What's next? Assessing LF non-universality from $B o K^* \ell^+ \ell^-$

Joaquim Matias Universitat Autònoma de Barcelona

Heavy Flavour: Quo Vadis?

In collaboration with: B. Capdevila, S. Descotes-Genon, L. Hofer and J. Virto

Based on: DMV'13 PRD88 (2013) 074002, DHMV'14 JHEP 1412 (2014) 125, JM'12 PRD86 (2012) 094024 HM'15 JHEP 1509(2015)104, DHMV'15 1510.04239 JHEP (2016), CDMV'16 and CDHM'16.

Starting point of optimized observables: Frank Krueger, J.M., Phys. Rev. D71 (2005) 094009

PLAN of the TALK

- Setting the stage. Where we are.
- A glimpse into the future. The next step.
- A gedanken experiment.

Setting the stage

We all know the Goal: NP in $b o s\ell\ell$

Short distance physics (SM+NP) induce effective $b\bar{s}\mu^+\mu^-$ couplings:

Goal: Global fit to the relevant processes to determine $C_7^{(\prime)}$, $C_{9,10}^{(\prime)}$

$$b \to s\gamma(^{*}) : \mathcal{H}_{\Delta F=1}^{SM} \propto \sum_{i=1}^{10} V_{ts}^{*} V_{tb} \mathcal{C}_{i} \mathcal{O}_{i} + \dots$$

$$\mathcal{O}_{7}^{(\prime)} = \frac{\alpha}{4\pi} m_{b} [\bar{s}\sigma^{\mu\nu} P_{R(L)}b] F_{\mu\nu}$$

$$\mathcal{O}_{9}^{(\prime)} = \frac{\alpha}{4\pi} [\bar{s}\gamma_{\mu} P_{L(R)}b] [(\bar{\ell}\gamma_{\mu}\ell]]$$

$$\mathcal{O}_{10}^{(\prime)} = \frac{\alpha}{4\pi} [\bar{s}\gamma_{\mu} P_{L(R)}b] [\bar{\ell}\gamma_{\mu}\gamma_{5}\ell], \dots$$

• SM Wilson coefficients up to NNLO + e.m. corrections at $\mu_{ref} = 4.8 \text{ GeV}$ [Misiak et al.]:

$$\mathcal{C}_7^{\rm SM} = -0.29, \, \mathcal{C}_9^{\rm SM} = 4.1, \, \mathcal{C}_{10}^{\rm SM} = -4.3$$

• **NP** changes short distance $C_i - C_i^{SM} = C_i^{NP}$ and induces

new operators: scalars, pseudoescalar, tensor operators...

DHMV'15 1510.04239 (updated with final LHCb data 1512.04442)

Updated GLOBAL FIT 2016:

THE OBSERVABLES

Joaquim Matias

The forest: Rare $b \rightarrow s$ processes

Inclusive

- $B \to X_s \gamma \ (BR)$ $\mathcal{C}_7^{(\prime)}$
- $B \to X_{s}\ell^{+}\ell^{-} (dBR/dq^{2})$ $\mathcal{C}_{7}^{(\prime)}, \mathcal{C}_{9}^{(\prime)}, \mathcal{C}_{10}^{(\prime)}$
- Exclusive leptonic
 - $B_s \rightarrow \ell^+ \ell^- (BR)$ $\mathcal{C}_{10}^{(\prime)} \Leftarrow$

• Exclusive radiative/semileptonic

- $B \to K^* \gamma \ (BR, S, A_l) \ \dots \ \mathcal{C}_7^{(\prime)}$
- $B \rightarrow K \ell^+ \ell^- (dBR/dq^2)$ $\mathcal{C}_7^{(\prime)}, \mathcal{C}_9^{(\prime)}, \mathcal{C}_{10}^{(\prime)} \Leftarrow$
- $\mathbf{B} \to \mathbf{K}^* \ell^+ \ell^- (dBR/dq^2, \mathbf{Optimized Angular Obs.}) \ .. \ \mathcal{C}_7^{(\prime)}, \mathcal{C}_9^{(\prime)}, \mathcal{C}_{10}^{(\prime)} \Leftarrow$
- $B_s \rightarrow \phi \ell^+ \ell^- (dBR/dq^2, \text{Angular Observables}) \dots \mathcal{C}_7^{(\prime)}, \mathcal{C}_9^{(\prime)}, \mathcal{C}_{10}^{(\prime)} \Leftarrow$
- etc.

Closer look to the structure of one of the fit's ingredient: $B \to K^*(\to K\pi)\mu\mu$

4-body angular distribution $\bar{\mathbf{B}}_{d} \rightarrow \bar{\mathbf{K}}^{*0}(\rightarrow \mathbf{K}^{-}\pi^{+})\mathbf{I}^{+}\mathbf{I}^{-}$ with three angles, invariant mass of lepton-pair q^{2} .

$$\frac{d^4\Gamma(\bar{B}_d)}{dq^2\,d\cos\theta_\ell\,d\cos\theta_K\,d\phi} = \frac{9}{32\pi}\sum_i J_i(q^2)f_i(\theta_\ell,\theta_K,\phi)$$

 $J_i(q^2)$ function of transversity (helicity) amplitudes of K*: $A_{\perp,\parallel,0}^{L,R}$ (or $H_{\pm,0}$)

depend on FF and Wilson coefficients.

Two options:

Non-optimal observables:

 $S_i = (J_i + \bar{J}_i)/(d\Gamma + d\bar{\Gamma})$

Simple but very sensitive at LO to form factor details.

Optimized observables:

$$P_5' = (J_5 + \bar{J}_5)/2\sqrt{-(J_{2s} + \bar{J}_{2s})(J_{2c} + \bar{J}_{2c})}$$

Exploit symmetry relations: $2E_{K^*}m_BV(q^2) = (m_B + m_K^*)^2A_1(q^2) + O(\alpha_s, \Lambda/m_b)$

They cancel at LO the sensitivity to soft-FF.

$$\frac{1}{\Gamma_{full}'} \frac{d^4 \Gamma}{dq^2 d\cos \theta_K d\cos \theta_I d\phi} = \frac{9}{32\pi} \left[\frac{3}{4} \mathbf{F_T} \sin^2 \theta_K + \mathbf{F_L} \cos^2 \theta_K + (\frac{1}{4} \mathbf{F_T} \sin^2 \theta_K - \mathbf{F_L} \cos^2 \theta_K) \cos 2\theta_I + \sqrt{\mathbf{F_T} \mathbf{F_L}} \left(\frac{1}{2} \mathbf{P}_4' \sin 2\theta_K \sin 2\theta_I \cos \phi + \mathbf{P}_5' \sin 2\theta_K \sin \theta_I \cos \phi \right) + 2\mathbf{P}_2 \mathbf{F_T} \sin^2 \theta_K \cos \theta_I + \frac{1}{2} \mathbf{P}_1 \mathbf{F_T} \sin^2 \theta_K \sin^2 \theta_I \cos 2\phi + \cdots \right]$$

Brief flash on the anomalies: Back to 2013

Why so much excitement in Flavour Physics in that year?

First measurement by LHCb of the basis of optimized observables P_i with 1 fb⁻¹:

All the focus was on the optimized observable P'_5 that deviated in the bin [4,8.68] GeV² near 4σ .

BUT the relevant point.....indeed is the COHERENT PATTERN among the relevant observables [S. Descotes-Genon, J.M., J. Virto'13].

 \Rightarrow Symmetries among $A_{\perp,\parallel,0}$ [Egede, JM, Reece, Ramon'12] and [Serra, JM]

 \Rightarrow imply relations among the observables above.

Joaquim Matias

What's next? Assessing LF non-universality from $B \to K^* \ell^+ \ell^-$

Symmetries of the angular distribution $B \to K^*(\to K\pi)\mu^+\mu^-$

[Egede, Hurth, JM, Ramon, Reece'10]

An important step forward was the identification of the symmetries of the distribution:

Transformation of amplitudes leaving distribution invariant.

All physical information of the massless distribution encoded in 3 moduli + 3 complex scalar products - 1 constraint (relation among n_i): 3 + 3 × 2 - 1 = 8

$$\begin{split} |n_{\parallel}|^{2} &= \frac{2}{3}J_{1s} - J_{3} \,, \qquad |n_{\perp}|^{2} \;\; = \;\; \frac{2}{3}J_{1s} + J_{3} \,, \qquad |n_{0}|^{2} = J_{1c} \\ n_{\perp}^{\dagger}n_{\parallel} &= \frac{J_{6s}}{2} - iJ_{9} \,, \qquad n_{0}^{\dagger}n_{\parallel} \;\; = \;\; \sqrt{2}J_{4} - i\frac{J_{7}}{\sqrt{2}} \,, \qquad n_{0}^{\dagger}n_{\perp} = \frac{J_{5}}{\sqrt{2}} - i\sqrt{2}J_{8} \end{split}$$
where $n_{\parallel}^{\dagger} = (A_{\parallel}^{L}, A_{\parallel}^{R*}), \; n_{\perp}^{\dagger} = (A_{\perp}^{L}, -A_{\perp}^{R*}) \text{ and } n_{0}^{\dagger} = (A_{0}^{L}, A_{0}^{R*}).$

Symmetries of Massless Case :
$$n'_i = Un_i = \begin{bmatrix} e^{i\phi_L} & 0\\ 0 & e^{-i\phi_R} \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cosh i\tilde{\theta} & -\sinh i\tilde{\theta}\\ -\sinh i\tilde{\theta} & \cosh i\tilde{\theta} \end{bmatrix} n_i$$
.

