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Outline

B decays can be used to test the standard model (SM) for look for new
physics(NP).

B → V1V2 decays offer many probes of CP violation and in general
NP.

Experimentally not as easy as other B decays but these decays are being
explored.

Major part of the talk will be in B → V1V2 Decays.

Three body decays contain a lot of information on CP violation and
resonant structures.

Briefly review three body decays.
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CPV with B → V1V2 Decays

B → V1V2 decays can be of several types:

Both vector mesons are on-shell and observed through their decays to
other final state particles.

One or both the V can be off-shell. Example Semileptonic Decays:
B → D(∗)(ρ)W ∗ with W ∗ → l ν̄l .

The final state particles can be reached by both B0
d and B̄0

d mesons
(B0

s or B̄0
s ).E.g. B0

d → K ∗K̄ ∗ and B0
s → J/ψφ, φφ. Mixing effects

have to be included and this becomes a time dependent problem.

The final particles can be reached through a scalar background( reso-
nant or non-resonant). Example: B → V1V2 → f and B → V1S → f .
One has to include the interference effects.
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Background

Background

Spin 0 meson (B) → 2 Spin 1 mesons (Vectors)

Relative angular momentum : LVV = 0, 1, 2.

Vectors identified through their decay modes : Eg. φ→ KK̄ .

Angular analysis to separate out helicity amplitudes :

1.) Functions of helicity angles θ1, θ2, and φ.

2.) Observables can be dependent on time.

V1V2
B

Φ

Θ1Θ2
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Background

BVV Amplitudes

For the process:

B(p)→ V1(k1, ε)V2(k2, η)

Mλ1,λ2 = a ε∗λ1
· η∗λ2

+
b

m2
B

(p · ε∗λ1
)(p · η∗λ2

) + i
c

m2
B

εµνρσp
µqνε∗ρλ1

η∗σλ2
,

where q ≡ k1 − k2.

The amplitude c is L = 1 and is parity-odd. The amplitudes a and b
are combinations of L = 0 and L = 2 partial waves.

Helicity conservations allows M+,+,M−,−,M0,0. Use A+,A−,A0.
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Background

BVV Transversity Amplitudes

Another useful parametrization is the transversity basis:

M = A0ε
∗L
1 · ε∗L

2 −
1√
2
A‖~ε

∗T
1 · ~ε∗T

2 −
i√
2
A⊥~ε

∗T
1 × ~ε∗T

2 · p̂ ,

where p̂ is the unit vector along the direction of motion of V2 in the
rest frame of V1, ε∗L

i = ~ε∗i · p̂, and ~ε∗T
i = ~ε∗i − ε∗L

i p̂.

A0, A‖, A⊥ are related to a, b and c of via

A‖ =
√

2a , A0 = −ax − m1m2

m2
B

b(x2 − 1),

A⊥ = 2
√

2
m1m2

m2
B

c
√

x2 − 1 ,

where x = k1 · k2/(m1m2).

A+ = (A‖ + A⊥)/
√

2, A− = (A‖ − A⊥)/
√

2 and M0,0 = A0.
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Background

B → V1V2: CP phases from B → V1V2 Decays

In B → V1V2 decays an angular analysis is required to extract the
different helicity amplitudes.

Many correlations among the amplitudes appear in the angular distri-
bution from which CPV phases can be extracted.

These CPV phases can be in mixing or decay amplitude.

Because there are many observables the CP structure of the SM or NP
can be explored.
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Background

CPV in B → V1V2 Decays - Time Independent case

In the angular distribution, besides the direct CP violation(DCPV) one
can have another measurement of CP violation which is called the triple
product asymmetry (TPA).

DCPV ∼ sin ∆φ sin ∆δ while TPA ∼ sin ∆φ cos ∆δ. Hence DCPV and
TPA complement each other. If the strong phases are small then TPA
are maximized.

There is another measurement which is not CPV. Fake TP which go
as ∼ cos ∆φ sin ∆δ. This observable can constrain NP if the NP has
the same weak phase as the SM. In this case DCPV and TPA vanish.
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Background

Triple Product Correlations

In the B rest frame we can construct T.P

T .P = ~p.(~ε1 × ~ε2).

We can define a T-odd asymmetry

AT =
Γ[T .P > 0]− Γ[T .P < 0]

Γ[T .P > 0] + Γ[T .P < 0]
.

For true CP violation, we need to compare AT and ĀT

Atrue
T .P = AT + ĀT ∝ sin ∆φ cos ∆δ,

Afake
T .P = AT − ĀT ∝ cos ∆φ sin ∆δ.
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Background

Measuring T.P.A.

