =

√
1− 4z(1 + 2z)C(0)

1

[
3C(0)

1 + 2C(0)
2

]

gcc
1 = −2

√
1− 4z(1 + 2z)C(0)

1

[
3C(0)

1 + 2C(0)
2

]
g̃cc
1 = −2

√
1− 4z(1 + 2z)C(0) 2

2

gcc
2 = −2

1− 2z − 2z2

√
1− 4z

C(0)
1

[
3C(0)

1 + 2C(0)
2

]
g̃cc
2 = −2

1− 2z − 2z2

√
1− 4z

C(0) 2
2

gcc
3 = −24

z2

√
1− 4z

C(0)
1

[
3C(0)

1 + 2C(0)
2

]

g̃cc
3 = −24

z2

√
1− 4z

C(0) 2
2 (2.16)
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Status

• 15% due to matrix element of R2 (bag factor = 1 ± 0.5) 

• 14% due to matrix element of Q1 (FLAG, but see new FNAL/MILC) 

• 8% due to renormalization scale

12

we see that the real part of �s
12/M

s
12 is absolutely

dominated by the coe�cient c, while for the imag-
inary party only a and to a lesser extent b are con-
tributing. We get

<
✓

�s
12

Ms
12

◆
= 10�4

✓
c+ a<


�u

�t

�
+ b<


�2
u

�2
t

�◆

) ��s

�Ms
⇡ �10�4c , (84)

=
✓

�s
12

Ms
12

◆
= 10�4

✓
a=


�u

�t

�
+ b=


�2
u

�2
t

�◆

) asfs ⇡ 10�4a=

�u

�t

�
. (85)

So for a determination of only ��s (or also ��d)
to a good approximation the first term of Eq.(76)
- or equivalently the coe�cient c - is su�cient.

• Unfortunately it turned out after the calculation of
the NLO-QCD and the sub-leading 1/mb correc-
tions that ��s is not very well-behaved (see (Lenz,
2004)): all corrections are quite large and they have
the same sign. Surprisingly this problem could be
solved to a large extent by using Q and Q̃S as the
two independent operators instead of Q and QS ,
which is just a change of the operator basis, see
(Lenz and Nierste, 2007). As an illustration of the
improvement we discuss the real part of the ra-
tio �s

12/M
s
12 and split up the terms according to

Eq.(78). We leave only the ratio of bag parameter
as free parameters, while we else insert all Standard
Model parameters according to the values given in
the appendix. We get now for ��s/�Ms in the old
(operators Q and QS) and the new basis (operators
Q and Q̃S):

��s

�Ms

Old
= 10�4 ·


2.6 + 69.7

BS

B
� 24.3

BR

B

�
, (86)

��s

�Ms

New
= 10�4 ·

"
44.8 + 16.4

B̃S

B
� 13.0

BR

B

#
,(87)

where BR is an abbreviation for all seven bag pa-
rameters of the dimension 7 operators. In the old
basis the first term, which has no dependence on
non-perturbative lattice parameters, is almost neg-
ligible. The second term, that depends on the ratio
of the matrix elements of the operators QS and Q
is by far dominant and the third term, that de-
scribes 1/mb-corrections gives an important nega-
tive contribution. Now, in the new basis the first
term, being completely free of any non-perturbative
uncertainties, is numerical dominant. The second
term is sub-dominant and the 1/mb-corrections be-
came smaller and undesired cancellations therein

are less pronounced. Thus the second formula-
tion has a much weaker dependence on the badly
known bag parameters, also on the dimension seven
ones. If all bag parameters would be known pre-
cisely, then such a change of basis has of course
no e↵ect, but since BR is unknown and the ratios
B0

S/B and B̃0
S/B are much worse known compared

to B/B = 1, now a basis, where the coe�cients
of BR/B and B̃0

S/B are small, gives results with a
much better theoretical control. For more details
we refer the reader to (Lenz and Nierste, 2007).

