New physics models that might explain (some of the) flavour anomalies

Martin Jung

ARDBEC

Deutsche Forschungsgemeinschaft

avy, Flavour 2016 - Quo Vadis? 14th of 10ty Islay, Scotland Introduction

Anomalies in *B* decays

 $b
ightarrow c au
u \ [R(D^{(*)})] \& b
ightarrow s \ell \ell \ [B
ightarrow K^* \ell \ell, R_K, \ldots]$ both at $\gtrsim 4\sigma!$

Tensions not discussed here:

- $V_{ub,cb}$ inclusive vs. exclusive [see Thomas' talk]
- g 2 (but addressed by some of the models)
- ϵ'/ϵ (?)

Things I do not consider anomalous:

- Diphoton resonance @ 750 GeV [but see Dario's talk]
- $h \rightarrow \mu \tau$
- $B_{d,s}
 ightarrow \mu^+ \mu^-$, $\Delta m_{d,s}$

Generic models (templates) discussed here:

- Additional scalars (ightarrow 2HDMs)
- Additional gauge bosons (ightarrow U(1') models)
- Leptoquarks (\rightarrow unified models)

 H^{\pm} in $b \to c \tau \nu$ $b \to s \ell \ell$: Z' and leptoquarks

A hierarchy of scales

A long-sought new particle...

 H^{\pm} in $b \rightarrow c \tau \iota$

 $b \rightarrow s\ell\ell$: Z' and leptoquarks

Conclusions

A hierarchy of scales

A long-sought new particle...

... but again everything looks like the Standard Model!

Apparently hierarchy between the electroweak and NP scales!

 H^{\pm} in $b \rightarrow c \tau \iota$

 $b \rightarrow s\ell\ell$: Z' and leptoquarks

H Tota

126

Conclusions

Syst.

m_H [GeV]

Total Stat. Syst

26.02 ± 0.51 (± 0.43 ± 0.27) GeV

124.70 ± 0.34 (± 0.31 ± 0.15) GeV

124.51 ± 0.52 (± 0.52 ± 0.04) GeV

125.59 ± 0.45 (± 0.42 ± 0.17) GeV

125.07 ± 0.29 (± 0.25 ± 0.14) GeV

128 129

A hierarchy of scales

A long-sought new particle...

... but again everything looks like the Standard Model! (almost)

124

Apparently hierarchy between the electroweak and NP scales!

Introduction

Model-independent approach

 H^{\pm} in $b \rightarrow c \tau \nu$

 $b \rightarrow s\ell\ell$: Z' and leptoquarks

Conclusions

Flavour EFTs for semi-leptonic decays

At scales $\mu \ll v, M_W$: Construct EFT from $\psi_f, F_{\mu\nu}, G_{\mu\nu},$ gauge group $SU(3)_C \times U(1)_{em}$

Generically:

- 1. All coefficients independent
- 2. Coefficients for other processes unrelated (e.g. $au \leftrightarrow e, \mu$)

Implications of HEFT for the flavour-EFTs? [Cata/MJ'15] Differences between linear and non-linear realization? Separate operators specific for non-linear HEFT

Previous work (linear EFT) e.g. [D'Ambrosio+'02,Cirigliano+'09,Alsonso+'14]

A word of caution: flavour hierarchies have to be considered! Mostly relevant when SM is highly suppressed, *e.g.* for EDMs

oduction Model-independent approach H^{\pm} in $b \rightarrow c\tau\nu$ $b \rightarrow s\ell\ell$: Z' and leptoquarks Conclu Implications of the Higgs EFT for flavour [Cata/MJ'15] $\mathbf{q} \rightarrow \mathbf{q}'\ell\ell$:

- Tensor operators absent in linear EFT for d → d'ℓℓ [Alonso+'14]
 Present in general! (already in linear EFT for u → u'ℓℓ)
- Scalar operators: linear EFT C_S^(d) = −C_P^(d), C_S^{'(d)} = C_P^{'(d)} [Alonso+'14]
 Analogous for u → u'ℓℓ, but no relations in general!

