Experimental prospects in rare (B-) decays

Konstantinos A. Petridis

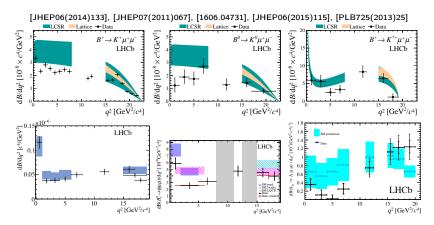
University of Bristol

July 14, 2016

Introduction

- ▶ Run 1 of the LHC provided us with a rich set of results
 - \rightarrow Rise of the precision era for rare decays
- Selective set of plans and thoughts with Run 2 data and beyond involving $b \to s(d) \ell^+ \ell^-$ modes in light of current anomalies

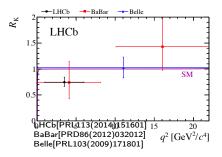
LHCb signal yields


channel	3fb ⁻¹	Run 2	Upgrade ($50 \mathrm{fb}^{-1}$)
$B^0 \to K^{*0}(K^+\pi^-)\mu^+\mu^-$	2,400	9,000	80,000
$B^0 o K^{*+} (K^0_{ m S} \pi^+) \mu^+ \mu^-$	160	600	5,500
$B^0 ightarrow K_{ m S}^0 \mu^+ \mu^-$	180	650	5,500
$B^+ ightarrow ilde{K^+} \mu^+ \mu^-$	4,700	17,500	150,000
$\Lambda_b o \Lambda \mu^+ \mu^-$	370	1500	10,000
$B^+ o \pi^+ \mu^+ \mu^-$	93	350	3,000
$B^0_s ightarrow \mu^+ \mu^-$ $B^0 ightarrow K^{*0} e^+ e^- ext{ (low } g^2 ext{)}$	15	60	500
$B^0 ightarrow K^{*0} e^+ e^- ext{ (low } q^2)$	150	550	5,000
$B_s o \phi \gamma$	4,000*	15,000	150,000

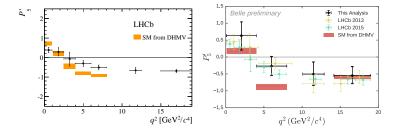
Naively scaling with luminosity and linear scaling of $\sigma_{b\bar{b}}$ with \sqrt{s} . Extrapolated yields rounded to the nearest 50/500 * unofficial estimate

- ▶ Our measurements of $d\mathcal{B}/dq^2$ obtained by normalising rare yield to that of normalisation channel $B \to J/\psi K^*$
- ▶ For higher statistics decays, dominant uncertainty of integrated BF is the knowledge of $\mathcal{B}(B \to J/\psi K^*)$
 - \rightarrow More $b \rightarrow s\ell\ell$ decays in Run 1 than $B \rightarrow J/\psi K^*$ of B-factories!
- ▶ With the LHCb upgrade even "tough" modes will be sufficiently populated

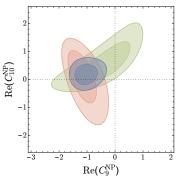
An intriguing set of results


1. Measurements of differential branching fractions of $B \to K^{(*)} \mu^+ \mu^-$, $\Lambda_b \to \Lambda \mu^+ \mu^-$, $B_s \to \phi \mu^+ \mu^-$

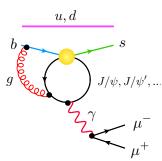
An intriguing set of results


2. Tests of lepton universality between $B^+ o K^+ \mu^+ \mu^-$ and $B^+ o K^+ e^+ e^-$

- Measure for $1 < q^2 < 6 \text{ GeV}^2/c^4$ $R_K = 0.745^{+0.090}_{-0.074} \pm 0.036$
- ▶ Consistent with SM at $\sim 2.6\sigma$
- Consistent with decay rate measurements if new physics does not couple to electrons


An intriguing set of results

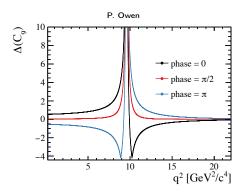
3. Angular analyses of $b \to s \mu^+ \mu^-$ and $B_s \to \phi \mu^+ \mu^-$