Currently also 1/mb-corrections for the sub-leading CKM
structures in �s

12 ((Dighe et al., 2002)) and 1/m2
b-

corrections for ��s ((Badin et al., 2007)) are available
- they are relatively small.
A commonly used Standard Model prediction for ��s

was given by (Lenz and Nierste, 2011)

��SM,2011
s = (0.087 ± 0.021) ps�1 . (88)

With the most recent numerical inputs (GF , MW , MBs

and mb from the PDG ((Olive et al., 2014)), the top
quark mass from (ATLAS and Collaborations, 2014), the
non-perturbative parameters from FLAG (web-update of
(Aoki et al., 2014)) and B̃S/B, BR

0

, BR
1

and BR̃
1

from
(Becirevic et al., 2002), (Bouchard et al., 2011), (Car-
rasco et al., 2014) and (Dowdall et al., 2014) and CKM
elements from CKMfitter (web-update of (Charles et al.,
2005)) [similar values can be taken from UTfit ((Bona
et al., 2006b))], we predict the decay rate di↵erence of
the neutral Bs mesons to be

��SM,2015
s = (0.088 ± 0.020) ps�1 . (89)

The dominant uncertainty stems now from the dimen-
sion 7 bag parameter BR

2

(about 15%), briefly followed
by fBs

p
B (about 14 %) and the renormalisation scale

dependence, which contributes about 8% to the error
budget. A detailed listing of all the contributing uncer-
tainties can be found in the appendix. In order to reduce
the theory uncertainty to a value between 5% and 10%
, a non-perturbative determination of BR

2

, a calculation

of NNLO-QCD corrections (denoted by �s,(2)
3 in Eq.(54)

, a first step in this direction, has been done by (Asa-

trian et al., 2012) and by �s,(1)
4 ) and more precise values

of the matrix elements of the operators Q, QS and Q̃S

are mandatory. All of this seems to be feasible in the
next few years.
In the discussion of the di-muon asymmetry below we

will also need several mixing quantities from the B0-
sector. Their calculation within the Standard Model is
analogous to the one in the B0

s -sector. We present here
numerical updates of the predictions given in (Lenz and
Nierste, 2011). The input parameters are identical to the
ones in the B0

s system, except fBd

p
B, B̃S/B, MB0 and

md, which can found in the same literature as the values

Artuso, Borissov, Lenz, arXiv:1511.09466v1

Dominent uncertainties:



HPQCD calculation

• Extends ongoing calculation of matrix elements of 
dimension-6 ΔB=2 operators (Q1…Q5) 

• MILC highly improved staggered quark (HISQ) gauge 
field configurations (2+1+1 sea quarks) 

• Nonrelativistic bottom quark, HISQ strange quark

C Davies, GP Lepage, C Monahan, J Shigemitsu, MW



Matching schemes

which we represent diagrammatically in Fig. 1. The Dirac
operators Γ1;2 represent the operator insertions correspond-
ing to Eqs. (1) to (7). For matrix elements of Q3, Q5, and
Q7, we have instead

hq̄A;QDjðΨ̄i
bΓ1Ψ

j
qÞðΨ̄j

bΓ2Ψi
qÞjQ̄B; qCitree

¼ δADδCB½ðūQΓ1uqÞðv̄QΓ2vqÞ þ ðūQΓ2uqÞðv̄QΓ1vqÞ&
− δABδCD½ðūQΓ1vqÞðv̄QΓ2uqÞ þ ðūQΓ2vqÞðv̄QΓ1uqÞ&:

ð11Þ

Radiative corrections induce mixing between the four-
fermion operators, which we write as

hQiiMS ¼ hQiitree þ αscijhQjið0Þtree; ð12Þ

where the superscript (0) denotes matrix elements con-
structed using spinors that obey

ūQγ0 ¼ ūQ; and v̄Qγ0 ¼ −v̄Q; ð13Þ

in order to match to the effective theory. In principle the
product cijhQjið0Þtree is a sum over all operators Qj that mix
with Qi. In practice, however, only two such operators
appear: for example, for Q1 we have

hQ1iMS ¼ hQ1itree þ αsc11hQ1ið0Þtree þ αsc12hQ2ið0Þtree:

ð14Þ

In the following, we leave this sum implicit.

B. On the lattice

In the effective theory formalism of NRQCD, the heavy
quarks and antiquarks are treated as distinct quark species.
We separate the quark fields that create heavy quarks,
which we denote Ψ̄Q, from the fields that annihilate heavy
antiquarks, which we represent by Ψ̄Q̄.