The T.P appear in the angular distribution of B → V1V2 → (V1 →
P1P

′
1)((V2 → P2P

′
2).

We can define two T.P’s

A
(1)
T ≡ Im(A⊥A

∗
0)

A2
0 + A2

‖ + A2
⊥

, A
(2)
T ≡

Im(A⊥A
∗
‖)

A2
0 + A2

‖ + A2
⊥
.

For the CP conjugate decay one defines two T.P’s

Ā
(1)
T ≡ − Im(Ā⊥Ā

∗
0)

Ā2
0 + Ā2

‖ + Ā2
⊥

, Ā
(2)
T ≡ −

Im(Ā⊥Ā
∗
‖)

Ā2
0 + Ā2

‖ + Ā2
⊥
.

For true CP violation, we need to compare AT and ĀT

Atrue,1,2
T .P =

1

2

(
A

(1,2)
T + Ā

(1,2)
T

)
∝ sin ∆φ cos ∆δ,

Afake,1,2
T .P =

1

2

(
A

(1,2)
T − Ā

(1,2)
T

)
∝ cos ∆φ sin ∆δ.
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Background

T.P. General

If the decay is dominated by a single amplitude ( single weak phase):

Ah ≈ ah e iφe iδh .

Then Atrue
T .P ≈ 0 but Afake

T .P may be non-zero.

If the transverse amplitudes AT << A0 then both the true and fake

T.P are suppressed by |A⊥||A0| and
|A⊥A‖|
|A0|2 even in the presence of new CP

violating sources.

Since T.P. require large transverse amplitudes the interesting decays
are penguin decays/penguin dominated decays which have large AT .
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Background

Charmless B̄ → V1V2: Naive Amplitude Estimate in the
SM

B̄ → V1V2 when the vectors are light ( charmless decays) there are
naive estimates for: AL(A0),A−,A+( A⊥,A‖.)

Consider b → f q̄q where f = s, d and q = u, d , s. Weak interactions
are (V − A) and so the weak transition is

bL → fLq̄RqL.

Helicity A0 no helicity flip ∼ O(1).
A− one helicity flip ∼ O(ΛQCD/mB).
A+ two helicity flips ∼ O(Λ2

QCD/m
2
B).

For B̄ → V1V2 where V1,2 are light:

fL >> f− >> f+.

fi =
Γi

Γtotal

where i = 0,−,+.Alakabha Datta (UMiss) What we can learn from B→ VV and Three Body Decays. July 14, 2016 12 / 57



Background

Data violates Naive Polarization Pattern

Large theoretical uncertainties in penguin amplitudes.

Decay Final State fL
B → φK ∗ φK ∗0 0.480± 0.030

φK ∗+ 0.50± 0.05

Bs → φφ φφ 0.348± 0.18(stat)± 0.82

B → ρK ∗ ρ0K ∗0 0.57± 0.12
ρ+K ∗0 0.48± 0.08

Bd → K ∗K̄ ∗ K ∗0K̄ ∗0 0.80+0.12
−0.13

K ∗+K̄ ∗0 0.75+0.16
−0.26

Bs → K ∗K̄ ∗ K ∗0K̄ ∗0 0.31± 0.12± 0.04

B → ρρ ρ+ρ− 0.978+0.025
−0.022

ρ0ρ0 0.75+0.12
−0.15

ρ+ρ0 0.950± 0.016

Table: Longitudinal polarization fraction fL for various B → V1V2 decays

.
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Background

T.P. Estimates

The transverse amplitudes are written in terms of helicity amplitudes

A‖ =
1√
2

(A+ + A−) ,

A⊥ =
1√
2

(A+ − A−) .

Due to the fact that the weak interactions are left-handed, the helicity
amplitudes obey the hierarchy∣∣∣∣A+

A−

∣∣∣∣ = rT =
ΛQCD

mb
.

Thus, in the heavy-quark limit, A‖ = −A⊥ which means A
(2)
T , which

is proportional to Im(A⊥A
∗
‖), vanishes. Hence in the heavy quark limit

both Atrue,2
T .P and Afake,2

T .P vanish. (Datta, Durisamy, London e-Print:
arXiv:1103.2442 ).
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Background

b̄ → s̄ transitions within the SM -pure penguin

Amplitude within the SM (pure penguin modes) : (Loosely : γ comes
from phase of V ∗ub)

Ah = e−iφM/2
[
P ′tc,h e iδtc,h + e i(γ+φM/2) P ′uc,h e iδuc,h

]
. Example De-

cay B → φK ∗.

Leading order in Wolfenstein Parameter λ : P ′tc,h ∝ |V ∗tbVts | ∼ O(λ2).