Symmetries determine the minimal # observables for each scenario:

$$n_{obs} = 2n_A - n_S$$
 $n_{obs} = n_{Ji} - n_{dep}$ CaseCoefficients J_i AmplitudesSymmetriesObservablesDependencies $m_{\ell} = 0, A_S = 0$ 116483 $m_{\ell} = 0$ 117592 $m_{\ell} > 0, A_S = 0$ 1174101 $m_{\ell} > 0$ 1284120All symmetries (massive and scalars) were found explicitly later on.[JM, Mescia, Ramon, Virto'12]Symmetries $\Rightarrow \#$ of observables \Rightarrow determine a basis

Joaquim Matias

Is the anomaly in P'_5 a statistical fluctuation?

At Moriond2015 with 3 fb⁻¹ dataset LHCb confirmed the anomaly in P'_5 in 2 bins with $\sim 3\sigma$ each & few weeks ago Belle experiment confirmed the anomaly in P'_5 and absence of deviation in P'_4 .

We enter a new period... besides ATLAS and CMS soon will announce results for P'_5 .

Only remaining attempt of explanation within SM is that hadronic uncertainties are HUGE:

- Factorizable power corrections.
- Non-factorizable corrections/long-distance CHARM.

.. back to it later on ..

What's next? Assessing LF non-universality from $B \to K^* \ell^+ \ell^-$

- All experimental bins of BR(B⁰ → K⁰μ⁺μ⁻) and BR(B_s → φμ⁺μ⁻) exhibit a systematic deficit with respect to SM (1-3σ).
- Several low-recoil bins of $B \rightarrow P$ and $B \rightarrow V$ exhibit tensions from 1.4 to 2.5 σ .

Results of the 2016 Fit:

- Latest theory and experimental updates of $BR(B \to X_S \gamma)$, $BR(B_s \to \mu^+ \mu^-)$, $B_{(s)} \to (K^*, \phi)\mu^+ \mu^-)$, $BR(B \to Ke^+e^-)_{[1,6]}$ (or R_K) and $B \to K^*e^+e^-$ at very low q^2
- Frequentist approach: χ^2 with all theory+experimental correlations.

Result of the fit with 1D Wilson coefficient 2016 (included R_K)

Pull_{SM} quantify by how many σ the b.f.p. is preferred over the SM point { $C_i^{NP} = 0$ }. A scenario with a large SM-pull \Rightarrow big improvement over SM and better description of data. Hyp: Maximal LFUV.

Coefficient $C_i^{NP} = C_i - C_i^{SM}$	Best fit	1σ	3σ	$Pull_{\mathrm{SM}}$
$\mathcal{C}_7^{\mathrm{NP}}$	-0.02	[-0.04, -0.00]	[-0.07, 0.03]	1.2
$\mathcal{C}^{\mathrm{NP}}_{9}$	-1.11	[-1.31, -0.90]	[-1.67, -0.46]	4.9 ⇐
${\cal C}_{10}^{ m NP}$	0.61	[0.40, 0.84]	[-0.01, 1.34]	3.0
$\mathcal{C}^{\mathrm{NP}}_{7'}$	0.02	[-0.00, 0.04]	[-0.05, 0.09]	1.0
$\mathcal{C}^{\mathrm{NP}}_{9'}$	0.15	[-0.09, 0.38]	[-0.56, 0.85]	0.6
${\cal C}^{ m NP}_{10'}$	-0.09	[-0.26, 0.08]	[-0.60, 0.42]	0.5
$\mathcal{C}_9^{\rm NP}=\mathcal{C}_{10}^{\rm NP}$	-0.20	[-0.38, -0.01]	[-0.70, 0.47]	1.0
$\mathcal{C}_9^{\rm NP} = -\mathcal{C}_{10}^{\rm NP}$	-0.65	[-0.80, -0.50]	[-1.13, -0.21]	4.6 ⇐
$\mathcal{C}^{\rm NP}_{9} = -\mathcal{C}^{\rm NP}_{9'}$	-1.07	[-1.25, -0.86]	[-1.60, -0.42]	4.9 (low recoil)
$\begin{array}{c} \mathcal{C}_9^{NP} = -\mathcal{C}_{10}^{NP} \\ = -\mathcal{C}_{9'}^{NP} = -\mathcal{C}_{10'}^{NP} \end{array}$	-0.66	[-0.84, -0.50]	[-1.25, -0.20]	4.5

Impact on the anomalies of a contribution from NP $C_9^{\mu NP} = -1.1$

All anomalies and tensions gets solved or alleviated with $C_9^{NP} \sim \mathcal{O}(-1)$

Joaquim Matias

What's next? Assessing LF non-universality from $B \to K^* \ell^+ \ell^-$

Coefficient	1σ	2σ	3σ	
$\mathcal{C}_7^{\mathrm{NP}}$	[-0.02, 0.03]	[-0.04, 0.04]	[-0.05, 0.08]	• no preference
$\mathcal{C}_9^{\mathrm{NP}}$	[-1.4, -1.0]	[-1.7, -0.7]	[-2.2, -0.4]	negative
${\cal C}_{10}^{ m NP}$	[-0.0, 0.9]	[-0.3, 1.3]	[-0.5, 2.0]	 positive
${\cal C}^{ m NP}_{7'}$	[-0.02, 0.03]	[-0.04, 0.06]	[-0.06, 0.07]	 no preference
$\mathcal{C}^{\mathrm{NP}}_{9'}$	[0.3, 1.8]	[-0.5, 2.7]	[-1.3, 3.7]	 positive
$\mathcal{C}^{\mathrm{NP}}_{10'}$	[-0.3, 0.9]	[-0.7, 1.3]	[-1.0, 1.6]	ullet ~ positive

- C_9 is consistent with SM only **above 3** σ
- All other are consistent with zero at 1σ except for C'_9 (at 2σ).
- The Pull_{SM} for the 6D fit is 3.6σ .

How much the fit results depend on the details?

There are only 3 updated analysis of the full set of observables of $b \rightarrow s\ell\ell$:

- Descotes-Hofer-Matias-Virto (DHMV). We use for B → K*:
 Full dataset, optimized observables P_i, we use Khodjamirian FF. Frequentist, Δχ²-fit.
- 2) Altmannshofer-Straub (AS) and indirectly Bharucha-Zwicky for FF. They use for $B \to K^*$: A slightly smaller dataset, non-optimized observables S_i , they use BSZ FF. Frequentist, $\Delta \chi^2$ -fit.
- 3) **Hurth-Mahmoudi-Neshatpour.** They use a mixed up both and they use absolute χ^2 method.

Figure: We show the 3 σ regions allowed using FF in BSZ'15 in the full FF approach (long-dashed blue) compared to our reference fit with the SFF approach (red, with 1,2,3 σ contours). Both methods are in excellent agreement.

Joaquim Matias

... Focus on $B \to K^* \mu \mu$ for a moment...

Are hadronic uncertainties correctly estimated?

Let's analyze each error's source & comparison with other works in the literature...

The structure of $B \to K^* \ell^+ \ell^-$

$$\mathcal{M} \propto (\mathcal{A}_{V}^{\mu} + \mathcal{H}_{V}^{\mu})\bar{\ell}\gamma_{\mu}\ell + \mathcal{A}_{A}^{\mu}\bar{\ell}\gamma_{\mu}\gamma_{5}\ell$$

$$\mathcal{A}_{V}^{\mu} = C_{7}\frac{2im_{b}}{q^{2}}q_{\rho}\langle\bar{K}^{*}|\bar{s}\sigma^{\rho\mu}P_{R}b|\bar{B}\rangle + C_{9}\langle\bar{K}^{*}|\bar{s}\gamma^{\mu}P_{L}b|\bar{B}\rangle$$

$$\mathcal{A}_{A}^{\mu} = C_{10}\langle\bar{K}^{*}|\bar{s}\gamma^{\mu}P_{L}b|\bar{B}\rangle$$

$$\mathcal{H}_{V}^{\mu} \propto i\int d^{4}x \ e^{iq\cdot x}\langle\bar{K}^{*}|T[\bar{c}\gamma^{\mu}c]\mathcal{H}_{c}|\bar{B}\rangle$$

IQCDF: QCDF + symmetries among FF At LO in α_s and Λ/m_b :

$$\frac{m_B}{m_B + m_{K^*}} \mathsf{V}(\mathsf{q}^2) = \frac{m_B + m_{K^*}}{2E} \mathsf{A}_1(\mathsf{q}^2) = \mathsf{T}_1(\mathsf{q}^2) = \frac{m_B}{2E} \mathsf{T}_2(\mathsf{q}^2) = \xi_{\perp}(E)$$
$$\frac{m_{K^*}}{E} \mathsf{A}_0(\mathsf{q}^2) = \frac{m_B + m_{K^*}}{2E} \mathsf{A}_1(\mathsf{q}^2) - \frac{m_B - m_{K^*}}{m_B} \mathsf{A}_2(\mathsf{q}^2) = \frac{m_B}{2E} \mathsf{T}_2(\mathsf{q}^2) - \mathsf{T}_3(\mathsf{q}^2) = \xi_{\parallel}(E)$$

4-types of corrections included	Factorizable	Non-Factorizable	
α_s -QCDF	$\Delta F^{lpha_{s}}(q^{2})$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
power-corrections	$\Delta F^{\Lambda}(q^2)$	LCSR with single soft gluon contribution	

FF decomposition: $\mathbf{F}^{\mathsf{full}}(\mathbf{q}^2) = F^{soft}(\xi_{\perp}, \xi_{\parallel}) + \Delta F^{\alpha_s}(q^2) + \Delta F^{\Lambda}(q^2)$

Joaquim Matias

What's next? Assessing LF non-universality from $B \to K^* \ell^+ \ell^-$

B-meson distribution amplitudes.