 ${f q}
ightarrow {f q}' \ell
u$:

- All operators are independently present already in the linear EFT
- However: Relations between different transitions: C_{V_R} is lepton-flavour universal [see also Cirigliano+'09] Relations between charged- and neutral-current processes, *e.g.* $\sum_{U=u,c,t} \lambda_{US} C_{S_R}^{(U)} = -\frac{e^2}{8\pi^2} \lambda_{ts} C_S^{(d)}$ [see also Cirigliano+'12,Alonso+'15]
- These relations are again absent in the non-linear EFT

Flavour physics sensitive to Higgs embedding!

- Surprising, since no Higgs is involved
- Difficult differently [e.g. Barr+, Azatov+'15]

uction Model-independent approach H^\pm in b o c au
u $b o s\ell\ell\colon Z'$ and leptoquarks Conclu

Experimental Situation for $b \rightarrow c \tau \nu$ 2016

Importance of semi-leptonic decays:

- SM: Determination of |V_{ij}| (7/9)
 Minimal hadronic input, improvable!
- NP: Relative to tree, τ least constrained

- *R*(*D**) from LHCb [1506.08614]
- Belle update + new measurement (had./sl tag) [1507.03233,1603.06711]

▶4.0 σ tension [HFAG]

Further $b \rightarrow c \tau \nu$ inputs:

- Differential rates from Belle, BaBar
- Total width of B_c
- $b \rightarrow X_c \tau \nu$ by LEP

Tension $R(D^*)$ vs. $R(X_c)$: no space for $B \to D^{**} \tau \nu$ [Ligeti+'15]

$R(D), R(D^*)$:

- R(D) compatible with SM at $\sim 2\sigma$
- Preferred scalar couplings from $R(D^*)$ huge

Differential rates:

- compatible with SM and NP
- already now constraining, especially in $B \rightarrow D \tau \nu$
- exclude 2nd real solution in δ_{cb}^{τ}

Total width of B_c :

- $B_c \rightarrow \tau \nu$ is an obvious $b \rightarrow c \tau \nu$ transition
 - not measurerable in foreseeable future
 - can oversaturate total width of B_c! [X.Li+'16]
- Excludes second real solution in Δ_{cb}^{τ} plane

Consistent explanation in 2HDMs possible, flavour structure?

Generic feature: Relative influence larger in leptonic decays!

- No problem in $b \rightarrow c \tau \nu$ since $B_c \rightarrow \tau \nu$ won't be measured
- Large charm coupling required for $R(D^*)$
- Embedding $b \rightarrow c \tau \nu$ into a viable model complicated!
- $D_{d,s} \rightarrow au, \mu
 u$ kill typical flavour structures with $g \sim m$
- Only fine-tuned models survive all (semi-)leptonic constraints
- $b
 ightarrow s\ell\ell$ very complicated to explain with scalar NP:
 - Potential FCNC neutral Higgs coupling doesn't give C9
 - Large muon coupling very difficult to do
 - ▶ 2HDM alone tends to predict $b \rightarrow s\ell\ell$ to be QCD-related

[Gauld+,Descotes-Genon+,Sierra+,Becirevic+, Bhattacharya+,Gripaios+,Hiller+,Niehoff+]

- Z' models: $b \to s\ell\ell \checkmark$, $R(D, D^*) \ltimes$, additional bounds \checkmark
- LQ models: $b \to s\ell\ell$ (\checkmark), $R(D, D^*) \checkmark$, additional bounds ?

 H^{\pm} in $b \to c \tau \nu$ $b \to s \ell \ell$: Z' and leptoquarks

U(1)' models: some model building

We require:

- 1. Sizable contributions to $b \rightarrow s\ell^+\ell^-$
 - \clubsuit specifically to C_9 , i.e. vector coupling
- Lepton non-universal couplings
- 3. Limited contributions to established constraints:
 - EW precision constaints
 - Unitarity triangle constraints
 - . . .