Next-to-leading order in λ : P ′uc,h ∝ |V ∗ubVus | ∼ O(λ4).

If we neglect P ′uc,h there there is only decay amplitude and so all CPV
measurements- direct CP and Triple product asymmetries vanish.

Atrue,2
T .P ∼ λ2 ΛQCD

mb
and Afake,2

T .P ∼ ΛQCD

mb
.

Atrue,1
T .P ∼ λ2 and Afake,1

T .P ∼ 0(1).
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Background

NP in b̄ → s̄ decay

Assume NP larger than sub-dominant SM term.

Amplitude with (large) NP in the decay :

Ah = Ptc,he
iδtc,h (1 + RNP

h e iφNP
e i∆NP

h ).

∆NP
h is the difference between NP strong phase and δtc,h.

NP strong phases may themselves be helicity dependent.

RNP
h = PNP,h/Ptc,h : RNP

h � RSM
h ∼ O(λ2)⇒ New Physics.

CP violation appears due to the interference of two terms.

⇒ CP-violating observables are proportional to Rh!

Look for large CPV (direct, indirect, TP) for signals of NP in b̄ → s̄
decay.
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Background

Corrections to the heavy quark limit

There are corrections to the prediction that A
(2)
T = 0, in B → φK ∗.

The estimate for A
(2)
T is, based on QCD factorization.
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Figure: The left (right) panel of the figure shows A
(2)
T for the decay

Bd → φK∗0 as a function of (δ+ − δ−) and rT .

There we see that |Afake,2
T | ≤ 9% is predicted.
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Background

Corrections to the heavy quark limit

The estimate for A
(1)
T is :
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Figure: The left (right) panel of the figure shows A
(1)
T for the decay

Bd → φK∗0 as a function of (δ+ − δ−) (rT ).

There we see that |Afake,1
T | ≤ 40% is predicted.

This prediction is not unexpected given the large size of the transverse
amplitudes.
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Background

Experiments

The relevant Bd → φK ∗0 polarization observables are shown in Table
below.

Polarization fractions

fL = 0.480± 0.030 f⊥ = 0.241± 0.029

Phases

φ‖(rad) = 2.40+0.14
−0.13 φ⊥(rad) = 2.39± 0.13

∆φ‖(rad) = 0.11± 0.13 ∆φ⊥(rad) = 0.08± 0.13

CP asymmetries

A0
CP = 0.04± 0.06 A⊥CP = −0.11± 0.12

Table: Bd → φK∗0 polarization observables .

Note the T.P. are directly measurable from the angular distribution.

Afake,2
T .P ∼ sin(φ⊥ − φ‖) Atrue,2

T .P ∼ sin(∆φ⊥ −∆φ‖).

Afake,1
T .P ∼ sin(φ⊥) Atrue,2

T .P ∼ sin(∆φ⊥).
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Background

Experimental T.P’s

Using the numbers above we can calculate:

Afake,2
T .P =

1

2
(A

(2)
T ,B − Ā

(2)

T ,B̄
) = 0.002± 0.049 ,

Afake,1
T .P =

1

2
(A

(1)
T ,B − Ā

(1)

T ,B̄
) = −0.23± 0.03 .

The measured value of Afake,2
T .P is therefore in agreement with the SM

prediction in the heavy quark limit.

The actual T.P are

Atrue,2
T .P =

1

2
(A

(2)
T ,B + Ā

(2)

T ,B̄
) = −0.004± 0.025,

Atrue,1
T .P =

1

2
(A

(1)
T ,B + Ā

(1)

T ,B̄
) = 0.013± 0.053.

Hence consistent with SM or with NP with same weak phase as the
SM. No evidence for large NP contribution to the amplitude.
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Background

NP in b̄ → s̄ decay- Tree and Penguins
The decays B → ρK ∗ are interesting. There are Tree and Penguin
contributions.

They probe b → suū and b → sdd̄ transitions. They are the vector
counterpart of the Bd → Kπ modes.

A(B+ → ρ+K ∗0) = P ′ct ,√
2A(B+ → ρ0K ∗+) = −P ′ct − T ′ e iγ − P ′EW ,

A(B0 → ρ−K+) = −T ′e iγ − P ′ct ,√
2A(B0 → ρ0K 0) = P ′ct − P ′EW .

Large CPV in B0 → K+π−. What are the T.P in B → ρK ∗ modes.
Note these modes also have large transverse polarization. Can these
modes shed light on the K − π “puzzle”.
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Background

Time dependent Angular Distribution:B → V1V2

Decays like Bd → ρ0K 0, Bd → K ∗K̄ ∗, Bs → J/ψφ, φφ(b̄ → s̄s s̄),K ∗K̄ ∗,
the final state can be reached by both Bq and Bq decays so mixing ef-
fects have to be included.