The two-component heavy quark field is obtained from
the four-component QCD quark field, Ψ̄b, via the Foldy-
Wouthuysen-Tani transformation (see, for example, [30]),

Ψ̄b ¼ Ψ̄Q

!
1þ 1

2M
γ · ∇⃖þOð1=M2Þ

"
; ð15Þ

where the arrow indicates that the derivative acts on the
heavy quark field to the left. We insert this expansion into
the four-fermion operators of Eqs. (1) to (7) to determine
the appropriate NRQCD operators. We see immediately
that, at leading order in 1=M, we need operators of the form

Q̂i ¼ ðΨ̄QΓ1ΨqÞðΨ̄Q̄Γ2ΨqÞ þ ðΨ̄Q̄Γ1ΨqÞðΨ̄QΓ2ΨqÞ:
ð16Þ

We obtain the OðΛQCD=MÞ corrections by introducing
the operators

Q̂i1 ¼ 1

2M
½ð ~∇Ψ̄Q · γΓ1ΨqÞðΨ̄Q̄Γ2ΨqÞ

þ ðΨ̄QΓ1ΨqÞð ~∇Ψ̄Q̄ · γΓ2ΨqÞ

þ ð ~∇Ψ̄Q̄ · γΓ1ΨqÞðΨ̄QΓ2ΨqÞ

þ ðΨ̄Q̄Γ1ΨqÞð ~∇Ψ̄Q · γΓ2ΨqÞ&: ð17Þ

We denote the matrix elements of the effective theory by

hQ̂ii ¼ houtjQ̂ijini; and hQ̂i1i ¼ houtjQ̂i1jini; ð18Þ

where now the “in” and “out” states are understood to be an
incoming NRQCD antiquark and HISQ quark and an
outgoing NRQCD quark and HISQ antiquark, respectively.
Radiative corrections induce mixing between these oper-
ators, with mixing coefficients clattij , and we obtain

hQ̂ii ¼ hQ̂iið0Þtree þ αsclattij hQ̂jið0Þtree; ð19Þ

and similarly

hQ̂i1i ¼ hQ̂i1ið0Þtree þ αsζlattij hQ̂jið0Þtree: ð20Þ

We ignore the one loop corrections to hQ̂i1ið0Þtree, which only
arise at OðαsΛQCD=MbÞ in the matching procedure.
As discussed in more detail in [19], the mixing coef-

ficients ζlattij describe the “mixing down” of dimension-
seven operators Q̂i1 onto dimension-six operators Q̂j.
In the next section we outline the matching procedure

before describing the calculation of the lattice mixing
coefficients.

III. THE MATCHING PROCEDURE

We now relate the matrix elements of the NRQCD-
HISQ operators, which ultimately will be determined

BA
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C

FIG. 1. Tree-level diagrams representing the matrix elements of
operators Q1, Q2, Q4, and Q6. The incoming state is a heavy
antiquark and a light quark and the outgoing state is a heavy
quark and a light antiquark. The letters A, B, C, and D are color
indices and correspond to the conventions of Eq. (10).
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which we represent diagrammatically in Fig. 1. The Dirac
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ing to Eqs. (1) to (7). For matrix elements of Q3, Q5, and
Q7, we have instead

hq̄A;QDjðΨ̄i
bΓ1Ψ

j
qÞðΨ̄j

bΓ2Ψi
qÞjQ̄B; qCitree

¼ δADδCB½ðūQΓ1uqÞðv̄QΓ2vqÞ þ ðūQΓ2uqÞðv̄QΓ1vqÞ&
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ð11Þ

Radiative corrections induce mixing between the four-
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hQiiMS ¼ hQiitree þ αscijhQjið0Þtree; ð12Þ

where the superscript (0) denotes matrix elements con-
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ð14Þ

In the following, we leave this sum implicit.
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Wouthuysen-Tani transformation (see, for example, [30]),