Interpretations

lacktriangle Several attempts to interpret $b o s \mu^+ \mu^-$ and $b o s \gamma$ data o Two views

Altmannshofer, Straub [1503.06199]

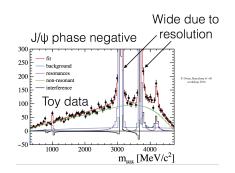
- ► Modified vector coupling $C_9^{NP} \neq 0$ at $\sim 4\sigma$
 - \rightarrow New vector Z', leptoquarks, vector-like confinement... Buttazzo et al [1604.03940], Bauer et al [PRL116,141802(2016)], Crivellin et al [PRL14,151801(2015)], Altmannshofer et al [PRD89(2014)095033]...



- Potential problem with our understanding of the contribution from $B \to X_{c\bar{c}} (\to \mu\mu) K$ Lyon, Zwicky [1406.0566], Altmannshofer, Straub[1503.06199], Ciuchini et al [1512.07157]...
 - \rightarrow Mimics vector-like new physics effects (corrections to C_9)

How can experiment help

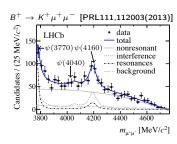
Impact on C_9^{eff}


$$C_9^{\it eff}=C_9+Y(q^2) \
ightarrow Y(q^2)$$
 summarises contributions from $bsar q q$ operators

- ▶ At low q^2 main culprit is the J/ψ → Corrections to C_9^{eff} (ΔC_9) all the way down to $q^2=0$
 - \rightarrow Effect strongly dependent on relative phase with penguin

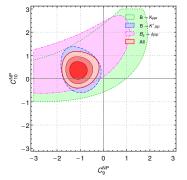
Measuring phase differences

- ▶ Measure relative phase between narrow resonances and penguin amplitudes
 - \rightarrow Model resonances as relativistic BWs multiplied by relative scale and phase Lyon et al. [1406.0566], Hiller et al. [1606.00775]
 - ightarrow Use this model to replace $Y(q^2)$ in $\mathit{C}_9^{\mathit{eff}} = Y(q^2) + \mathit{C}_9$
 - ightarrow B ightarrow K form factors constrainted to LCSR+Lattice predictions
 - \rightarrow Fit for phases and C_9 (and maybe C_{10})


- Fit dimuon spectrum in $B^+ \to K^+ \mu^+ \mu^$
 - ightarrow Expect precision of phase ~ 0.1 rad (ambiguities over sign of phase)[Owen Barcelona workshop 2016]
- Work also ongoing for phases relative to each helicity amplitude of $B^0 \to K^{*0} \mu^+ \mu^-$
 - \rightarrow Requires fit to q^2 and angular distribution to dissentangle amplitude components

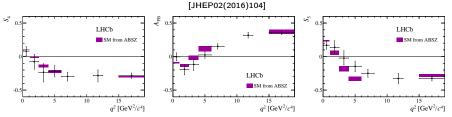
Can $B \rightarrow D\bar{D}K$ help

- \blacktriangleright Measuring phase differences between charm and penguin relies on model including only resonant charm contributions below the J/ψ
 - Experimentally difficult to differentiate between non resonant charm and penguin
- ▶ However, above $\psi(3770)$ we know there should be a non-resonant $D\bar{D}$ component
 - \rightarrow How large should the "virtual" $D\bar{D}$ contribution be below the J/ψ ?
 - \rightarrow Can we learn something from measuring the non-resonant component of $B \rightarrow D\bar{D}K?$


What about inclusive $B \to X \mu^+ \mu^-$

- Are non-factorisable corrections under better control
- Would a measurement of dimuon spectrum at low recoil help?
 - ightarrow Ideas also within LHCb on how to perform a fully inclusive $b
 ightarrow X\mu^+\mu^-$

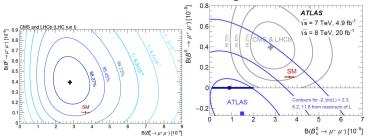
How to avoid charm?