FF-KMPW	$F^i_{BK^{(*)}}(0)$	b_1^i
f^+_{BK}	$0.34\substack{+0.05\\-0.02}$	$-2.1^{+0.9}_{-1.6}$
f_{BK}^0	$0.34\substack{+0.05\\-0.02}$	$-4.3^{+0.8}_{-0.9}$
f_{BK}^T	$0.39\substack{+0.05 \\ -0.03}$	$-2.2^{+1.0}_{-2.00}$
V ^{BK*}	0.36 ^{+0.23} -0.12	$-4.8\substack{+0.8 \\ -0.4}$
$A_1^{BK^*}$	$0.25^{+0.16}_{-0.10}$	$0.34\substack{+0.86\\-0.80}$
$A_2^{BK^*}$	$0.23\substack{+0.19 \\ -0.10}$	$-0.85^{+2.88}_{-1.35}$
$A_0^{BK^*}$	$0.29\substack{+0.10 \\ -0.07}$	$-18.2^{+1.3}_{-3.0}$
$T_1^{BK^*}$	$0.31\substack{+0.18 \\ -0.10}$	$-4.6\substack{+0.81\\-0.41}$
$T_2^{BK^*}$	$0.31\substack{+0.18 \\ -0.10}$	$-3.2^{+2.1}_{-2.2}$
T_3^{BK*}	$0.22\substack{+0.17\\-0.10}$	$-10.3^{+2.5}_{-3.1}$

Light-meson distribution amplitudes+EOM.

 Interestingly in BSZ (update from BZ) most relevant FF from BZ moved towards KMPW. For example:

 $V^{BZ}(0) = 0.41 \rightarrow 0.37 \quad T_1^{BZ}(0) = 0.33 \rightarrow 0.31$

• The size of uncertainty in BSZ = size of error of p.c.

FF-BSZ	$B ightarrow K^*$	$B_s \rightarrow \phi$	$B_{s} ightarrow K^{*}$
$A_{0}(0)$	0.391 ± 0.035	0.433 ± 0.035	0.336 ± 0.032
$A_{1}(0)$	$\textbf{0.289} \pm \textbf{0.027}$	0.315 ± 0.027	0.246 ± 0.023
$A_{12}(0)$	0.281 ± 0.025	0.274 ± 0.022	0.246 ± 0.023
V(0)	$\textbf{0.366} \pm \textbf{0.035}$	0.407 ± 0.033	0.311 ± 0.030
$T_{1}(0)$	0.308 ± 0.031	0.331 ± 0.030	0.254 ± 0.027
$T_2(0)$	0.308 ± 0.031	0.331 ± 0.030	0.254 ± 0.027
$T_{23}(0)$	$\textbf{0.793} \pm \textbf{0.064}$	$\textbf{0.763} \pm \textbf{0.061}$	$\textbf{0.643} \pm \textbf{0.058}$

Table: The $B \rightarrow K^{(*)}$ form factors from LCSR and their *z*-parameterization.

Table: Values of the form factors at $q^2 = 0$ and their uncertainties.

Joaquim Matias

What's next? Assessing LF non-universality from $B \to K^* \ell^+ \ell^-$

 \Rightarrow **Relevant for BSZ users**: R. Zwicky found a small error in a Distribution Amplitude used in the literature that he used as an input. This affects in particular the error of twist-4 at $\mathcal{O}(\alpha_s)$ for BSZ FF. **Implications**:

Predictions	[Bharucha, Straub, Zwicky'15.]	[Hofer, Descotes, Matias, Virto'16]	-
FFD observables $B \rightarrow K^*$ Branching ratios and S_i	changes of $\mathcal{O}(\Lambda/m_b)$ or a bit more in some FFD.	unchanged (KMPW)	
FFI observables $B \rightarrow K^*$ optimized P_i	changes $\leq \mathcal{O}(\Lambda/m_b)$ robustness of P_i	unchanged (KMPW)	
FFD observables $B_s \rightarrow \phi$ Branching ratios	changes of $\mathcal{O}(\Lambda/m_b)$	changes of $\mathcal{O}(\Lambda/m_b)$ (BSZ)	
Global analysis	Small changes of global fit expected \leq 0.4 σ	The impact of a 1σ reduction of $B_s \rightarrow \phi$ implies no signifi- cant change $< 0.1 - 0.2\sigma$ in the global fit for C_9 .	[

BUT any paper in literature relying heavily on BSZ for $B \to K^* \mu \mu$ has to evaluate and check the impact of this correction

An excellent example of the importance of having independent analyses using different FF.

Joaquim Matias

The correct treatment of Factorizable Power Corrections ΔF^{\wedge}

What are Factorizable power corrections and how they emerge? (JC'12)

$$F^{\text{full}}(q^2) = F^{\text{soft}}(\xi_{\perp,\parallel}(q^2)) + \Delta F^{\alpha_s}(q^2) + \Delta F^{\Lambda} \quad \text{with} \quad \Delta F^{\Lambda} = a_F + b_F \frac{q^2}{m_B^2} + c_F \frac{q^4}{m_B^4}$$

- Take your favorite full-FF and **compute** ΔF^{Λ} from a fit in $q^2/m_B^2 \Rightarrow$ central values a_F , b_F , c_F . Ex: $\Delta A_1/A_1|_{q^2=4GeV^2} = 6\%$ (DHMV'14)
- Scheme: choice of definition for the two soft FF:

$$\{\xi_{\perp},\xi_{\parallel}\} = \{V, A_1 + A_2\}, \{T_1, A_0\}, \{...\}...$$

 Observables are scheme independent BUT the procedure to compute them can be either scheme-independent or not. THE KEY: Treatment of Δ*F*^Λ errors!

Model	Full LCSR
independent	information
4	

 ΔF^{Λ} Errors are taken **uncorrelated** to be $\mathcal{O}(\Lambda/m_b) \times FF \simeq 0.1FF$ consistently with fit to LCSR results \rightarrow **BAD scheme's choice inflates artificially error**.

 $\Delta F^{\Lambda} = f(s_0, M, ...)$ Errors are totally correlated by particular LCSR. \rightarrow scheme independent but strongly sensitive to FF computation details/assumptions.

What's next? Assessing LF non-universality from $B \to K^* \ell^+ \ell^-$

Why JC'14 has FFI observables with huge errors and FFD smaller errors?

1) **Power correction error size**: In JC'14 they take uncorrelated errors for ΔF^{Λ} BUT their scheme choice inflates error **artificially** due to a **bad scheme's choice**.

ONLY power correction error of $\langle P_5' angle_{ extsf{[4.6]}}$	error of f.f.+p.c. scheme-1	error of f.f.+p.c. scheme-2
[]-]	in transversity basis DHMV'14	in helicity basis JC'14
NO correlations among errors of p.c. (hyp. 10%)	±0.05	±0.12 ⁻
WITH correlations among errors of p.c.	±0.03	±0.03

- 2) **Parametric errors** from $(m_q, f_{K^*}, \mu, a_i,...)$ and soft FF.
 - DHMV'14 a random scan over all parameters and take max and min.
 - JC'12 (same approach) error is factor 2 larger than: DHMV'14, BSZ'15 and also Bobeth et al.'13.

$$err[\langle P_5'\rangle_{[4,6]}^{DHMV'16}] = \pm 0.08(\pm 0.11 \text{ flat DHMV'14}) \quad err[\langle P_5'\rangle_{[4,6]}^{BSZ}] = \pm 0.07 \quad err[\langle P_5'\rangle_{[5,6]}^{JC'14}] = \pm 0.35$$

1) and 2) explains the artificially large errors in FFI observables P_i in JC'12 and '14.

Why JC'14 has FFI observables with huge errors and FFD smaller errors?

3) Soft form factor error (undervaluated error):

DHMV: $\xi_{\perp} = 0.31^{+0.20}_{-0.10}$ from KMPW $V = 0.36^{+0.23}_{-0.12} \rightarrow err[\langle F_L \rangle^{DHMV'16}_{[0.1,0.98]}] = \pm 0.25$

JC'14: $\xi_{\perp} = 0.31 \pm 0.04$ spread of only central values (KMPW,BZ,..) no error! $\rightarrow err[\langle F_L \rangle_{[0.1,0.98]}^{JC'14}] = \pm 0.18$. \Rightarrow This choice in ξ_{\perp} error may induce an undervaluation in JC'14 of FFD (F_L .) errors

Summary:

- Observables are scheme independent.
- The procedure to compute them is where scheme dependence enters.
- If you take the errors of p.c. uncorrelated to be less model dependent then ... an appropriate choice of scheme is mandatory not to artificially inflate your errors.

$B \rightarrow K^* \ell^+ \ell^-$: Impact of long-distance $c\bar{c}$ loops – DHMV

Long-distance contributions from *cc* loops where the lepton pair is created by an electromagnetic current.

$$C_9^{\rm eff\,i} = C_9^{\rm eff}_{\rm SM\,pert}(q^2) + C_9^{\rm NP} + s_i \delta C_9^{\rm c\bar{c}(i)}_{\rm KMPW}(q^2)$$

KMPW implies $s_i = 1$, but we vary $s_i = 0 \pm 1$, $i = 0, \bot, \parallel$.

Joaquim Matias

Universitat Autònoma de Barcelona

What's next? Assessing LF non-universality from $B \to K^* \ell^+ \ell^-$

Literature estimates -based on real computations- of long-distance charm

Different parametrization and estimates of the soft gluon emission and the charmonium effect.

• Comparison of non-factorizable including long-distance charm-loop error estimates of 3 papers:

Focus only on charm error of bins [1,6], [4,6] of P'_5

	bin[1,6]	bin[4,6]
DHMV'14	±0.10	± 0 .07
JC'12	±0.09	—
BSZ'15	±0.06	±0.05

How much shall we arbitrarily increase charm error in order to explain the anomaly in bin [4,6] of P'_5 ?