Assuming that V1,2 both decay into pseudoscalars (i.e. V1 → P1P
′
1,

V2 → P2P
′
2), the angular distribution of the decay is then given in

terms of the vector ~ω = (cos θ1, cos θ2,Φ) :

d3Γ(t)

d~ω
=

9

32π

6∑
i=1

Ki (t)fi (~ω) .

Functions Ki (t) are expressed in terms of φq , Γq , ∆Γq , the B0
q

oscillation frequency ∆mq and transversity amplitudes Ai(=0,‖,⊥).
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Background

Time-integrated untagged distribution

The time-integrated untagged angular distribution can be obtained by
integrating the Ki (t) + K̄i (t) observables over time:

d3〈Γ(B0
s → f )〉
d~ω

=
9

32π

6∑
i=1

〈Ki 〉fi (~ω) ,

〈Γ(B0
s → f )〉 =

1

2

∫ ∞
0

dt(ΓBs + ΓB̄s ) , 〈Ki 〉 =
1

2

∫ ∞
0

dt(Ki (t) + K̄i (t)) .

The general structure is

〈Ki 〉 ∝ Ach
i +Ash

i yq,

where yq =
∆Γq

2Γq
. The Ach

i are used to extract the polarization fractions
and triple products.
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Background

Time-integrated untagged distribution

If yq is small (e.g. yd ) then

〈Ki 〉 ∝ Ach
i

The polarization fractions and triple products can be extracted from
〈Ki 〉 which appear in the angular distribution.

If yq cannot be neglected ( e.g. ys) then we need the input Ai
∆Γ ≡

Ash
i /Ach

i ( known in SM, Fleischer et.al.).

Use:

τ eff ,i
Bs

=

∫∞
0 t(Ki (t) + K̄i (t))dt∫∞
0 (Ki (t) + K̄i (t))dt

=
τBs

(1− y2
s )

(1 + 2Ai
∆Γys + y2

s )

(1 +Ai
∆Γys)

.
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Background

Polarization Fractions

In the SM (one amp): We have Ash
i = ∓Ach

i , where the minus sign is for
i = 1, 2, 5, the plus sign for i = 3, and both quantities vanish when
i = 4, 6. With NP these relations are no longer true.

The polarization fractions can be extracted from 〈Ki 〉, i = 1, 2, 3

〈Kh〉 =
τBs

2(1− y2
s )

[(
|Ah|2 + |Āh|2

)
−ηh2

(
Re(A∗hĀh) cosφs + Im(A∗hĀh) sinφs

)
ys

]
.

and ηh = η0,‖,⊥ = (1, 1,−1).

fh =
|Ah|2 + |Āh|2

|A0|2 + |Ā0|2 + |A‖|2 + |Ā‖|2 + |A⊥|2 + |Ā⊥|2
=

Ach
h∑

i=1,2,3Ach
i

.
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Background

Triple Products

We now turn to the measurement of TP’s

〈K4〉 =
τBs

2(1− y2
s )

[(
Im(A⊥A

∗
‖)− Im(Ā⊥Ā

∗
‖)
)

−
(

(Im(A⊥Ā
∗
‖)− Im(Ā⊥A

∗
‖)) cosφs

+ (Re(A⊥Ā
∗
‖) + Re(Ā⊥A

∗
‖)) sinφs

)
ys

]
,

〈K6〉 =
τBs

2(1− y2
s )

[(
Im(A⊥A

∗
0)− Im(Ā⊥Ā

∗
0)
)

−
(

(Im(A⊥Ā
∗
0)− Im(Ā⊥A

∗
0)) cosφs

+ (Re(A⊥Ā
∗
0) + Re(Ā⊥A

∗
0)) sinφs

)
ys

]
.

The TP’s in the untagged distribution can be from the decay as well as
mixing and can be measured by constructing asymmetries involving the
angular variables (Rosner, Gronau).
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Background

Triple Products- Untagged Decays

We begin with i = 4, for which f4(~ω) = −2 sin2 θ1 sin2 θ2 sin 2Φ. We define
u ≡ sin 2Φ. Construct the T.P as an asymmetry in u.

Au =
1

2

[〈Γ(B0
s → φφ), u > 0〉 − 〈Γ(B0

s → φφ), u < 0〉
〈Γ(B0

s → φφ), u > 0〉+ 〈Γ(B0
s → φφ), u < 0〉

]
= − 2

π
[A(2,true)

T ]exp , [A(2,true)
T ]exp =

〈K4〉
〈Γ(B0

s → φφ)〉
.