Ψ̄b ¼ Ψ̄Q
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"
; ð15Þ

where the arrow indicates that the derivative acts on the
heavy quark field to the left. We insert this expansion into
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where now the “in” and “out” states are understood to be an
incoming NRQCD antiquark and HISQ quark and an
outgoing NRQCD quark and HISQ antiquark, respectively.
Radiative corrections induce mixing between these oper-
ators, with mixing coefficients clattij , and we obtain
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and similarly
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We ignore the one loop corrections to hQ̂i1ið0Þtree, which only
arise at OðαsΛQCD=MbÞ in the matching procedure.
As discussed in more detail in [19], the mixing coef-

ficients ζlattij describe the “mixing down” of dimension-
seven operators Q̂i1 onto dimension-six operators Q̂j.
In the next section we outline the matching procedure

before describing the calculation of the lattice mixing
coefficients.
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HISQ operators, which ultimately will be determined
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Continuum QCD Lattice NRQCD

hQiiMS = hQ̂iiL + hQ̂i1iL + . . .

where lattice NRQCD is a 1/M expansion.



Perturbative matching

hQiiMS = hQ̂ii+ ↵s⇢ijhQ̂ji+ hQ̂i1isub

hQ̂i1isub = hQ̂i1i � ↵s⇣ijhQ̂ji

hR̂iisub = hR̂ii � ↵s⇠ijhQ̂ji

Match continuum and lattice at O(αs)

taking into account power-law “mixing down” at

Similarly we have now computed coefficients in

Monahan, Gámiz, Horgan, Shigemitsu, PRD90 (2014)

O
⇣ ↵s

aM

⌘
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Correlation functions
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Remove unwanted factors using 2-point functions



Status
• Matrix elements computed on 2 ensembles  

• will do 5 ensembles: 3 lattice spacings, including some with 
physically light quark masses 

• Statistical errors 5-10% for          but will be larger for  

• Systematic uncertainty dominated by tree-level matching between 
lattice and continuum: 20-30% 

• Hope to show preliminary results in 2 weeks @ Lattice 2016

hRii hRiisub



Lifetime ratios
For general lifetime calculations, need matrix elements 
of ΔB = 0 operators

Q1 = (b̄↵�µ(1� �5)s↵)(s̄��µ(1� �5)b�)

Q2 = (b̄↵(1� �5)s↵)(s̄�(1 + �5)b�)

Q4 = (b̄↵(1� �5)tas↵)(s̄�(1 + �5)tab�)

Q3 = (b̄↵�µ(1� �5)tas↵)(s̄��µ(1� �5)tab�)



Contractions

OOO

O

Bs

Bs Bs

Bs



Mixing
O

Bs Bs

Bs Bs

1

a3
b̄�b

Severe fine tuning necessary to determine 
relevant contribution to lifetimes



Approximation
• In SU(3)F symmetric limit, spectator effects should cancel in ratios 

[Neubert & Sachrajda, NPB483 (1997)] 

• Lattice calculations exist [Becirevic, JHEP Proceedings 2001] but are dated 
(and only in proceedings) 

• B factors =1.0 ± 20-30%, ε factors = few ×10-2 with 100% 
uncertainty 

• A new calculation in this approximation is possible, but would take 
effort.  Would we get a signal for the ε factors? Would it have an 
impact?  …

hep2001

International Europhysics Conference on High Energy Physics

local operators of O(1/m3
b ). Obviously, the goal is to have an accurate theoretical deter-

mination of the ratios of the B-meson lifetimes, confront them to the precise experimental

measurements, and therefore to test the underlying assumption of quark–hadron duality.

Although we are still a long way from that level of accuracy, the steady theoretical progress

made over the last 10 years is rather encouraging. ∥

The spectator effects start showing up in OPE with the term ∝ 1/m3
b . Out of many

∆B = 0 local operators contributing at that order, only a few are expected to be relevant

to the ratios τ(Bu(s))/τ(Bd). These have been identified in ref. [23], and parametrized as

follows:

⟨Bq|(b̄q)V −A(q̄b)V −A|Bq⟩ = f2
Bq

m2
Bq

B1(µ) ,

⟨Bq|

(

b̄
λi

2
q

)

V −A

(

q̄
λi

2
b

)

V −A

|Bq⟩ = f2
Bq

m2
Bq

ε1(µ) ,

⟨Bq|(b̄q)S−P (q̄b)S+P |Bq⟩ = f2
Bq

m2
Bq

B2(µ) ,

⟨Bq|

(

b̄
λi

2
q

)