U(1)' models good candidates (leptoquarks later) [e.g. Altmannshofer+,Buras+,Crivellin+,Gauld+,Descotes-Genon+,Sierra+]

Wish list:

- Minimal particle content (no new fermions)
- Predictivity for up-, down-, lepton-FCNCs

Introduction

 H^{\pm} in $b \rightarrow c \tau \nu$

 $b \rightarrow s\ell\ell$: Z' and leptoquarks

Conclusions

Incarnations of U(1)'

 Z^\prime models have been popular for a long time $[{\tt review \ e.g. \ Langacker'08}]$

Starting a new construction:

1. SM particle content: $L_{\alpha} - L_{\beta}$ only option [2×He+'91]

- 2. Adding vector-like quarks (+scalars) → effective Z'āq'-coupling [Altmannshofer+'14]
 LHCb anomalies ✓, independent C₉^{μ(I)}
 no Z'ee-coupling → avoid LEP bounds
 Δm_s → u, d couplings small
 3. Gauging L_μ L_τ a(B₁ + B₂ 2B₃) → new scalars suffice [Crivellin+'15]
 LHCG = averaging 4 C^μ + C^{μ(I)}
 - LHCb anomalies ✓, |C₉^µ| ≫ |C₉^{µ'}|
 L and B separately anomaly-free
 - down-FCNCs approximately $\sim V_{ti}V_{ti}^*$
 - arbitrary up-FCNCs

 H^{\pm} in $b \to c \tau \nu$ $b \to s \ell \ell$: Z' and leptoquarks

Flavour violation in 2HDMs

Generic 2HDMs: huge flavour violation solution to this a main characteristic

Option 1: Avoid tree-level FCNCs \rightarrow NFC, MFV, Alignment, ... Option 2: Allow for controlled FCNCs

- Cheng-Sher ansatz/Type III \rightarrow little predictivity
- Branco-Grimus-Lavoura (BGL) models [BGL'96]
 - Use flavour symmetry to relate all flavour-change to CKM Unique pattern in 2HDMs! [Ferreira/Silva'11,Serôdio'13]
 - Choice: top quark only couples to $\phi_2 \rightarrow \text{FCNCs}$ in down-sector

$U(1)'_{\rm BGL}$ – Overview

 H^{\pm} in $b \to c \tau \nu$ $b \to s \ell \ell$: Z' and leptoquarks

Gauging the BGL symmetry yields $U(1)'_{BGL}$ model:

- ADVERTISEMENT Controlled tree-level down-FCNCs, determined by CKM ▶ left-handed, $C_{9,10}^{e,\mu}$, $|C_{10}^{\ell}| < (\ll)|C_{9}^{\ell}|$
- No FCNCs in the up-quark sector
- Symmetry yields lepton-flavour non-universality without lepton-flavour violation
- Higgs sector phenomenologically viable, no large effects
- Z' extremely predictive: 2 parameters (plus one charge)
- Let's check the available constraints...

Phenomenological consequences

Most observables are unaffected! $(M_W^2/M_{Z'}^2 \lesssim 0.1\%)$ Figure Effects only for SM suppression *in addition to* $G_F + CKM$ EW penguin decays, mixing, CP violation, leptonic decays, ...

Phenomenological consequences

Most observables are unaffected! $(M_W^2/M_{Z'}^2 \lesssim 0.1\%!)$ Figure Effects only for SM suppression *in addition to* $G_F + CKM$ New *B*-mixing matrix elements [Aida's talk]

Leptoquark models

 \mathcal{O}_9 also generated from coloured exchange particles \Rightarrow leptoquarks e.g. [Barbieri+,Bauer+,Becirevic+,Fajfer+,Freytsis+,Gripaios+,Hiller+,Sahoo+]

Some models can explain $b \rightarrow s\ell\ell$ and $b \rightarrow c\tau\nu$ data! \bullet correlated with $b \rightarrow s\bar{\nu}\nu!$

Example 1: [Bauer+'15] Scalar LQ ϕ with quantum numbers $S_1 \sim (\mathbf{\bar{3}}, \mathbf{1}, 1/3)$

- $\mathcal{L} \supset \bar{Q}_L^C \phi L, \ \bar{u}_R^C \phi^* d_R$
- Explains $b \to c \tau \nu$ on tree-level, $b \to s \ell \ell$ on loop-level