 \Rightarrow LHCb measurement is -0.30 ± 0.16 after adding quadratically all other errors one would STILL need to increase non-factorizable error by 6 to get agreement with SM!

How can we test if charm-loops have been correctly estimated?

Is there a clear signal of a q^2 dependence after including KMPW long-distance computation?

Compute C_9^{NP} bin-by-bin, if the values obtained are flat, charm is well estimated.

Figure: Determination of C_9 from the reference fit restricted to the data available in a given q^2 -region.

- Notice we use KMPW for $B \rightarrow K^*$. We force in this plot all New Physics in $C_9!!$
- Notice the excellent agreement of bins [2,5], [4,6], [5,8]. $C_9^{NP[2,5]} = -1.6 \pm 0.7$, $C_9^{NP[4,6]} = -1.3 \pm 0.4$, $C_9^{NP[5,8]} = -1.3 \pm 0.3$
- First bin is afflicted by lepton-mass effects.
- We do not find any indication for a q^2 -dependence in C_9 neither in the plots nor in a 6D fit adding $a^i + b^j s$ to C_9^{eff} for $i = K^*, K, \phi$. \rightarrow disfavours again charm explanation.

What's next? Assessing LF non-universality from $B \to K^* \ell^+ \ell^-$

There is certain confusion in the literature related to the interpretation of [Ciuchini et al.'15]. Let's clarify it:

1) The main plot shown in that paper for P'_5 that fits perfectly with data is simply the obvious consequence of a fit and contains no information: this is not a computation but just a fit.

• They $c\bar{c}$ contributions to helicity amplitudes are called the \tilde{g}_i functions. BUT

- \tilde{g}_i were REALLY computed by KMPW (notation g_i^{KMPW}) via soft gluon exchange in LCSR.
- Ciuchini et al. substitute the computation by a fit $\tilde{g}_i^{CFFMPSV} \propto f(h_+, h_-, h_0)$.
- They introduce an **arbritary** parametrization $h_{\lambda} = h_{\lambda}^{(0)} + h_{\lambda}^{(1)}q^2 + h_{\lambda}^{(2)}q^4$ and fit LHCb data @low-q².

...18 free parameters can fit easily anything.

• It is obvious that none of the two plots can be taken as a 'prediction' (even if they call it 'prediction'): \rightarrow Once new data on P_i (from LHCb, Belle, ATLAS,..) appear the 'prediction' change.

They use BSZ (recompute), check with KMPW? wrong statistical interpretation.

The paper has basically two parts:

2) Part-I Unconstrained fit: They simply confirm our results of the global fit (we obviously agree).

Consider:

$$|C_9^i - C_9^{SM}| = |2C_1 ilde{g}_i^{CFFMPSV}| = |2C_1 ilde{g}_i^{KMPW} + C_9^{NP}$$

Their fit to the $|\tilde{g}_i^{CFFMPSV}|$ show a constant shift everywhere with respect to $|\tilde{g}_i^{KMPW}|$. Two options:

...this universal shift is C_9^{NP} (same as R_K).

...or a universal charm q²-independent coming from?? unable to explain nor R_{κ} neither any LFVU.

If one accepts that $R_{\mathcal{K}}$ is New Physics in C_9^{NP} inserting this into P'_5 leaves very little space for extra non-factorizable contributions invalidating the second option.

3) Part-II Constrained fit: This part of the paper is highly 'controversial'.

$$|C_9^i - C_9^{SM}| = |2C_1 ilde{g}_i^{CFFMPSV}| = |2C_1 ilde{g}_i^{KMPW} + C_9^{NP}|$$

- They consider the result of KMPW at q² ≤ 1 GeV² as an estimate of the charm loop effect.
- Problem 1: They tilt the fit at very-low *q*² inducing artificially a high-*q*² effect.
- Problem 2: Precisely below 1 GeV² there are well known lepton mass effects not considered here.
- Problem 3: KMPW computed the real part of long-distance charm but CFFMPSV imposes real and imaginary from fit.

 $Re[g_1] \simeq Re[g_2]$ in KMPW while $Re[g_1]$ is totally different than $Re[g_2]$ in CFFMPSV!!!

KMPW (left): Dashed is $2C_1\tilde{g}_1$ indistinguishable from $2C_1\tilde{g}_2$.

A glimpse into the future: Wilson coefficients versus Anomalies

		R_{K}	$\langle P_5' angle_{ extsf{[4,6],[6,8]}}$	${\cal B}_{{\it B_s} ightarrow \phi\mu\mu}$	$\mathcal{B}_{\mathcal{B}_{s} ightarrow \mu \mu}$	low-recoil	best-fit-point
CNP	+						
C ₉	_	\checkmark	✓ [100%]	\checkmark		\checkmark	Х
сNP	+	\checkmark	[36%]	\checkmark	\checkmark	\checkmark	Х
C ₁₀	_		√ [32%]				
Car	+		[21%]	\checkmark		\checkmark	Х
Cg/	—	\checkmark	✓ [36%]				
Cia	+	\checkmark	✓ [75%]				
C10 ⁷	—		[75%]	\checkmark	\checkmark	\checkmark	X
				But also $\mathcal{C}_7^{NP}, \mathcal{C}_7', \dots$			

Table: (\checkmark) indicates that a shift in the Wilson coefficient with this sign moves the prediction in the right direction.

- $C_9^{NP} < 0$ is consistent with all anomalies. This is the reason why it gives a strong pull.
- C_{10}^{NP} , $C'_{9,10}$ fail in some anomaly. BUT
 - $\Rightarrow C_{10}^{NP}$ is the most promising coefficient after C_9 , but not enough.
 - $\Rightarrow C'_9, C'_{10}$ seems quite inconsistent between the different anomalies and the global fit.
- Conspiracies among Wilson coefficients change the situation, i.e., $C_{10} C'_{10} > 0$ is ok, both +.

NEXT STEP?

NATURE shows two different faces.....

The strongest signal of New Physics is in C_9 the most difficult coefficient

- The only coefficient affected by long-distance charm contributions.
- Maybe for this reason it hidden for so long...

There are clear indications that NP is lepton-flavour non-universal

• These observables are free from long-distance charm pollution in the SM in C_9 \Rightarrow the discovery of NP in C_9 is then out of question.

[Capdevila, SDG, JM, Virto'16]

Can one construct observables able to probe:

a) only the short distance part of C_9^{ℓ} .

 \rightarrow fully free from long distance charm effects in the SM.

- b) the amount of lepton flavour non-universality between electrons and muons?
- c) other Wilson coefficients different from C_9 .

Answer: Of course yes: R_K , R_{K^*} , R_{ϕ} .

A clear deviation is an unquestionable signal of flavour non-universal New Physics:

CHANGE: NP or charm by NP \times charm

ONLY in presence of New Physics charm reemerges ...

.... can we add to a) and b) the excellent properties of optimized observables?

$$\left\langle \hat{Q}_{i} \right\rangle = \left\langle P_{i}^{\mu} \right\rangle - \left\langle P_{i}^{e} \right\rangle$$
 but also $\left\langle B_{i} \right\rangle = \frac{\left\langle J_{i}^{\mu} \right\rangle}{\left\langle J_{i}^{e} \right\rangle} - 1$, $\left\langle \widetilde{B}_{i} \right\rangle = \frac{\left\langle J_{i}^{\mu} / \beta_{\mu}^{2} \right\rangle}{\left\langle J_{i}^{e} / \beta_{e}^{2} \right\rangle} - 1$, $M(\widetilde{M})$

[^] means correcting for lepton-mass effects in the 1st bin. Charm discussion in SM become obsolete!

	$R_{K}[1, 6]$	$R_{K^*}[1.1, 6]$	$R_{\phi}[1.1,6]$
SM	1.00 ± 0.01	1.00 ± 0.01 [1.00 ± 0.01]	1.00 ± 0.01
$\mathcal{C}_9^{\mathrm{NP}} = -1.11$	0.79 ± 0.01	0.87 ± 0.08 $[0.84 \pm 0.02]$	0.84 ± 0.02
$C_9^{\rm NP} = -C_{9'}^{\rm NP} = -1.09$	1.00 ± 0.01	0.79 ± 0.14 [0.74 ± 0.04]	0.74 ± 0.03
$C_9^{ m NP} = -C_{10}^{ m NP} = -0.69$	0.67 ± 0.01	0.71 ± 0.03 $[0.69 \pm 0.01]$	0.69 ± 0.01
$C_9^{\rm NP} = -1.15, C_{9'}^{\rm NP} = 0.77$	0.91 ± 0.01	0.80 ± 0.12 $[0.76 \pm 0.03]$	0.76 ± 0.03
$C_9^{\rm NP} = -1.16, C_{10}^{\rm NP} = 0.35$	0.71 ± 0.01	0.78 ± 0.07 $[0.75 \pm 0.02]$	0.76 ± 0.01
$C_9^{\rm NP} = -1.23, C_{10'}^{\rm NP} = -0.38$	0.87 ± 0.01	0.79 ± 0.11 $[0.75 \pm 0.02]$	0.76 ± 0.02
$\left. \begin{array}{c} \mathcal{C}_{9}^{\rm NP} = -\mathcal{C}_{9'}^{\rm NP} = -1.14 \\ \\ \mathcal{C}_{10}^{\rm NP} = -\mathcal{C}_{10'}^{\rm NP} = 0.04 \end{array} \right\}$	1.00 ± 0.01	0.78 ± 0.13 $[0.74 \pm 0.04]$	0.74 ± 0.03
$\left.\begin{array}{c} \mathcal{C}_{9}^{\rm NP} = -\mathcal{C}_{9'}^{\rm NP} = -1.17 \\ \mathcal{C}_{10}^{\rm NP} = \mathcal{C}_{10'}^{\rm NP} = 0.26 \end{array}\right\}$	0.88 ± 0.01	0.76 ± 0.12 $[0.71 \pm 0.04]$	0.71 ± 0.03

Joaquim Matias

Universitat Autònoma de Barcelona

What's next? Assessing LF non-universality from $B \to K^* \ell^+ \ell^-$

Category-I: Q_i observables. The example: P'_5 versus $Q_5 = P'_5^{\mu} - P'_5^{e}$

- Soft FF independent at LO exactly.
- As explained long-distance charm is included in a very conservative way.
- Large sensitivity to C₉. SM (DHMV'15):

$$\begin{array}{lll} \left< {{\it P}_5'} \right>_{[4,6]} & = & -0.82 \pm 0.08 \\ \left< {{\it P}_5'} \right>_{[6,8]} & = & -0.94 \pm 0.08 \end{array}$$

- Soft FF independent at LO exactly.
- Long-distance charm insensitive in the SM.