- ightharpoonup What about if new physics manifests itself also in C_{10}
 - ▷ Ideal case as do not suffer from effects of charm
- ▶ Alternatively: $B \rightarrow K \nu \bar{\nu}$
 - \rightarrow Does not suffer from charm effects
 - ightarrow Belle2: Measure $\mathcal{B}(B
 ightarrow K
 u ar{
 u})$ at 30% precision (if at SM level)_{BelleII} [1002.5012]
- lacktriangle Measurements of $b o s\mu^+\mu^-$ provide powerful constraints on \mathcal{C}_{10}

 $b o s \mu^+ \mu^-$ gives 25% precision in C_{10} [DHMV 1510.04329], [Quim priv. comm.] o most power from $B o K^* \mu^+ \mu^-$

New physics in axial-vector couplings cont'd

- Angular analysis measurements statistically limited dataset)
- Experimental uncertainty larger than theory uncertainty on angular observables

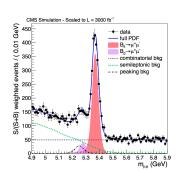


► Larger datasets also help unbinned methods

$$B_{s,d}^0 \to \mu^+ \mu^-$$

- ▶ LHCb, CMS and ATLAS performed measurements in Run 1
- ► Constrains on (pseudo) scalar and axial-vector couplings

Left: CMS+LHCb [Nature 522, 68, 2015], Right:ATLAS [1604.04263]

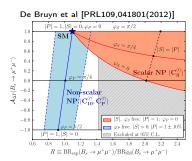


- ▶ Major effort to improve analysis techniques for Run 2
 - ▷ e.g LHCb: improve PID, isolations, mass descriptions of residual exclusive backgrounds

$B_{s,d}^0 o \mu^+ \mu^-$ 2020 and beyond

- ► Two phases: Run 3 (2020-2023), Run 4 (2025-2029) (...)
- ▶ Crucial for detectors to maintain performance at higher inst. luminosities → Improved vertexing detectors (addition of pixel layer CMS, closer to beam LHCb)
 - ightarrow Improved tracking (granularity, radiation hardness, reduce material)

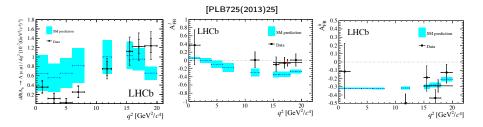
 - \rightarrow Improved trigger (track based triggers at L1 CMS/ATLAS, 40MHz readout LHCb)


- ► CMS : $N(B_s) = 2000$, $N(B_d) = 250 \text{ @}3ab^{-1}$
 - $\begin{tabular}{ll} $ & \end{tabular} & \en$
- ▶ LHCb: Major effort to define plan beyond $50 {\rm fb}^{-1}$ of LHCb [info], $\frac{\mathcal{B}(\mathcal{B}_s \to \mu^+ \mu^-)}{\mathcal{B}(\mathcal{B}_d \to \mu^+ \mu^-)} \sim 10\%$ possible with $> 300 {\rm fb}^{-1}$

$B_s^0 o \mu^+ \mu^-$ Effective lifetime

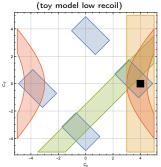
- With the LHCb upgrade expect to measure effective lifetime $(\tau_{\mu\mu})$ of $B_s \to \mu^+ \mu^-$ at $\sim 5\%$ precision.
- ► Can extract $A^{\Delta\Gamma}$
- ► Need 300fb⁻¹ to fully exploit

$$\Gamma(B_s + \overline{B}_s)(t) \propto \mathrm{e}^{-\Gamma_s t} \left[\cosh\left(rac{\Delta \Gamma_s}{2} t
ight) - A^{\Delta \Gamma} \sinh\left(rac{\Delta \Gamma_s}{2} t
ight)
ight]$$


▶ $A^{\Delta\Gamma}$ sensitive to new physics even if $\mathcal{B}(B_s \to \mu^+\mu^-)$ compatible with SM

▶ With 15,000 $B_s \rightarrow \phi \mu^+ \mu^-$ candidates expected with the LHCb upgrade, new observables become available in a tagged time-dependent analysis Descotes-Genon, Virto[JHEP 04 (2015) 045].