 \blacksquare natural hierarchies, also g-2

Grey: B → K^(*)νν, Blue: Z → μ⁺μ⁻
 Specific assumptions on flavour structure nevertheless necessary

Leptoquark models II

Example 2: [Fajfer/Kosnik'16]

Vector LQ V with quantum numbers $U_1 \sim (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$

- $b \rightarrow s\ell\ell$ and $b \rightarrow c\tau\nu$ both on tree-level Hierarchy in couplings necessary
- Proton decay not problematic
- $B \rightarrow K \bar{\nu} \nu$ main constraint (green excluded)

LFV possibly related to LFNU \Rightarrow NP typically *not* in mass basis Rotation to mass basis induces LFV [Glashow+,Bhattacharya+'14,...]

- LFV B decays additionally motivated!
- Strong constraints from LFV processes

However...

- "typically" does not mean "necessarily"
 diagnonal mass matrix possible
- Examples: [Altmannshofer+'14,Celis+'15⇒]

Models with $(\bar{Q}\gamma^{\mu}t^{A}Q)(\bar{L}\gamma^{\mu}t^{A}L)$ create $\tau \to \mu\bar{\nu}\nu$ on 1-loop! violates generically $\Gamma(\tau \to \mu\bar{\nu}\nu)/\Gamma(\mu \to e\bar{\nu}\nu)$ -bound! [Feruglio+'16] lssue for LQ models, models with a W' [e.g. lsidori+'15] 19/41

Conclusions

Exciting anomalies in $b \to s\ell\ell$ and $b \to c\tau\nu$ at $\geq 4\sigma$:

- intriguing + unexpected results, but not beyond doubt
- imply testable deviations in other modes

Scale-hierarchies allow for model-independent EFT analyses:

SMEFT yields relations between flavour-coefficients

allows to distinguish between Higgs-realizations! 2HDMs (scalar NP):

- can explain $b \rightarrow c \tau \nu$ data, $b \rightarrow s \ell \ell$ very difficult
- model difficult, (semi-)leptonic data implies fine-tuning U(1)' models:
 - explain elegantly $b \rightarrow s\ell\ell + absence$ of other signals
 - LFNU possible without LFV!

• testable e.g. directly, in $\hat{R}_{\phi,K^*,...}$ & B mixing Leptoquark models:

- can explain $b \rightarrow s\ell\ell$ and $b \rightarrow c\tau\nu$
- are difficult to embed into e.g. a unified model
- potentially violate $\tau \rightarrow \mu \nu \nu / \mu \rightarrow e \nu \nu$ bound

 $b \rightarrow s\ell\ell$: Z' and leptoquarks

Conclusions

Implications of the Higgs EFT for Flavour: $q \rightarrow q'\ell\ell$ $\mathcal{L}_{\text{eff}}^{b \rightarrow s\ell\ell} = \frac{4G_F}{c} \lambda_{ts} \frac{e^2}{c} \sum_{i=1}^{12} C_i^{(d)} \mathcal{O}_i^{(d)}, \quad \lambda_{ts} = V_{tb} V_{ts}^*, \text{ with}$

$$\sum_{i=1}^{2} \sum_{j=1}^{2} \lambda_{ts} \frac{1}{(4\pi)^2} \sum_{i=1}^{2} C_i^{(t)} \mathcal{O}_i^{(t)}, \quad \lambda_{ts} = V_{tb} V_{ts}^*, \quad \text{with}$$

$$\begin{aligned} \mathcal{O}_{7}^{(\prime)} &= \frac{m_{b}}{e} (\bar{s} \sigma^{\mu\nu} P_{R(L)} b) F_{\mu\nu} , \\ \mathcal{O}_{9}^{(\prime)} &= (\bar{s} \gamma_{\mu} P_{L(R)} b) \bar{l} \gamma^{\mu} l , \\ \mathcal{O}_{5}^{(\prime)} &= (\bar{s} P_{R(L)} b) \bar{l} l , \\ \mathcal{O}_{T} &= (\bar{s} \sigma_{\mu\nu} b) \bar{l} \sigma^{\mu\nu} l , \end{aligned}$$

Generalized matching from HEFT yields:

- No changes for photon penguin, insensitive to EWSB
- Additional contributions in $C_{9,10}^{(\prime)}$ (but linear EFT already general)
- Tensor operators absent in linear EFT for d → d'ℓℓ [Alonso+'14]
 Present in general! (already in linear EFT for u → u'ℓℓ)
- Scalar operators: linear EFT C_S^(d) = −C_P^(d), C_S^(d) = C_P^(d)[Alonso+'14]
 Analogous for u → u'ℓℓ, but no relations in general!