• Large sensitivity to LFU violation δC_9 . SM (CDMV'16): (< 10⁻³ without lepton mass)

$$egin{array}{rcl} \left< \hat{Q_5}
ight>_{[4,6]} &=& -0.002 \pm 0.017 \ \left< \hat{Q_5}
ight>_{[6,8]} &=& +0.002 \pm 0.010 \end{array}$$

In presence of NP hadronic uncertainties reemerge BUT Q_5 error size is HALF P'_5 at the anomaly!

Category-I: Qi observables. Disentangling scenarios

SM predictions (grey boxes), NP: $C_{9\mu}^{NP} = -1.11$ Sc-1, $C_{9\mu}^{NP} = -C_{10\mu}^{NP} = -0.65$ Sc-2, $C_{9\mu}^{NP} = -C_{9\mu}^{\prime NP} = -1.18$, $C_{10\mu}^{NP} = C_{10\mu}^{\prime NP} = 0.38$ Sc-4.

 $Q_1 = P_1^{\mu} - P_1^e$ $Q_2 = P_2^{\mu} - P_2^e$ $Q_4 = P_4'^{\mu} - P_4'^e$ $Q_5 = P_5'^{\mu} - P_5'^e$

- Q₁ and Q₄ are excellent probes of existence of RHC with flat signature in scenario 1 (Q₁, Q₄) and 2 (Q₁) but not in scenario 4.
- Q_2 , Q_4 and Q_5 show a distinctive signature for scenario 1 and 2.

Category-II: Linear dependence on C_9

$$\begin{aligned} \beta_{\ell} J_{6s} - 2i J_{9} &= 16 \beta_{\ell}^{2} N^{2} m_{B}^{2} (1-\hat{s})^{2} C_{10}^{\ell} \left[2C_{7} \frac{\hat{m}_{b}}{\hat{s}} + C_{9}^{\ell} \right] \xi_{\perp}^{2} + \dots \\ \beta_{\ell} J_{5} - 2i J_{8} &= 8\beta_{\ell}^{2} N^{2} m_{B}^{2} (1-\hat{s})^{3} \frac{\hat{m}_{K^{*}}}{\sqrt{\hat{s}}} C_{10}^{\ell} \left[C_{7} \hat{m}_{b} \left(\frac{1}{\hat{s}} + 1 \right) + C_{9}^{\ell} \right] \xi_{\perp} \xi_{||} + \dots \end{aligned}$$

There are two observables:

$$B_5 = rac{J_5^\mu}{J_5^e} - 1 \quad B_{6s} = rac{J_{6s}^\mu}{J_{6s}^e} - 1$$

 \Rightarrow Soft form factor independent at LO + long-distance charm insensitive in the SM and linear in δC_9 .

$$C_j^e = C_j \quad C_j^\mu = C_j + \delta C_j \qquad j
eq 9$$

• $\delta C_j = C_j^{\mu} - C_j^{e}$ measure the LFU violation and C_j^{e} can include LFU NP effects.

$$C_{9}^{e(i)} = C_{9} + \Delta C_{9}^{(i)} \quad C_{9}^{\mu(i)} = C_{9} + \delta C_{9} + \Delta C_{9}^{(i)} \qquad i = \bot, \|, 0$$

• ΔC_{q}^{i} is the long-distance contributions from $c\bar{c}$ loops identical for electron and muon. Two types:

- Transversity-dependent long distance charm (TD): $\Delta C_9^{\perp,\parallel,0}$ all different.
- Transversity-independent long distance charm (TI): $\Delta C_9^{\perp} = \Delta C_9^{\parallel} = \Delta C_9^{\parallel} = \Delta C_9$

• Lepton-mass differences generates a contribution different from zero in the first bin.

....but if on an event-by-event basis experimentalist can measure $\langle J_i^{\mu}/\beta_{\mu}^2 \rangle$

$$\left\langle \widetilde{B_5} \right\rangle = rac{\left\langle J_5^{\mu} / \beta_{\mu}^2 \right\rangle}{\left\langle J_5^{e} / \beta_{e}^2 \right\rangle} - 1 \qquad \left\langle \widetilde{B_{6s}} \right\rangle = rac{\left\langle J_{6s}^{\mu} / \beta_{\mu}^2 \right\rangle}{\left\langle J_{6s}^{e} / \beta_{e}^2 \right\rangle} - 1$$

SM Prediction: $\hat{B}_i = 0.00 \pm 0.00$. $\Delta C_{9,\perp,\parallel,0}$ kinematically suppressed ($\hat{s} \rightarrow 0$):

$$\widetilde{B_{5}} = \frac{\delta C_{10}}{C_{10}} + \frac{2(C_{10} + \delta C_{10})\delta C_{9}\hat{s}}{C_{10}(2C_{7}\hat{m}_{b}(1+\hat{s}) + (2C_{9} + \Delta C_{9,0} + \Delta C_{9,\perp})\hat{s})} + \dots$$

$$\widetilde{B_{6s}} = \frac{\delta C_{10}}{C_{10}} + \frac{2(C_{10} + \delta C_{10})\delta C_{9}\hat{s}}{C_{10}(4C_{7}\hat{m}_{b} + (2C_{9} + \Delta C_{9,0} + \Delta C_{9,\parallel})\hat{s})} + \dots \text{ (assume no - RHC)}$$

Category-III: A first attempt versus removing TI-charm at very-low q^2

Aim:

- to construct an observable M and more interesting \widetilde{M} such that it cancels exactly at LO the dependence on TI charm ΔC_9 (TD charm cannot be removed).
- a clean observable in presence of New Physics (at least in some scenario).

$$M = \frac{(J_5^{\mu} - J_5^{e})(J_{6s}^{\mu} - J_{6s}^{e})}{J_{6s}^{\mu}J_5^{e} - J_{6s}^{e}J_5^{\mu}}, \quad \widetilde{M} = \frac{(\beta_e^2 J_5^{\mu} - \beta_{\mu}^2 J_5^{e})(\beta_e^2 J_{6s}^{\mu} - \beta_{\mu}^2 J_{6s}^{e})}{\beta_e^2 \beta_{\mu}^2 (J_{6s}^{\mu} J_5^{e} - J_{6s}^{e} J_5^{\mu})}.$$

Let's focus on \widetilde{M} :

PROS At LO and in presence of NP only in δC_9 it cancels exactly TI-charm ΔC_9 (but not TD-charm):

$$\widetilde{M} = -\frac{\delta C_9 \hat{s}}{C_7 \hat{m}_b (1-\hat{s})} + \dots$$

PROS It shows a maximal sensitivity to NP at very low- q^2 (first bin) (scenario 1 versus 2). CONS In presence of NP in δC_{10} long distance charm reemerge. CONS It becomes too uncertain when $B_5 \simeq B_{6s}$ (low-recoil for example).

Figure: SM predictions (grey boxes) and NP predictions (red boxes) for M up (\tilde{M} down) in the 4 scenarios.

Joaquim Matias

Universitat Autònoma de Barcelona

What's next? Assessing LF non-universality from $B \to K^* \ell^+ \ell^-$

A gedanken experiment

Hypothesis: New Physics is maximally Lepton Flavour non-universal \Rightarrow Only muons receive NP.

Question: How the data (blue) for Q_i and B_i may look like (error bars are only to guide the eye)?

First bin seems to show a preference for $C_9 = -C_{10} = -0.65$ but last-low q^2 for $C_9 = -1.11$.

Conclusions

- The global analysis of $b \to s\ell^+\ell^-$ with 3 fb⁻¹ dataset **shows that the solution** we proposed in 2013 to solve the anomaly with a contribution $C_9^{\text{NP}} \simeq -1$ is confirmed and reinforced. But all other Wilson coefficients may switch on soon.
- The fit result is very robust and does not show a significant dependence nor on the theory approach used neither on the observables used once correlations are taken into account.
 ⇒ IQCDF and FULL-FF are nicely complementary methods.
- We have shown that the treatment of uncertainties entering the observables in B → K*µµ is indeed under excellent control and the alternative explanations to New Physics are indeed not in very solid ground. We have proven:
 - **Factorizable p.c.**: While using power corrections with uncorrelated errors is perfectly fine we have shown that an inadequate scheme's choice (JC'14) inflates artificially errors.
 - **Charm-loops**: They all predict bin [6,8] above [4,6] against data. Long-distance charm cannot explain nor R_{κ} neither any LFUV observable (miss the global picture). Also fundamental problems detected in most analysis.
- We propose a new generation of **super-optimized observables** sensitive to LFUV, soft form factor independent at LO and insensitive to long distance charm in the SM. Those will help to fully confirm the NP signal observed in *P*'₅ and switch on other Wilson coefficients.