For i = 6 with f6(~ω) = −
√

2 sin 2θ1 sin 2θ2 sin Φ. We define
v ≡ sign(cos θ1 cos θ2) sin Φ, which has the following associated TP
asymmetry :

Av =
1

2

[〈Γ(B0
s → φφ), v > 0〉 − 〈Γ(B0

s → φφ), v < 0〉
〈Γ(B0

s → φφ), v > 0〉+ 〈Γ(B0
s → φφ), v < 0〉

]
= −

√
2

π
[A(1,true)

T ]exp , [A(1,true)
T ]exp =

〈K6〉
〈Γ(B0

s → φφ)〉
.
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Background

Triple Products- Untagged Decays

The relation between [A(2,1)
T ]exp and the theoretical expression for the TP

in the decay are.

[A(2,true)
T ]exp =

1

2

(
Im(A⊥A

∗
‖)− Im(Ā⊥Ā

∗
‖)
)

[
(1 + A

(4)
∆Γys)

(1− y2
s )

τBs

〈Γ(B0
s → φφ)〉

]
.

[A(1,true)
T ]exp =

1

2

(
Im(A⊥A

∗
0)− Im(Ā⊥Ā

∗
0)
)

[
(1 + A

(6)
∆Γys)

(1− y2
s )

τBs

〈Γ(B0
s → φφ)〉

]
.

A
(4,6)
∆Γ = Ash

4,6/Ach
4,6.
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Background

Measuring βs , Penguin Pollution

B0
s and B̄0

s can decay to f ≡ J/ψφ.

The indirect CPA measures

Im

(
q

p

Āf
s

Af
s

)
,

where Af
s and Āf

s are the amplitudes for B0
s → f and B̄0

s → f , respec-
tively.

q/p = (V ∗tbVts/VtbV
∗
ts) = exp(2i arg(V ∗tbVts)). This is phase-convention

dependent.

Assuming Af
s is dominated by a single decay amplitude. Āf

s/Af
s =

(VcbV
∗
cs/V

∗
cbVcs) = exp(2i arg(VcbV

∗
cs)), which is also phase-convention

dependent.
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Background

However, the product of these two quantities is

q

p

Āf
s

Af
s

=
V ∗tbVts

V ∗cbVcs

VcbV
∗
cs

VtbV
∗
ts

= e2iβs ,

where

βs ≡ arg

[
−
V ∗tbVts

V ∗cbVcs

]
.

This is phase-convention independent, and hence physical. The indirect
CPA measures sin 2βs .
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Background

Including ”penguin pollution” or new physics or both( Bhattacharya,
Datta, London 1209.1413).

Ah = λ
(s)
c (C ′ + P ′ct −

2

3
P ′EW ) + λ

(s)
u (P ′ut −

2

3
P ′EW ) + ANP

≡ e i arg(V ∗cbVcs )
[
Ah

1 + e iγAh
2

]
,

where λ
(q′)
q ≡ V ∗qbVqq′ . This holds for the four helicities h = 0,⊥, ‖, S .

Experimental analysis: Assumes Ah
2=0 for all helicities. There are 8

assumptions. Using a convention when the overall phase vanishes then
we have Ah = Āh.

The tagged angular distribution has enough observables to fit for βs .

The point is the 8 assumptions are not needed.
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Background

d4Γ(B0
s → J/ψφ)

dtd~Ω
∝

10∑
k=1

hk (t)fk (~Ω) .

hk (t) =
1

2
e−Γs t [ck cos ∆mst + dk sin ∆mst

+ ak cosh (∆Γs/2)t + bk sinh (∆Γs/2)t] .

By measuring the time-dependent angular distribution and fitting to
the four time-dependent functions, Γs and ∆Γs can be determined, as
well as the coefficients ak -dk .
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Background

By applying the angular analysis to the full amplitudes Ah and Āh, one
can still extract φcc̄s

s , even if there is PP or NP.

In the general case there are two complex set Ah and Āh. The ak -dk

are expressed in terms of 16 unknown parameters: the magnitudes of
the Ah and Āh (8), their relative phases (7), and φcc̄s

s .

The angular observables can be used to get 15 of these parameters.

For the phase differences we define

δij ≡ arg(Ai )− arg(Aj ) ,

δ̄ij ≡ arg(Āi )− arg(Āj ) ,

Dij ≡ arg(Āi )− arg(Aj ) ,

where i , j are any of the 4 helicities 0, ‖,⊥,S .
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Background

In the one amplitude method Ah = Āh ⇒ Dii = 0.

The point is only theory input is necessary: e.g. an estimate of D0,0.