Implications of the Higgs EFT for Flavour: $q ightarrow q' \ell u$

 $b \rightarrow c \tau \nu$ transitions (SM: $C_{V_L} = 1, C_{i \neq V_L} = 0$):

$$\begin{split} \mathcal{L}_{\text{eff}}^{b \to c\tau\nu} &= -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_{j}^{5} C_j \mathcal{O}_j \,, \qquad \text{with} \\ \mathcal{O}_{V_{L,R}} &= (\bar{c} \gamma^{\mu} P_{L,R} b) \bar{\tau} \gamma_{\mu} \nu \,, \qquad \mathcal{O}_{S_{L,R}} = (\bar{c} P_{L,R} b) \bar{\tau} \nu \,, \\ \mathcal{O}_T &= (\bar{c} \sigma^{\mu\nu} P_L b) \bar{\tau} \sigma_{\mu\nu} \nu \,. \end{split}$$

- All operators are independently present already in the linear EFT
- However: Relations between different transitions: *C_{V_R}* is lepton-flavour universal [see also Cirigliano+'09] Relations between charged- and neutral-current processes, *e.g.* Σ_{U=u,c,t} λ_{Us} C^(U)_{S_R} = − ^{e²}/_{8π²}λ_{ts} C^(d)_S [see also Cirigliano+'12,Alonso+'15]

 These relations are again absent in the non-linear EFT

Interpretation

Lessons:

- When assuming a linear EFT: Simplifications of model-indepent analyses
- However: Relations do *not* hold model-independently
 SU(2)_L × U(1)_Y together with linear embedding

Flavour physics can help to distinguish between embeddings!
Surprising, since no Higgs is involved
Difficult differently [e.g. Barr+, Azatov+'15]

Key operators \$\mathcal{O}_{Y_i}\$: 4f-operators with Goldstone fields
 Hypercharges of fermions alone do not sum to 0
 Appear in linear EFT at dimension 8

$\begin{array}{l} \text{Operator basis} \\ \hat{\tau}_3 = U \tau_3 U^{\dagger}, \ \hat{\tau}_{\pm} = U \frac{1}{2} (\tau_1 \pm i \tau_2) U^{\dagger}, \ L_{\mu} \equiv i U D_{\mu} U^{\dagger}. \end{array}$

$$\begin{aligned} \mathcal{O}_{X1,2} &= g' \bar{q} \sigma^{\mu\nu} U P_{\pm} r B_{\mu\nu}, \quad \mathcal{O}_{X3,4} &= g \bar{q} \sigma^{\mu\nu} U P_{\pm} r \langle \hat{\tau}_3 W_{\mu\nu} \rangle, \\ \mathcal{O}'_{X1,2} &= g' \bar{r} P_{\pm} U^{\dagger} \sigma^{\mu\nu} q B_{\mu\nu}, \quad \mathcal{O}'_{X3,4} &= g \bar{r} P_{\pm} U^{\dagger} \sigma^{\mu\nu} q \langle \hat{\tau}_3 W_{\mu\nu} \rangle, \end{aligned}$$

$$\begin{split} \mathcal{O}_{V1} &= \bar{q} \gamma^{\mu} q \langle \hat{\tau}_{3} L_{\mu} \rangle , \\ \mathcal{O}_{V3} &= \bar{u} \gamma^{\mu} u \langle \hat{\tau}_{3} L_{\mu} \rangle , \\ \mathcal{O}_{V5} &= \bar{q} \gamma^{\mu} \hat{\tau}_{+} q \langle \hat{\tau}_{-} L_{\mu} \rangle , \\ \mathcal{O}_{V7} &= \bar{l} \gamma^{\mu} \hat{\tau}_{-} l \langle \hat{\tau}_{+} L_{\mu} \rangle , \end{split}$$