What about baryonic decays


▶ For example: Run 1: 370 $\Lambda_b \to \Lambda(\to p\pi)\mu^+\mu^-$ events

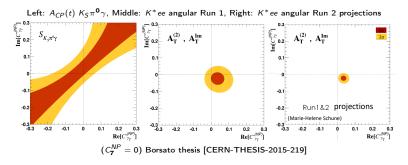
ightharpoonup Additional observables eg A_{FB}^p giving access to different combinations of Wilson coefficients

What about baryonic decays cont'd

vDyk, Meinel [1603.02974],[LHCb implications 2015]

$$F_L$$
 (common with $B \to K \mu^+ \mu^-$)
 A_{FB}^{ℓ} (common with $B \to K \mu^+ \mu^-$)
 $A_{FB}^{\ell p}$ (unique to $\Lambda_b \to \Lambda \mu^+ \mu^-$ [not measured yet])
 A_{FB}^{p} (unique to $\Lambda_b \to \Lambda \mu^+ \mu^-$)

- ▶ With $\mathcal{O}(10^3)$ candidates after Run 2, full angular analysis of $\Lambda_b \to \Lambda \mu^+ \mu^-$ can access more observables
- ▶ Ongoing work on $\Lambda_b \to \Lambda^*(\to pK)\mu^+\mu^-$ BF measurement, CP asymmetry measurements etc.


Radiative decays

Photon polarisation

- lacktriangle Photon in $b o s\gamma$ transitions is almost purely left-handed in the SM
- Multiple approaches to provide a precision measurements of the photon polarisation
 - \triangleright Sensitive to combinations of C_7/C_7
 - \to Measurement of time-dependent CP asymmetry in $B \to K_S \pi^0 \gamma$ BaBar [PRD78(2008)071102], Belle [PRD74(2006)111104]
 - ightarrow Measurement of polarisation parameter in $B
 ightarrow K\pi\pi\gamma$ Gronau et al. [PRL88(2002)051802], LHCb [PRL112,161801(2014)]
 - \to Angular analysis of $B^0 \to K^{*0} e^+ e^-$ at low q^2 (contribution from $C_{9,10}$ are small) Becirevic et al. [JHEP08(2012)090], Camalich, Jaeger [PRD93,014028], LHCb [JHEP04(2015)064]

Constraints on $C_7^{(\prime)}$

lacktriangle Angular $B^0 o K^{*0}ee$ measurements currently provide best constraints to $C_7^{'}$

- ► Expected constraints from K*ee after Run 2
- ▶ Note $A_{CP}(t)K_S\pi^0\gamma$ precision improves by $\sim \times 7$ with BelleII

Photon polarisation through $B_s \to \phi \gamma$

- ▶ LHCb has \sim 4000 $B_s \to \phi \gamma$ events in Run 1
 - \rightarrow Enables untagged measurement of the time dependent decay rate

$$\Gamma(B_s + \overline{B}_s)(t) \propto \mathrm{e}^{-\Gamma_s t} \left[\cosh\left(rac{\Delta \Gamma_s}{2} t
ight) - A^{\Delta \Gamma} \sinh\left(rac{\Delta \Gamma_s}{2} t
ight)
ight]$$

$$A^{\Delta\Gamma} \sim rac{|\mathcal{A}(B_s o\phi\gamma_L)|}{|\mathcal{A}(B_s o\phi\gamma_R)|}cos\phi_s$$
 $A^{\Delta\Gamma}(SM) = 0.047\pm0.025\pm0.015_{lpha_s}$ Muheim et al. [PLB664(08)174]

- \rightarrow Requires good understanding of the detection efficiency as a function decay time
- ightarrow Use $B^0
 ightarrow K^{*0} \gamma$ data to constrain the efficiency
- ▶ Result expected soon using Run 1 data
- ▶ With Run 2 data 20,000 $B_s \to \phi \gamma$
 - \triangleright Expected stat. precision on $A^{\Delta\Gamma}\sim 0.13$ (for SM like $A^{\Delta\Gamma}$) (syst. unc. similar to stat. unc.)A. Oyanguren [Barcelona Workshop 2016]
 - \triangleright With flavour tagging $\rightarrow \sim 1000$ candidates, measure additional observables (a la $B^0 \rightarrow K_S \pi^0 \gamma$)