S−P

(

q̄
λi

2
b

)

S+P

|Bq⟩ = f2
Bq

m2
Bq

ε2(µ) . (2.1)

In the VSA, the colour singlet–singlet (ss) parameters are expected to be BVSA
1 = 1 and

BVSA
2 = [mBq/(mb + mq)]2 ≈ 1.5, whereas the octet–octet (oo) ones are expected to give

εVSA
1,2 = 0. The final expression for τ(Bu)/τ(Bd) can be written as

τ(B+)

τ(B0)
= 1 + 16π2 f2

BmB

m3
bc3(mb)

{

Gss
1 (mb) B1(mb) + Goo

1 (mb) ε1(mb)

+ Gss
2 (mb) B2(mb) + Goo

2 (mb) ε2(mb) + δ̄1/mb

}

. (2.2)

The main ingredients in this formula are:

! 16π2 is the (“famous”) phase space enhancement of the spectator corrections (∝

1/m3
b);

! c3(mb) is the coefficient of the leading order term (∝ 1/m0
b ) which survives the can-

cellation of the operators ⟨Bq|b̄b|Bq⟩ in the ratio (2.2). It consists of the phase space

integrations in the total width of B-meson (b-quark), plus the QCD radiative correc-

tions. The NLO computation for c3(mb) has been completed in ref. [24]. An easier

way to obtain this value (see [8]) is to use the measured b-quark semileptonic branch-

ing fraction BEXP.
SL = Γ(B → Xeν)/ΓTOT = 10.6(3)% [25], and combine it with the

theoretical expression for Γ(B → Xeν) [26]. I obtain,

c3(mb) = 3.8(1)(3) , (2.3)

where the last error comes from varying mc/mb = 0.30 ± 0.02;

∥For selected reviews covering different aspects of the computation of these ratios, see refs. [22].

– 7 –

Big!



Lifetime ratios
Artuso, Borissov, Lenz, arXiv:1511.09466v1 9

FIG. 3 Comparison of HQE predictions for lifetime ratios of
heavy hadrons with experimental values. The theory values
are taken from (Lenz, 2014). Experimental numbers are taken
from HFAG ((Amhis et al., 2014)).

��s was solved experimentally by a direct mea-
surement of this quantity by the LHCb Collabora-
tion. The current HFAG ((Amhis et al., 2014)) av-
erage, combining values from LHCb, ATLAS, CMS,
D0 and CDF, is in perfect agreement with the HQE
prediction from (Lenz and Nierste, 2011), which
is based on on the calculations of (Beneke et al.,
1999a, 2003; Ciuchini et al., 2003; Lenz and Nier-
ste, 2007). This will be discussed in detail below.

All in all the HQE has been experimentally proven to be
very successful and one could try next to test its applica-
bility also for charm-physics, see e.g. (Bobrowski et al.,
2010; Lenz and Rauh, 2013) for some recent investiga-
tions. Charm studies would be very helpful for studying
the intrinsic uncertainties of the HQE. Having more con-
fidence in the validity of HQE, it can now also be applied
to quantities that are sensitive to new physics, in partic-
ular to the semi-leptonic CP asymmetries, which will be
discussed in Section III.
According to the HQE, �s

12 can be expanded as a power
series in the inverse of the heavy b-quark mass and the
strong coupling:

�s
12 =

⇤3

m3
b

⇣
�s,(0)
3 +

↵s

4⇡
�s,(1)
3 + ...

⌘
+
⇤4

m4
b

⇣
�s,(0)
4 + ...

⌘
+... .

(54)
⇤ denotes a hadronic scale, which is assumed to be of
the order of ⇤QCD, but its actual value has to be de-
termined by a non-perturbative calculation. Each of the

�s,(j)
i is a product of perturbative Wilson coe�cients and

non-perturbative matrix elements. In �s
3 these matrix el-

ements arise from dimension 6 four-quark operators, in
�s
4 from dimension 7 operators and so on.