Joaquim Matias

BACK-UP SLIDES

JC-I: Without leaving any loose ends... Is the procedure to compute P'_5 accidentally scheme independent? NO if errors are taken uncorrelated

<u>CDHM'16</u>: In JC'14 the computation of P'_5 is argued to be scheme independent. In helicity basis we find:

$$\begin{split} P_{5}' &= P_{5}'|_{\infty} \Big[1 \quad + \quad \frac{\mathbf{aV}_{-} - \mathbf{aT}_{-}}{\xi_{\perp}} \frac{m_{B}}{|k|} \frac{m_{B}^{2}}{q^{2}} C_{7}^{\text{eff}} \frac{C_{9,\perp}C_{9,\parallel} - C_{10}^{2}}{(C_{9,\perp}^{2} + C_{10}^{2})(C_{9,\perp} + C_{9,\parallel})} - \frac{\mathbf{aV}_{+}}{\xi_{\perp}} \frac{\mathbf{2C}_{9,\parallel}}{\mathbf{C}_{9,\perp} + \mathbf{C}_{9,\parallel}} \\ &+ \quad \frac{aV_{0} - aT_{0}}{\xi_{\parallel}} 2C_{7}^{\text{eff}} \frac{C_{9,\perp}C_{9,\parallel} - C_{10}^{2}}{(C_{9,\parallel}^{2} + C_{10}^{2})(C_{9,\perp} + C_{9,\parallel})} + \mathcal{O}\left(\frac{m_{K^{*}}^{2}}{m_{B}^{2}}, \frac{q^{2}}{m_{B}^{2}}\right) \Big] \end{split}$$

OK with JC'14 except for the missing term aV_+ . Choosing a scheme with aV_- or aT_- is equivalent.

Only apparently a scheme independent computation in helicity basis for a subset of schemes! The computation should be scheme independent in any basis!!!!

In transversity basis becomes obvious that scheme's choice matters if no correlations are considered:

$$P'_{5} = P'_{5}|_{\infty} \Big[1 + \frac{aV}{\xi_{\perp}} \frac{C_{9,\parallel}}{C_{9,\perp} + C_{9,\parallel}} + \frac{aV - 2aT_{1}}{\xi_{\perp}} \frac{m_{B}^{2}}{q^{2}} C_{7}^{\text{eff}} \frac{C_{9,\perp}C_{9,\parallel} - C_{10}^{2}}{(C_{9,\perp}^{2} + C_{10}^{2})(C_{9,\perp} + C_{9,\parallel})} - \frac{aA_{1}}{\xi_{\perp}} \frac{C_{9,\perp}C_{9,\parallel} + C_{10}^{2}}{2(C_{9,\perp}^{2} + C_{10}^{2})} + \dots \Big]$$

The weights of **aV** & **aT_{1}** are MANIFESTLY different: $P'_{5}^{(q^{2}=6)} = P'_{5}|_{\infty}(1 + [0.82 \text{ aV} - 0.24 \text{ aT}_{1}]/\xi_{\perp}(6) + \dots + \xi_{\perp}^{(1)}(q^{2}) = \frac{m_{B}}{m_{B} + m_{K^{*}}} V(q^{2}) \Rightarrow aV = 0 \ (our) \quad or \quad \xi_{\perp}^{(2)}(q^{2}) = T_{1}(q^{2}) \Rightarrow aT_{1} = 0 \ (JC) > 3 \ times \ bigger$

Why JC'14 has FFI observables with huge errors and FFD smaller errors?

3) Soft form factor error (undervaluated error):

DHMV: $\xi_{\perp} = 0.31^{+0.20}_{-0.10}$ from KMPW $V = 0.36^{+0.23}_{-0.12} \rightarrow err[\langle F_L \rangle_{[0.1,0.98]}^{DHMV'16}] = \pm 0.25$

JC'14: $\xi_{\perp} = 0.31 \pm 0.04$ spread of only central values (KMPW,BZ,..) no error! $\rightarrow err[\langle F_L \rangle_{[0.1,0.98]}^{JC'14}] = \pm 0.18$. \Rightarrow This choice of error in ξ_{\perp} induces an undervaluation in JC'14 of the errors for FFD observables

Summary:

Now you have all arguments to analyze misleading statements like:

"Since observables cannot depend on arbitrary scheme definitions, their deviation from the ∞ -mass limit cannot be reduced" \dagger

1) It is not the observables, but the way to compute them where scheme dependence enter!

2) The goal is not to reduce it but the opposite **NOT TO INFLATE THEM**.

3) **Soft form factor error** (undervaluated error):

DHMV: $\xi_{\perp} = 0.31^{+0.20}_{-0.10}$ from Full-FF of KMPW $V = 0.36^{+0.23}_{-0.12}$ with error included. JC'14: $\xi_{\perp} = 0.31 \pm 0.04$ (spread of only central values (KMPW,BZ,...) no error taken!).

FF budget:

$$A_1 = A_1^{soft} + \Delta A_1^{\alpha_s} + \Delta A_1^{\Lambda}$$

$$A_1 = 0.25^{+0.16}_{-0.10} (\text{KMPW})$$

• Our error budget:

•
$$A_1^{soft} = \frac{m_B}{m_B + m_e^*} \xi_{\perp}(0) = 0.26^{+0.17}_{-0.09}$$
 (KMPW)

- $\Delta A_1^{\alpha_s}$ is $\mathcal{O}(\alpha_s)$ and ΔA_1^{Λ} is $\mathcal{O}(\Lambda/m_b) \times FF \simeq 0.1FF$ of full-FF.
- JC error budget:

•
$$A_1^{soft} = \frac{m_B}{m_B + m_e^*} \xi_{\perp}(0) = 0.26 \pm 0.03$$

• $\Delta A_1^{\alpha_s}$ is $\mathcal{O}(\alpha_s)$ and ΔA_1^{Λ} is $\mathcal{O}(\Lambda/m_b) \times FF \simeq 0.1FF$ of full-FF.

⇒ This choice of error in ξ_{\perp} induces an undervaluation in JC'14 of the errors for FFD observables: A_{FB} , F_L and S_i .

[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli'15].

- They missed global picture: No explanation for R_K , any future LFUV, low-recoil,....
- They fit 18 free parameters to data $h_{\lambda} = h_{\lambda}^{(0)} + h_{\lambda}^{(1)}q^2 + h_{\lambda}^{(2)}q^4$. 1) KMPW consider it arbitrary. Not surprising to fit any shape with so many parameters. 2) Those numbers ARE NOT PREDICTIONS but just a fit to LHCb data, namely LHCb data (or new data comes) \rightarrow those fit numbers change

v1: I showed using the symmetries of the distribution that they had internal inconsistencies of more than 4 σ .

v2: All their fit based on FFD observables (S_i) rely fully on old BSZ-FF: **need to be recomputed** with **corrected** BSZ... v3?. Even though there are other more serious problems:

Forcing the fit at very low- q^2 (RED plot) tilts the rest of the fit

 \rightarrow incorrect interpretation of result,...

Moreover, lepton-mass effects at 1st bin totally missing.

Joaquim Matias

When they do not tilt the fit at low-q² (BLUE plot) then their interpretation is correct:

RESULTS FOR THE HADRONIC PARAMETERS ha (again)

Parameter	Absolute value	Phase (rad)
$h_0^{(0)}$	$(5.8 \pm 2.1) \cdot 10^{-4}$	3.54 ± 0.56
$h_0^{(1)}$	$(2.9 \pm 2.1) \cdot 10^{-4}$	0.2 ± 1.1
$h_0^{(2)}$	$(3.4\pm2.8)\cdot10^{-5}$	-0.4 ± 1.7
$h_{+}^{(0)}$	$(4.0 \pm 4.0) \cdot 10^{-5}$	0.2 ± 1.5
$h_{+}^{(1)}$	$(1.4\pm 1.1)\cdot 10^{-4}$	0.1 ± 1.7
$h_{+}^{(2)}$	$(2.6\pm2.0)\cdot10^{-5}$	3.8 ± 1.3
$h_{-}^{(0)}$	$(2.5\pm1.5)\cdot10^{-4}$	$-1.53 \pm 0.75 \cup 1.85 \pm 0.45$
$h_{-}^{(1)}$	$(1.2\pm 0.9)\cdot 10^{-4}$	$-0.90\pm0.70\cup0.80\pm0.80$
$h_{-}^{(2)}$	$(2.2\pm1.4)\cdot10^{-5}$	0.0 ± 1.2

|h-⁽²⁾| differs from zero **at more than 68.3% probability,** thus **no firm conclusion** on the interpretation of the hadronic correction **can be drawn**

What's next? Assessing LF non-universality from B $\to \, K^* \, \ell^+ \, \ell^-$

At Lathuile conference 2016 I proved using the symmetries of angular distribution that Ciuchini et al. paper had internal inconsistencies of more than 4σ and that the paper should be put in quarantene...

From Marco Fedele's talk @ Rare B decays: Theory and Experiment 2016 Workshop...

Results are different from the ones we put on arXiv due to a wrong factor in S4. We thank Joaquim Matias to point us to an inconsistency in our results due to this wrong factor. Prediction from CFFMPSV^{*} of $S_5^{[4,6]}$: -0.200 ± 0.046 (Prediction? row Table 2) Prediction from BSZ of $S_5^{[4,6]}$: -0.329 ± 0.039 Prediction from DHMV of $S_5^{[4,6]}$: -0.35 ± 0.12

- BSZ and DHMV are in excellent agreement (central value difference is 6%).
- Large error differences is due to the use of different Form Factors in BSZ and DHMV.
- Our error size is substantially larger than CFFMPSV's one
- Central value of Luca differs by more than 50% with BSZ and us. And BSZ and CFFMPSV uses the SAME FORM FACTORS. All the difference is coming from huge long distance charm??
- Same exercise with P'_5 gives pretty similar error size due to P'_5 properties. (c.v. BSZ and DHMV 6%) $P'_5^{CFFMPSV} = -0.43 \pm 0.10, P'_5^{BSZ} = -0.77 \pm 0.07, P'_5^{DHMV} = -0.82 \pm 0.08$

Symmetry transformations of $A_{\perp,\parallel,0}$ led to a **consistency relation**: [Serra-Matias'14]

$$P_{2}^{rel} = \frac{1}{2} \left[P_{4}' P_{5}' + \delta_{a} + \frac{1}{\beta} \sqrt{(-1 + P_{1} + P_{4}'^{2})(-1 - P_{1} + \beta^{2} P_{5}'^{2}) + \delta_{b}} \right] \qquad P_{i} \to \langle P_{i} \rangle \left(\Delta \right)$$

where δ_a and δ_b are function of product of tiny P'_6 , P'_8 , P_3 .