If there is evidence of deviation from the SM we would like to know if
the NP is in the decay or mixing.

NP in the decay can be explored by the CPV quantities in the angular
distribution, ak − dk . If the second amplitude (PP or NP) is tiny all
these quantities are also very small.
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B → V1V2 with scalar background

B → V1V2 with scalar background

Penguin-dominated decays : Eg. Bs → φφ,K ∗K̄ ∗. Scalar background
contribute to the final state.( arXiv:1306.1911, Bhattacharya, Datta,
Duraisamy, London).

Vectors detected via hadronic decay come with scalar backgrounds

Eg. φ→ K+K−, Background Scalar : K+K− s-wave.

Additional contributions to Amplitude :

A(B → V1V2) + A(B → V1S2) + A(B → S1V2) + A(B → S1S2).

3 helicity amplitudes in B → VV : 1 Longitudinal and 2 transverse.

Scalar background adds additional helicities : (SV ,VS , SS).

Identical final-state vector mesons : 2 additional helicities (VS =
−SV ).

Distinguishable final-state vector mesons : 3 additional helicities.
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B → V1V2 with scalar background

The differential decay rate

Most general amplitude has the following terms :

AVV : A0 cos θ1 cos θ2 +
A‖√

2
sin θ1 sin θ2 cosφ + i

A⊥√
2

sin θ1 sin θ2 sinφ

AVS : −
A

(VS)
+√

6
(cos θ1 − cos θ2) −

A
(VS)
−√

6
(cos θ1 + cos θ2)

ASS : −As

3
;

A
(VS)
± = (AVS ±ASV )/

√
2. A

(VS)
− and A

(VS)
+ are CP even and CP odd.

If V1 = V2 then A
(VS)
+ ≡ 0.
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B → V1V2 with scalar background

The differential decay rate

The differential decay rate is then :

d4Γ

dt d~Ω
∝ |AVV + AVS + ASS |2

Triple product and DCPV can be constructed from (A⊥) and A
(VS)
+

which are CP-odd amplitudes.

CP-violating terms are the result of interference between CP-odd and
CP-even amplitudes.
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B → V1V2 with scalar background

Angular distribution with six helicities : (6C2 + 6 = 21)

d4Γ

dt d~Ω
=

9

8π

21∑
i=1

Ki (t) Xi (θ1, θ2, φ)

where Ki (t) = 1
2 e−Γt

[
ai cosh

(
∆Γ

2
t

)
+ ci cos(∆mt)

+ bi sinh

(
∆Γ

2
t

)
+ di sin(∆mt)

]
Appropriately integrate over phase space to extract Ki ’s using :∫

Xi (~Ω) fj (~Ω) d~ω = δij

Note: It is not possible to distinguish between Re[ASA
∗
0] and |A(VS)

+ |2

- |A(VS)
− |2 since the angular function is the same : X ∝ cos θ1 cos θ2.

Time-dependent fit to Ki ’s give the observables : ai , bi , ci , di - 84 of
them!.
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B → V1V2 with scalar background

Bs → K ∗0K̄ ∗0

CP conjugate Ki ’s can be obtained from :

K i (t) = 1
2 e−Γt

[
ai cosh

(
∆Γ

2
t

)
+ c i cos(∆mt)

+ bi sinh

(
∆Γ

2
t

)
+ d i sin(∆mt)

]
where ai = ai , bi = bi , c i = −ci , d i = −di

Untagged analysis angular distribution

Asymmetric integration over helicity angles obtain :

Kuntagged
i = Ki +K i = e−Γt

[
ai cosh

(
∆Γ

2
t

)
+ bi sinh

(
∆Γ

2
t

)]
.

Observables ai and bi from time-dependent fit to Kuntagged
i
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B → V1V2 with scalar background

b̄ → s̄ transitions within the SM- Bs → φφ

Amplitude within the SM (pure penguin modes) : (Loosely : γ comes
from phase of V ∗ub)

Ah = e−iφM/2
[
P ′tc,h e iδtc,h + e i(γ+φM/2) P ′uc,h e iδuc,h

]
. Example De-

cay B → φK ∗.

Leading order in Wolfenstein Parameter λ : P ′tc,h ∝ |V ∗tbVts | ∼ O(λ2).

Next-to-leading order in λ : P ′uc,h ∝ |V ∗ubVus | ∼ O(λ4).

If we neglect P ′uc,h there there is only decay amplitude and so all CPV
measurements- direct CP and Triple product asymmetries vanish.

Atrue,2
T .P ∼ Au ∼ λ2 ΛQCD

mb
and Afake,2

T .P ∼ ΛQCD

mb
.