The leading term in Eq.(54), �s,(0)
3 , was calculated al-

ready quite long ago by (Ellis et al., 1977), (Hagelin,
1981), (Franco et al., 1982), (Chau, 1983), (Buras et al.,
1984) and (Khoze et al., 1987). Here three di↵erent 4-
quark operators arise; besides Q from Eq.(44) these are

QS = s̄↵(1 + �5)b
↵ ⇥ s̄�(1 + �5)b

� , (55)

Q̃S = s̄↵(1 + �5)b
� ⇥ s̄�(1 + �5)b

↵ . (56)

The general structure of the leading term �s
3 has three

(uc = cu) di↵erent CKM contributions

�s
3 = �

X

x=u,c

X

y=u,c

�x�y�
s,xy
12 (57)

and each factor �s,xy
12 has contributions of the three op-

erators Q, QS and Q̃S

�s,xy
12 = �s,Q

xy hQi + �s,QS
xy hQSi + �s,Q̃S

xy hQ̃Si . (58)

The matrix elements of the new operators are typically
parameterised as

hQSi ⌘ hB̄s|QS |Bsi = �5

3
M2

B0

s
f2
Bs

B0
S , (59)

hQ̃Si ⌘ hB̄s|Q̃S |Bsi =
1

3
M2

B0

s
f2
Bs

B̃0
S , (60)

with the modified bag parameters

B0
X =

M2
B0

s

[m̄b(m̄b) + m̄s(m̄b)]
2 BX ⇡ 1.57706 BX . (61)

In vacuum insertion approximation the unmodified bag
parameters are equal to one. More reliable values can be
obtained by using non-perturbative methods like QCD
sum rules6 or lattice QCD. Q, QS and Q̃S were deter-
mined by several lattice groups, who actually determined
all five operators of the so-called SUSY basis7. (Becirevic
et al., 2002), (Carrasco et al., 2014) and (Dowdall et al.,
2014)) use the notation O1, O2 and O3 for these three
operators:

Q ⌘ O1 , QS ⌘ O2 , Q̃S ⌘ O3 . (62)

In the case of (Bouchard et al., 2011) there is also an
additional factor 4 present.

Q ⌘ 4O1 , QS ⌘ 4O2 , Q̃S ⌘ 4O3 . (63)

(Becirevic et al., 2002) and (Carrasco et al., 2014) use
the same definitions of the bag parameters as we do

B ⌘ B1 , Bs ⌘ B2 , B̃S ⌘ B3 , (64)

while (Dowdall et al., 2014)) and (Bouchard et al., 2011)
use the modified bag parameters

B ⌘ B1 , B0
s ⌘ B2 , B̃0

S ⌘ B3 . (65)

6 A QCD sum rule determination of hQi is given e.g. in (Korner
et al., 2003). We will, however, not use the number obtained
there in our analysis.

7 In the Standard Model only Q contributes to �Ms, while in ex-
tensions of the Standard Model additional contributions of new
operators can appear. The whole set of these operators is called
SUSY-basis and typically denoted by O1...O5. It turns out, how-
ever, that all these five operators are also needed for a precise
standard model prediction of ��s.
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FIG. 3 Comparison of HQE predictions for lifetime ratios of
heavy hadrons with experimental values. The theory values
are taken from (Lenz, 2014). Experimental numbers are taken
from HFAG ((Amhis et al., 2014)).

��s was solved experimentally by a direct mea-
surement of this quantity by the LHCb Collabora-
tion. The current HFAG ((Amhis et al., 2014)) av-
erage, combining values from LHCb, ATLAS, CMS,
D0 and CDF, is in perfect agreement with the HQE
prediction from (Lenz and Nierste, 2011), which
is based on on the calculations of (Beneke et al.,
1999a, 2003; Ciuchini et al., 2003; Lenz and Nier-
ste, 2007). This will be discussed in detail below.

All in all the HQE has been experimentally proven to be
very successful and one could try next to test its applica-
bility also for charm-physics, see e.g. (Bobrowski et al.,
2010; Lenz and Rauh, 2013) for some recent investiga-
tions. Charm studies would be very helpful for studying
the intrinsic uncertainties of the HQE. Having more con-
fidence in the validity of HQE, it can now also be applied
to quantities that are sensitive to new physics, in partic-
ular to the semi-leptonic CP asymmetries, which will be
discussed in Section III.
According to the HQE, �s

12 can be expanded as a power
series in the inverse of the heavy b-quark mass and the
strong coupling:

�s
12 =

⇤3

m3
b

⇣
�s,(0)
3 +

↵s

4⇡
�s,(1)
3 + ...