This **must hold** independently of any crazy non-factorizable, factorizable, or New Physics (with no weak phases $P_i^{CP} = 0$ or new scalars) that is included inside the H_{λ} (or $A_{\perp,\parallel,0}$)

Example: \Rightarrow Using theory predictions (DHMV'15) for **bin [4,6]** one has:

 $\langle P_1 \rangle = 0.03 \quad \left\langle P_4' \right\rangle = +0.82 \quad \left\langle P_5' \right\rangle = -0.82 \quad \left\langle P_2 \right\rangle = -0.18$

consistency relation $\Rightarrow \langle P_2 \rangle^{rel} = -0.17$ ($\Delta = 0.01$ from binning). Perfect agreement. If $A_{FB} = f(F_L, S_i)$

		$CFFMPSV_{predictions}$	CFFMPSV _{full fit}	SM-BSZ ($\delta_i = 0$)	SM-DHMV
[4,6]	$egin{aligned} \left< \mathcal{A}_{ ext{FB}} \right>^{\textit{rel}} \ \left< \mathcal{A}_{ ext{FB}} \right> \end{aligned}$	-0.14 ± 0.04 +0.05 ± 0.04 ⇒ 3.4σ	-0.16 ± 0.03 +0.04 ± 0.03 ⇒ 4.7σ	$+0.11 \pm 0.05$ +0.12 ± 0.04 ⇒ 0.2σ	$+0.05 \pm 0.19$ +0.08 ± 0.11 ⇒ 0.1σ
[6,8]	$egin{array}{l} \langle m{A}_{ m FB} angle^{\it rel} \ \langle m{A}_{ m FB} angle \end{array}$	$-0.27 \pm 0.08 \\ +0.12 \pm 0.08 \Rightarrow 3.4\sigma$	$-0.15 \pm 0.05 + 0.13 \pm 0.03 \Rightarrow 4.8\sigma$		$+0.17 \pm 0.18$ +0.21 ± 0.21 ⇒ 0.1σ

This pointed a problem in the dictionary of inputs. All tables of predictions for the observables are being recomputed.

Joaquim Matias

What's next? Assessing LF non-universality from B $\rightarrow K^* \ell^+ \ell^-$

Fit	$\mathcal{C}^{\mathrm{NP}}_{9 \; \mathrm{Bestfit}}$	1σ	$Pull_{SM}$	N _{dof}	p-value (%)
All $b ightarrow s \mu \mu$ in SM	_	-	-	96	16.0
All $b ightarrow m{s}\mu\mu$	-1.09	[-1.29, -0.87]	4.5	95	63.0
All $b ightarrow m{s}\ell\ell,\ell=m{e},\mu$	-1.11	[-1.31, -0.90]	4.9	101	74.0
All $b ightarrow s \mu \mu$ excluding [6,8] region	-1.03	[-1.26, -0.79]	4.0	77	39.0
Only $b ightarrow m{s} \mu \mu$ BRs	-1.58	[-2.22, -1.07]	3.7	31	43.0
Only $b ightarrow s \mu \mu \ {\it P}_i$'s	-1.01	[-1.25, -0.73]	3.1	68	75.0
Only $b ightarrow s \mu \mu \; \mathcal{S}_i$'s	-0.95	[-1.19, -0.68]	2.9	68	96.0
Only $B o {\cal K} \mu \mu$	-0.85	[-1.67, -0.20]	1.4	18	20.0
Only $B o K^* \mu \mu$	-1.05	[-1.27, -0.80]	3.7	61	74.0
Only $B_{m{s}} o \phi \mu \mu$	-1.98	[-2.84, -1.29]	3.5	24	94.0
Only $b ightarrow s \mu \mu$ at large recoil	-1.30	[-1.57, -1.02]	4.0	78	61.0
Only $b ightarrow s \mu \mu$ at low recoil	-0.93	[-1.23, -0.61]	2.8	21	75.0
Only $b ightarrow s \mu \mu$ within [1,6]	-1.30	[-1.66, -0.93]	3.4	43	73.0
Only ${\it BR}({\it B} ightarrow{\it K}\ell\ell)_{[1,6]}, \ell={\it e},\mu$	-1.55	[-2.73, -0.81]	2.4	10	76.0
All $b ightarrow {m s} \mu \mu$ excluding large-recoil ${m B}_{m s} ightarrow \phi \mu \mu$	-1.04	[-1.26, -0.81]	4.0	80	55.0
All $b ightarrow s\ell\ell, \ell = e, \mu$ excluding large-recoil $B_{s} ightarrow \phi \mu \mu$	-1.06	[-1.26, -0.84]	4.5	86	35.0

Fit	$\mathcal{C}^{\mathrm{NP}}_{9 \; \mathrm{Bestfit}}$	1σ	$Pull_{SM}$	N _{dof}	p-value (%)
All $b ightarrow s \mu \mu$ in SM	_	-	_	96	16.0
All $b ightarrow s\mu\mu$, 20% PCs	-1.10	[-1.31, -0.87]	4.3	95	69.0
All $b ightarrow s\mu\mu$, 40% PCs	-1.08	[-1.32, -0.82]	3.8	95	73.0
All $b ightarrow s\mu\mu$, charm $ imes$ 2	-1.12	[-1.33, -0.89]	4.4	95	73.0
All $b ightarrow s\mu\mu$, charm $ imes$ 4	-1.06	[-1.29, -0.82]	4.0	95	81.0
Only $b ightarrow m{s} \mu \mu$ within [0.1,6]	-1.21	[-1.57, -0.84]	3.1	60	30.0
Only $b ightarrow s \mu \mu$ within [0.1,0.98]	0.08	[-0.92, -0.92]	0.1	13	33.0
Only $b ightarrow s \mu \mu$ within [0.1,2]	-1.03	[-1.98, -0.20]	1.3	22	4.6
Only $b ightarrow s \mu \mu$ within [1.1,2.5]	-0.74	[-1.60, 0.06]	0.9	13	85.0
Only $b ightarrow m{s}\mu\mu$ within [2,5]	-1.56	[-2.27, -0.91]	2.5	23	95.0
Only $b ightarrow m{s} \mu \mu$ within [4,6]	-1.34	[-1.73, -0.94]	3.1	16	93.0
Only $b ightarrow m{s} \mu \mu$ within [5,8]	-1.30	[-1.60, -0.98]	3.5	22	96.0
Only $b ightarrow s \mu \mu$ within [5,8]	-1.30	[-1.60, -0.98]	3.5	22	96.0

Fits considering Lepton Flavour (non-) Universality

• If NP-LFUV is assumed, NP may enter both $b \rightarrow see$ and $b \rightarrow s\mu\mu$ decays with different values.

 \Rightarrow For each scenario, we see that there is no clear indication of a NP contribution in the electron sector, whereas one has clearly a non-vanishing contribution for the muon sector, with a deviation from the Lepton Flavour Universality line.

Joaquim Matias

What happened to P_2 in 2015?

The new binning of F_L in 2015 had a temporary effect on the very interesting bin [2.5,4]

More statistics is necessary to confirm or disprove the deviation in that bin of P_2 .

Joaquim Matias

What's next? Assessing LF non-universality from $B \to K^* \ell^+ \ell^-$

Theory and experimental updates in 2016 fit

- $BR(B \rightarrow X_s \gamma)$
 - New theory update: $\mathcal{B}_{s\gamma}^{SM} = (3.36 \pm 0.23) \cdot 10^{-4}$ (Misiak et al 2015)
 - +6.4% shift in central value w.r.t 2006 \rightarrow excellent agreement with WA
- $BR(B_s \rightarrow \mu^+ \mu^-)$
 - New theory update (Bobeth et al 2013), New LHCb+CMS average (2014)
- $BR(B \rightarrow X_s \mu^+ \mu^-)$
 - New theory update (Huber et al 2015)
- $BR(B \rightarrow K \mu^+ \mu^-)$:
 - LHCb 2014 + Lattice form factors at large q^2 (Bouchard et al 2013, 2015)
- $B_{(s)} \rightarrow (K^*, \phi) \mu^+ \mu^-$: BRs & Angular Observables
 - LHCb 2015 + Lattice form factors at large q^2 (Horgan et al 2013)
- $BR(B \rightarrow Ke^+e^-)_{[1,6]}$ (or R_K) and $B \rightarrow K^*e^+e^-$ at very low q^2
 - LHCb 2014, 2015

Joaquim Matias

Universitat Autònoma de Barcelona

What's next? Assessing LF non-universality from $B \to K^* \ell^+ \ell^-$

 Flavour changing neutral current transitions only occur at loop order (and beyond) in the SM.

SM diagrams involve the charged current interaction.