Lepton Non-Universality and Flavour Violation

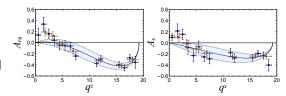
LNU and LFV with rare B-decays

- ▶ Mild tension in $R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}$ consistent with $b \to s \mu^+ \mu^-$ anomalies if new physics couples only to muons and not electrons
 - ightharpoonup Rich program to measure R_{K^*} , R_{ϕ} , R_{Λ^*} , $R_{
 m angular}$
- ▶ Coupled with 4σ tension in $R(D^*)$, R(D) plane
 - ightarrow Strong hints of lepton non universality in both tree-level and loop-level transitions
 - ightarrow Can generate lepton flavour violating effects Glashow et al.[PRL114,091801(2015)]
- lacksquare Current limit $\mathcal{B}(B o K\mu au) < 4.8 imes 10^{-5}$ @90% CL Babar [PRD86,012004(2012)]
- Models predict particular enhancements in $B \to K \mu \tau$ final states $\to \mathcal{B}(B^+ \to K \mu \tau) \sim 10^{-8} 10^{-6}$ Hiller et al. [1503.01084], Glashow et al. [PRL114,091801(2015)], Feruglio et al.[1606.00524]
- ▶ Ongoing work within LHCb, $\leq \mathcal{O}(10^{-6})$ achievable with Run 2 data

LNU and LFV with rare B-decays cont'd

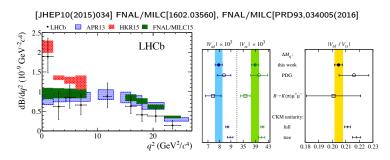
- lacktriangle These models also can predict enhacments to b o s au au amplitudes
 - o up to $imes 5 \mathcal{B}(\mathsf{SM})$ Greljo et al. [JHEP1507(2015)142] e.g $\mathcal{B}(B o K au au)\sim \mathcal{O}(10^{-6})$
- ► Latest limit by BaBar BaBar [1605.09637]

$$ightarrow \mathcal{B}(B^+ o K^+ au^+ au^-) < 2.25 imes 10^{-3}$$
@90% CL


- ▶ Ongoing work for LHCb $(\mathcal{B}(B^0 \to K^{*0}(\to K^+\pi^-)\tau^+\tau^-)$
 - $ightharpoonup K^{*0} o K^+\pi^-$ gives B^0 decay vertex
- ▶ Also ongoing for LHCb $B_s \rightarrow \tau^+ \tau^-$
 - \triangleright Both τ s decay in flight \rightarrow cannot reconstruct B_s vertex
 - ightharpoonup Use 3-prong au decays to help reconstruct (approximate) decay topology
 - \triangleright Sensitive to $\mathcal{B}(B_s \to \tau^+\tau^-) \sim \mathcal{O}(10^{-3})...$

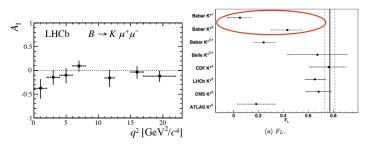
Related measurements

$B^0 o K^{*0} \mu^+ \mu^-$ near kinematic endpoint


What else could we do?

- Observables near kinematic endpoint Hiller, Zwicky [JHEP03(2014)042] and Sinha et al [1603.04355]
- Fit angles and q^2 accounting for variation of phasespace with $m_{K\pi}$
- Resonances at high q² will make this fit difficult, could also try finely binned measurements.

$b \to d\mu^+\mu^-$ measurements


- ▶ Run 2 and Upgrade will give access to precision measurements in $b \to d\mu^+\mu^-$ decays (including modes with π^0 s)
- \triangleright Very relevant if tensions persist \rightarrow test MFV nature of new physics
- ► Latest lattice results enable further precision tests of CKM paradigm Buras,Blanke[1602.04020], FNAL/MILC[1602.03560]
- ullet Current measurement from penguin decays of $|V_{td}/V_{ts}|=0.201\pm0.020$ FNAL/MILC[PRD93,034005(2016]
- ightharpoonup Run 2 ightharpoonup experimental uncertainty halved, more modes available

Isospin asymmetry

Excitement of A_I in $B \to K \mu^+ \mu^-$, diminished with the Run 1 measurement \to p-value to $A_I = 0$ hypothesis: 11% (test based on constant distribution of A_I with q^2) for $B \to K \mu^+ \mu^-$

Left: [JHEP06(2014)133], Right: BaBar [PRD93,052015(2016)]

- ▶ Even so, A_I in $B \to K \mu^+ \mu^-$ still seems negative
- ▶ Hint of tension in F_L between $B^0 o K^{*0} \mu^+ \mu^-$ and $B^+ o K^{*+} \mu^+ \mu^-$
- Worth revisiting particularly in light of other anomalies (?)