Atrue,1
T .P ∼∼ Av ∼ λ2 and Afake,1

T .P ∼ 0(1).
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Interesting Decay Channels

Bs → φφ

Two identical vectors in the final state :

5 helicity amplitudes (3VV , SS ,VS−)

Studied by LHCb in detail : arXiv:1407.2222 (published in PRD)

LHCb(new) results for B0
s → φφ.

Observable Measurement

|A0|2exp 0.365± 0.022 (stat)± 0.012 (syst)
|A⊥|2exp 0.291± 0.024 (stat)± 0.010 (syst)
|A‖|2exp 0.344± 0.024 (stat)± 0.014 (syst)

cos(δ‖ − δ0) −0.844± 0.068 (stat)± 0.029 (syst)
Au −0.003± 0.017 (stat)± 0.006 (syst)
Av −0.017± 0.017 (stat)± 0.006 (syst)
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Interesting Decay Channels

Bs → φφ

φs = −0.17± 0.15± 0.03.

Scalar background consistent with zero.

No evidence of new CP violation in b → sss transitions as in Bd →
φK ∗.

As more experimental precision is achieved the discarded subleading
SM amplitude will have to be included.

We can move on to b → sdd . Motivated by the K−π puzzle. Examples
are Bd → ρK ∗, Bs → K ∗K̄ ∗.
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Interesting Decay Channels

Bs → K ∗0K̄ ∗0

Final state has distinguishable vectors : 6 helicity amplitudes.

The same final state is accessible to both Bs and B̄s .

K ∗0(890) is identified through its decay to K+π−.

Scalar background : K ∗0(1430) (Large width) is noticed.

Time-dependent tagged analysis could be difficult.

Interesting physics even in untagged time-dependent analysis.
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Interesting Decay Channels

Bs → K ∗0K̄ ∗0 LHCb

LHCb ( 1503.05362) measured 8 CP violating observables in the time
integrated untagged decay.

Triple product constructed with (A⊥) and DCPV with A
(VS)
+

Ai
T ∼ Im

[
A⊥A

∗
i − Ā⊥Ā

∗
i

]
where Ai = A0,A‖,A

(VS)
− ,AS .

Ai
D ∼ Re

[
A

(VS)
+ A∗i − Ā

(VS)
+ Ā∗i

]
where Ai = A0,A‖,A

(VS)
− ,AS .

Found large scalar background from K ∗0 (1430) and K ∗0 (800).
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New-Physics Scenario

New-Physics Scenarios

Typical effective NP operator :

HNP
AB ∼ (b γA s)(q γB q) where A,B stands for left(L) or right(R)

Expansion parameters : ΛQCD/mB and RNP
h

RR and LL operators only contribute to A‖,A⊥, and ASS

⇒ Direct CPV involving A(VS)+ are suppressed

Reasonable triple products

RL and LR operators don’t contribute to VS helicities

⇒ Triple products involving A‖ and A⊥ are small

Other CP violating observables are reasonable, including direct CPV

ai , bi , ci , di can help distinguish between different NP scenarios
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New-Physics Scenario

Table: Triple product and direct CP asymmetries measured in this analysis. The
first uncertainties are statistical and the second systematic.

Asymmetry Value

A1
T 0.003 ± 0.041 ± 0.009

A2
T 0.009 ± 0.041 ± 0.009

A3
T 0.019 ± 0.041 ± 0.008

A4
T −0.040 ± 0.041 ± 0.008

A1
D −0.061 ± 0.041 ± 0.012

A2
D 0.081 ± 0.041 ± 0.008

A3
D −0.079 ± 0.041 ± 0.023

A4
D −0.081 ± 0.041 ± 0.010
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Three Body Decays

Three Body Decays

Multibody B and D decays are being explored experimentally.

Lot on interesting physics in these decays- measure CP phases, study
resonances e.t.c.

Theoretically difficult to study. Model calculations exist. See for ex-
ample archive:1308.5139, Cheng and Chua.

In general difficult to apply QCD factorization results: see archive:
1505.04111, Krankl, Mannel, Virto.

One can use flavor symmetry to extract CP phases and predict CP vio-
lation: See for example: 1303.0846 (Bhattacharya, Imbeault, London),
1306.2625(Bhattacharya, Gronau, Rosner).
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Three Body Decays

An example: Extraction of γ: Battacharya, Imbeault, London

γ is obtained by combining information from the Dalitz plots for B0
d →

K+π0π−, B0
d → K 0π+π−, B+ → K+π+π−, B0

d → K+K 0K−, and
B0

d → K 0K 0K̄ 0.

The method applies to each point in the Dalitz plot. The value of γ is
independent of momentum, so that the method really represents many
independent measurements of γ.