• New particles can contribute at loop or tree level:

 Enhancing/suppressing decay rates, introducing new sources of CP violation or modifying the angular distribution of the final-state particles

Brief Discussion on: P'_5 and P'_4 (driving the ambulance)

 P'_5 was proposed for the first time in DMRV, JHEP 1301(2013)048

$$P_5' = \sqrt{2} \frac{\operatorname{Re}(A_0^L A_{\perp}^{L*} - A_0^R A_{\perp}^{R*})}{\sqrt{|A_0|^2 (|A_{\perp}|^2 + |A_{\parallel}|^2)}} = \sqrt{2} \frac{\operatorname{Re}[n_0 n_{\perp}^{\dagger}]}{\sqrt{|n_0|^2 (|n_{\perp}|^2 + |n_{\parallel}|^2)}}$$

with
$$n_0=(A_0^L,A_0^{R*}),\,n_\perp=(A_\perp^L,-A_\perp^{R*})$$
 and $n_\parallel=(A_\parallel^L,A_\parallel^{R*})$

• If no-RHC
$$|n_{\perp}| \simeq |n_{\parallel}| (H_{+1} \simeq 0) \Rightarrow P'_5 \propto \cos \theta_{0,\perp}(\mathbf{q}^2)$$

Brief Discussion on: P'_5 and P'_4 (driving the ambulance)

 P'_5 was proposed for the first time in DMRV, JHEP 1301(2013)048

$$P_5' = \sqrt{2} \frac{\operatorname{Re}(A_0^L A_{\perp}^{L*} - A_0^R A_{\perp}^{R*})}{\sqrt{|A_0|^2 (|A_{\perp}|^2 + |A_{\parallel}|^2)}} = \sqrt{2} \frac{\operatorname{Re}[n_0 n_{\perp}^{\dagger}]}{\sqrt{|n_0|^2 (|n_{\perp}|^2 + |n_{\parallel}|^2)}}$$

with
$$n_0=(A_0^L,A_0^{R*}),\,n_\perp=(A_\perp^L,-A_\perp^{R*})$$
 and $n_\parallel=(A_\parallel^L,A_\parallel^{R*})$

• If no-RHC
$$|n_{\perp}| \simeq |n_{\parallel}|$$
 $(H_{+1} \simeq 0) \Rightarrow P'_5 \propto \cos \theta_{0,\perp}(\mathbf{q}^2)$

In the large-recoil limit with no RHC

$$\begin{aligned} A_{\perp,\parallel}^{L} \propto (1,-1) \bigg[\mathcal{C}_{9}^{\text{eff}} - \mathcal{C}_{10} + \frac{2\hat{m}_{b}}{\hat{s}} \mathcal{C}_{7}^{\text{eff}} \bigg] \xi_{\perp}(E_{K^{*}}) & A_{\perp,\parallel}^{R} \propto (1,-1) \bigg[\mathcal{C}_{9}^{\text{eff}} + \mathcal{C}_{10} + \frac{2\hat{m}_{b}}{\hat{s}} \mathcal{C}_{7}^{\text{eff}} \bigg] \xi_{\perp}(E_{K^{*}}) \\ A_{0}^{L} \propto - \bigg[\mathcal{C}_{9}^{\text{eff}} - \mathcal{C}_{10} + 2\hat{m}_{b} \mathcal{C}_{7}^{\text{eff}} \bigg] \xi_{\parallel}(E_{K^{*}}) & A_{0}^{R} \propto - \bigg[\mathcal{C}_{9}^{\text{eff}} + \mathcal{C}_{10} + 2\hat{m}_{b} \mathcal{C}_{7}^{\text{eff}} \bigg] \xi_{\parallel}(E_{K^{*}}) \end{aligned}$$

In SM C₉SM + C₁₀SM ≃ 0 → |A_{⊥,||}^R| ≪ |A_{⊥,||}|
In P'₅: If C₉^{NP} < 0 then A_{0,||}^R ↑, |A_⊥^R| ↑ and |A_{0,||}^L ↓, A_⊥^L ↓ and due to -, |P'₅| gets strongly reduced.

Brief Discussion on: P'_5 and P'_4 (driving the ambulance)

 P'_5 was proposed for the first time in DMRV, JHEP 1301(2013)048

$$P_5' = \sqrt{2} \frac{\operatorname{Re}(A_0^L A_{\perp}^{L*} - A_0^R A_{\perp}^{R*})}{\sqrt{|A_0|^2 (|A_{\perp}|^2 + |A_{\parallel}|^2)}} = \sqrt{2} \frac{\operatorname{Re}[n_0 n_{\perp}^{\dagger}]}{\sqrt{|n_0|^2 (|n_{\perp}|^2 + |n_{\parallel}|^2)}}$$

with
$$n_0=(A_0^L,A_0^{R*}),~n_\perp=(A_\perp^L,-A_\perp^{R*})$$
 and $n_\parallel=(A_\parallel^L,A_\parallel^{R*})$

• If no-RHC
$$|n_{\perp}| \simeq |n_{\parallel}|$$
 $(H_{+1} \simeq 0) \Rightarrow P'_5 \propto \cos \theta_{0,\perp}(\mathbf{q^2})$

In the large-recoil limit with no RHC

$$\begin{aligned} A_{\perp,\parallel}^{L} \propto (1,-1) \bigg[\mathcal{C}_{9}^{\text{eff}} - \mathcal{C}_{10} + \frac{2\hat{m}_{b}}{\hat{s}} \mathcal{C}_{7}^{\text{eff}} \bigg] \xi_{\perp}(E_{K^{*}}) & A_{\perp,\parallel}^{R} \propto (1,-1) \bigg[\mathcal{C}_{9}^{\text{eff}} + \mathcal{C}_{10} + \frac{2\hat{m}_{b}}{\hat{s}} \mathcal{C}_{7}^{\text{eff}} \bigg] \xi_{\perp}(E_{K^{*}}) \\ A_{0}^{L} \propto - \bigg[\mathcal{C}_{9}^{\text{eff}} - \mathcal{C}_{10} + 2\hat{m}_{b} \mathcal{C}_{7}^{\text{eff}} \bigg] \xi_{\parallel}(E_{K^{*}}) & A_{0}^{R} \propto - \bigg[\mathcal{C}_{9}^{\text{eff}} + \mathcal{C}_{10} + 2\hat{m}_{b} \mathcal{C}_{7}^{\text{eff}} \bigg] \xi_{\parallel}(E_{K^{*}}) \end{aligned}$$

• In SM $C_9^{SM} + C_{10}^{SM} \simeq 0 \rightarrow |A_{\perp,\parallel}^R| \ll |A_{\perp,\parallel}^L|$ • In P_5' : If $C_9^{NP} < 0$ then $A_{0,\parallel}^R \uparrow$, $|A_{\perp}^R| \uparrow$ and $|A_{0,\parallel}^L| \downarrow$, $A_{\perp}^L \downarrow$ and due to -, $|P_5'|$ gets strongly reduced.

Brief Discussion on: P'_5 and P'_4

 P'_4 was proposed for the first time in DMRV, JHEP 1301(2013)048

$$P_{4}' = \sqrt{2} \frac{\operatorname{Re}(A_{0}^{L}A_{\parallel}^{L*} + A_{0}^{R}A_{\parallel}^{R*})}{\sqrt{|A_{0}|^{2}(|A_{\perp}|^{2} + |A_{\parallel}|^{2})}} = \sqrt{2} \frac{\operatorname{Re}[n_{0}n_{\parallel}^{\dagger}]}{\sqrt{|n_{0}|^{2}(|n_{\perp}|^{2} + |n_{\parallel}|^{2})}}$$

with $n_{0} = (A_{0}^{L}, A_{0}^{R*}), n_{\perp} = (A_{\perp}^{L}, -A_{\perp}^{R*})$ and $n_{\parallel} = (A_{\parallel}^{L}, A_{\parallel}^{R*})$

• If no-RHC
$$|n_{\perp}| \simeq |n_{\parallel}|$$
 $(H_{+1} \simeq 0) \Rightarrow P'_4 \propto \cos \theta_{0,\parallel}(\mathbf{q}^2)$

In the large-recoil limit with no RHC

$$\begin{aligned} A_{\perp,\parallel}^{L} \propto (1,-1) \bigg[\mathcal{C}_{9}^{\text{eff}} - \mathcal{C}_{10} + \frac{2\hat{m}_{b}}{\hat{s}} \mathcal{C}_{7}^{\text{eff}} \bigg] \xi_{\perp}(E_{K^{*}}) & A_{\perp,\parallel}^{R} \propto (1,-1) \bigg[\frac{\mathcal{C}_{9}^{\text{eff}} + \mathcal{C}_{10}}{\hat{s}} + \frac{2\hat{m}_{b}}{\hat{s}} \mathcal{C}_{7}^{\text{eff}} \bigg] \xi_{\perp}(E_{K^{*}}) \\ A_{0}^{L} \propto - \bigg[\mathcal{C}_{9}^{\text{eff}} - \mathcal{C}_{10} + 2\hat{m}_{b} \mathcal{C}_{7}^{\text{eff}} \bigg] \xi_{\parallel}(E_{K^{*}}) & A_{0}^{R} \propto - \bigg[\mathcal{C}_{9}^{\text{eff}} + \mathcal{C}_{10} + 2\hat{m}_{b} \mathcal{C}_{7}^{\text{eff}} \bigg] \xi_{\parallel}(E_{K^{*}}) \end{aligned}$$

• In SM
$$\mathcal{C}_9^{SM} + \mathcal{C}_{10}^{SM} \simeq 0 \rightarrow |A_{\perp,\parallel}^R| \ll |A_{\perp,\parallel}^L|$$

• In P'_4 : If $C_9^{NP} < 0$ then $A_{0,\parallel}^R \uparrow$, $|A_{\perp}^R| \uparrow$ and $|A_{0,\parallel}^L| \downarrow$, $A_{\perp}^L \downarrow$ due to + what L loses R gains (little change).