⌘
+
⇤4

m4
b

⇣
�s,(0)
4 + ...

⌘
+... .

(54)
⇤ denotes a hadronic scale, which is assumed to be of
the order of ⇤QCD, but its actual value has to be de-
termined by a non-perturbative calculation. Each of the

�s,(j)
i is a product of perturbative Wilson coe�cients and

non-perturbative matrix elements. In �s
3 these matrix el-

ements arise from dimension 6 four-quark operators, in
�s
4 from dimension 7 operators and so on.

The leading term in Eq.(54), �s,(0)
3 , was calculated al-

ready quite long ago by (Ellis et al., 1977), (Hagelin,
1981), (Franco et al., 1982), (Chau, 1983), (Buras et al.,
1984) and (Khoze et al., 1987). Here three di↵erent 4-
quark operators arise; besides Q from Eq.(44) these are

QS = s̄↵(1 + �5)b
↵ ⇥ s̄�(1 + �5)b

� , (55)

Q̃S = s̄↵(1 + �5)b
� ⇥ s̄�(1 + �5)b

↵ . (56)

The general structure of the leading term �s
3 has three

(uc = cu) di↵erent CKM contributions

�s
3 = �

X

x=u,c

X

y=u,c

�x�y�
s,xy
12 (57)

and each factor �s,xy
12 has contributions of the three op-

erators Q, QS and Q̃S

�s,xy
12 = �s,Q

xy hQi + �s,QS
xy hQSi + �s,Q̃S

xy hQ̃Si . (58)

The matrix elements of the new operators are typically
parameterised as

hQSi ⌘ hB̄s|QS |Bsi = �5

3
M2

B0

s
f2
Bs

B0
S , (59)

hQ̃Si ⌘ hB̄s|Q̃S |Bsi =
1

3
M2

B0

s
f2
Bs

B̃0
S , (60)

with the modified bag parameters

B0
X =

M2
B0

s

[m̄b(m̄b) + m̄s(m̄b)]
2 BX ⇡ 1.57706 BX . (61)

In vacuum insertion approximation the unmodified bag
parameters are equal to one. More reliable values can be
obtained by using non-perturbative methods like QCD
sum rules6 or lattice QCD. Q, QS and Q̃S were deter-
mined by several lattice groups, who actually determined
all five operators of the so-called SUSY basis7. (Becirevic
et al., 2002), (Carrasco et al., 2014) and (Dowdall et al.,
2014)) use the notation O1, O2 and O3 for these three
operators:

Q ⌘ O1 , QS ⌘ O2 , Q̃S ⌘ O3 . (62)

In the case of (Bouchard et al., 2011) there is also an
additional factor 4 present.

Q ⌘ 4O1 , QS ⌘ 4O2 , Q̃S ⌘ 4O3 . (63)

(Becirevic et al., 2002) and (Carrasco et al., 2014) use
the same definitions of the bag parameters as we do

B ⌘ B1 , Bs ⌘ B2 , B̃S ⌘ B3 , (64)

while (Dowdall et al., 2014)) and (Bouchard et al., 2011)
use the modified bag parameters

B ⌘ B1 , B0
s ⌘ B2 , B̃0

S ⌘ B3 . (65)

6 A QCD sum rule determination of hQi is given e.g. in (Korner
et al., 2003). We will, however, not use the number obtained
there in our analysis.

7 In the Standard Model only Q contributes to �Ms, while in ex-
tensions of the Standard Model additional contributions of new
operators can appear. The whole set of these operators is called
SUSY-basis and typically denoted by O1...O5. It turns out, how-
ever, that all these five operators are also needed for a precise
standard model prediction of ��s.

Could reduce HQE uncertainty



Conclusions
• ΔΓs: Calculation of R2 & R3 matrix elements  

• Preliminary results at Lattice 2016 (2 spacings) 

• Running s-quark done on 4 of 5 lattices 

• To do: full error estimates 

• τ(B+)/τ(Bd): Can only do part of the calculation 

• τ(D+)/τ(D0): Test limits of HQE [Lenz, arXiv:1405.3601]