The isobar model is used to model the amplitude in the Dalitz plot.

Flavor symmetry is used to relate amplitudes.
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Three Body Decays

Diagrams: Rey-LeLorier, Imbeault, London, archive: 1011.4972
Express amplitudes in terms of diagrams as in two body decays. Dia-
grams are T (tree), C( color-suppressed tee), P ( QCD penguin) and
PEW ( Electoweak penguin).

Figure: Color allowed Tree diagrams contributing to B → πππ.

Figure: Color Suppressed tree diagrams contributing to B → πππ.
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Three Body Decays

Penguins

Figure: QCD penguin diagrams contributing to B → πππ.

Figure: PEW diagrams contributing to B → πππ.
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Three Body Decays

Penguins

Figure: PEWC diagrams contributing to B → πππ.

Under flavor SU(3) there are relations between the electroweak penguin
(EWP) and tree diagrams for b̄ → s̄ transitions. These take the simple
form

P ′EWi = κT ′i , P ′CEWi = κC ′i (i = 1, 2) ; κ ≡ −3

2

|λ(s)
t |
|λ(s)

u |
c9 + c10

c1 + c2
,

where the ci are Wilson coefficients and λ
(s)
p = V ∗pbVps . The EWP-tree

relations hold only for the state that is fully symmetric under exchanges of
the final-state particles.
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Three Body Decays

The amplitudes for the five decays are written in terms of diagrams. Using
the four effective diagrams:

a ≡ −P̃ ′tc + κ

(
2

3
T ′1 +

1

3
C ′1 +

1

3
C ′2

)
,

b ≡ T ′1 + C ′2 , c ≡ T ′2 + C ′1 , d ≡ T ′1 + C ′1 .

2A(B0
d → K+π0π−)fs = be iγ − κc ,√

2A(B0
d → K 0π+π−)fs = −de iγ − P̃ ′uce

iγ − a + κd ,√
2A(B+ → K+π+π−)fs = −ce iγ − P̃ ′uce

iγ − a + κb ,√
2A(B0

d → K+K 0K−)fs = αSU(3)(−ce iγ − P̃ ′uce
iγ − a + κb) ,

A(B0
d → K 0K 0K̄ 0)fs = αSU(3)(P̃ ′uce

iγ + a) ,

where αSU(3) measures the amount of flavor-SU(3) breaking. αSU(3)=1 in
the symmetric limit.
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Three Body Decays

Dalitz Plot

B → P1P2P3 (the Pi are pseudoscalar mesons). Denoting by pi the
momentum of each Pi , one defines the three Mandelstam variables
sij ≡ (pi + pj )

2. These are not independent, but obey s12 + s13 + s23 =
m2

B + m2
1 + m2

2 + m2
3.

Use the isobar model to construct the amplitude from experiment

M(s12, s13) = NDP

∑
j

cje
iθjFj (s12, s13) ,

Finally construct the fully symmetric state and use the amp relations

Mfs =
1√
6

[M(s12, s13) +M(s13, s12) +M(s12, s23)

+ M(s23, s12) +M(s23, s13) +M(s13, s23)] .
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Three Body Decays

Fit to γ
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Figure: Kinematic boundaries and symmetry axes of B → Kππ and B → KKK
Dalitz plots. The symmetry axes divide each plot into six zones, five of which are
marked 2-6. The fifty dots in the region of overlap of the first of six zones from
all Dalitz plots are used for the γ measurement.
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Three Body Decays
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Figure: Results of maximum-likelihood fits. The solid (black) curve represents the
fit assuming flavor-SU(3) symmetry. The short dashes (red) represent the fit
where flavor-SU(3) breaking is fixed by a point-by-point comparison of Dalitz
plots for B+ → K+π+π− and B0 → K+K 0K−. The long dashes (blue) represent
the fit with inputs from five Dalitz plots and an extra hadronic fit parameter
|αSU(3)|.
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Three Body Decays

Solution Fit 1 Fit 2 Fit 3

I 31+2
−1 31+1

−2 32± 2
II 77± 2 78± 2 77± 2

III 261+2
−3 259+3

−2 259+2
−3

IV 314± 2 315± 2 315± 2

One value is close to the SM value. The other solutions may point to
B → Kππ, B → KKK ”puzzle”.
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Conclusions

Conclusions

B → V1V2 offer many probes of CP violation.

Many observables can be used to probe the SM or NP.

Multibody decays can be used to study CP violation, resonance struc-
tures.

Experiments have measured observables in B → V1V2 and three body
decays and will continue to do so with more precision. Challenge is to
study carefully the implications of these measurements.
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