Summary

- ► Run 1 of the LHC introduced precision era in rare *B*-decay measurements
- ▶ Many measurements and plans under way:
 - \to Clarify the impact of $c\bar{c}$ and other resonances in $B^0 \to K^{*0} \mu^+ \mu^-$ observables
 - ightarrow Fully exploit sensitivity of $b
 ightarrow s\ell\ell$ to $C_{10}^{(\prime)}$
 - → Baryonic decays provide additional powerful constraints
 - ightarrow Suite of photon polarisation measurements to constrain new physics in $C_7^{(')}$
 - ightarrow Understand LNU hints in R_{K} both by searching in related modes as well as looking for LFV
 - → Towards Run 2 and beyond + Belle2

Backup

How are we doing?

channel	$\mid \mathcal{L}^{int} \; (\mathit{fb}^{-1})$	Publication
$d\mathcal{B}/dq^2~B ightarrow K^{*+} \mu^+ \mu^-$	3	[JHEP06(2014)133]
$d\mathcal{B}/dq^2~B o K^0 \mu^+ \mu^-$	3	[JHEP06(2014)133]
$d\mathcal{B}/dq^2$ $B o K^+\mu^+\mu^-$	3	[JHEP06(2014)133]
$d\mathcal{B}/dq^2~B^0 ightarrow K^{*0}\mu^+\mu^-$	3	[1606.04731]
$d\mathcal{B}/dq^2~B_s^0 o \phi \mu^+ \mu^-$	3	[JHEP09(2015)179]
$\mathcal{B}(B^+ \to \phi K \mu^+ \mu^-)$	3	[JHEP10(2014)064]
dB/dq^2 $B^+ \rightarrow K^+\pi^-\pi^+\mu^+\mu^-$	3	[JHEP10(2014)064]
$d\mathcal{B}/dq^2~\Lambda_b o \Lambda \mu^+ \mu^-$	3	[JHEP06(2015)115]
$d\mathcal{B}/dq^2~B^+ o \pi^+ \mu^+ \mu^-$	3	[JHEP10(2015)034]
$\mathcal{B}(B_{s,d} o \mu^+\mu^-)$	3	[Nature522(2015)68]
$\mathcal{B}(B^0 o \pi^+\pi^-\mu^+\mu^-)$	3	[PLB743(2015)]
$\mathcal{B}(B^0 o K^{*0}e^+e^-)$	3	[JHEP05(2013)159]
$\mathcal{B}(B^+ o K^+e^+e^-)$	3	[PRL113(2014)151601]
$A_I B \rightarrow K^{(*)} \mu^+ \mu^-$	3	[JHEP06(2014)133]
$A_{CP} B^+ ightarrow K^+ \mu^+ \mu^-$	3	[JHEP09(2014)177]
$A_{CP}~B^0 ightarrow K^{*0}\mu^+\mu^-$	3	[JHEP09(2014)177]
$A_{CP} B^+ o \pi^+ \mu^+ \mu^-$	3	[JHEP10(2015)034]
Angular $B^+ \rightarrow K^+ \mu^+ \mu^-$	3	[JHEP05(2014)082]
Angular $B^0 o K^0\mu^+\mu^-$ Angular $B^0 o K^{*0}\mu^+\mu^-$	3	[JHEP05(2014)082]
Angular $B^0 o K^{*0}\mu^+\mu^-$	3	[JHEP02(2016)104]
Angular $B_s^0 o \phi \mu^+ \mu^-$	3	[JHEP09(2015)179]
Angular $\Lambda_b \to \Lambda \mu^+ \mu^-$	3	[JHEP06(2015)115]