$$\begin{split} \mathcal{O}_{LL1} &= \bar{q} \gamma^{\mu} q \ \bar{l} \gamma_{\mu} l \,, \\ \hat{\mathcal{O}}_{LL3} &= \bar{q} \gamma^{\mu} \hat{\tau}_3 q \ \bar{l} \gamma_{\mu} l \,, \\ \hat{\mathcal{O}}_{LL5} &= \bar{q} \gamma^{\mu} \hat{\tau}_3 q \ \bar{l} \gamma_{\mu} \hat{\tau}_3 l \,, \\ \hat{\mathcal{O}}_{LL7} &= \bar{q} \gamma^{\mu} \hat{\tau}_3 l \ \bar{l} \gamma_{\mu} q \,, \end{split}$$

$$\begin{split} \mathcal{O}_{V2} &= \bar{q} \gamma^{\mu} \hat{\tau}_3 q \langle \hat{\tau}_3 L_{\mu} \rangle \,, \\ \mathcal{O}_{V4} &= \bar{d} \gamma^{\mu} d \langle \hat{\tau}_3 L_{\mu} \rangle \,, \\ \mathcal{O}_{V6} &= \bar{u} \gamma^{\mu} d \langle \hat{\tau}_- L_{\mu} \rangle \,, \end{split}$$

$$\begin{split} \mathcal{O}_{LL2} &= \bar{q} \gamma^{\mu} \tau^{j} q \ \bar{l} \gamma_{\mu} \tau^{j} l \,, \\ \hat{\mathcal{O}}_{LL4} &= \bar{q} \gamma^{\mu} q \ \bar{l} \gamma_{\mu} \hat{\tau}_{3} l \,, \\ \hat{\mathcal{O}}_{LL6} &= \bar{q} \gamma^{\mu} \hat{\tau}_{3} l \ \bar{l} \gamma_{\mu} \hat{\tau}_{3} q \,, \end{split}$$

Operator basis II

$\mathcal{O}_{LR1}=ar{m{q}}\gamma^\mum{q}ar{m{e}}\gamma_\mum{e},$	
$\mathcal{O}_{LR3}=ar{d}\gamma^{\mu}d\;ar{l}\gamma_{\mu}l,$	
$\hat{\mathcal{O}}_{LR6} = \bar{u} \gamma^{\mu} u \bar{l} \gamma_{\mu} \hat{\tau}_{3} l ,$	
${\cal O}_{\it RR1}=ar u\gamma^\mu uar e\gamma_\mu e,$	
${\cal O}_{LR4}=ar q\gamma^\mu Iar e\gamma_\mu d,$	$\hat{\mathcal{O}}_{LR}$
$\mathcal{O}_{S1} = \epsilon_{ij} \bar{l}^i e \bar{q}^j u ,$	\mathcal{O}_{S}
$\hat{\mathcal{O}}_{S3} = \bar{q} U P_+ r \bar{l} U P \eta ,$	Ôs
$\hat{\mathcal{O}}_{S5} = \bar{q}\hat{\tau}_{-} U r \bar{l}\hat{\tau}_{+} U \eta ,$	Ô5
$\hat{\mathcal{O}}_{Y1} = \bar{q} U P_{-} r \bar{l} U P_{-} \eta ,$	$\hat{\mathcal{O}}_{Y}$
$\hat{\mathcal{O}}_{\mathbf{Y3}} = \bar{\mathbf{I}} U P_{-} \eta \bar{\mathbf{r}} P_{+} U^{\dagger} q ,$	$\hat{\mathcal{O}}_{Y}$

$$\begin{aligned} \mathcal{O}_{LR2} &= \bar{u}\gamma^{\mu}u\,\bar{l}\gamma_{\mu}l\,,\\ \hat{\mathcal{O}}_{LR5} &= \bar{q}\gamma^{\mu}\hat{\tau}_{3}q\,\bar{e}\gamma_{\mu}e\,,\\ \hat{\mathcal{O}}_{LR7} &= \bar{d}\gamma^{\mu}d\,\bar{l}\gamma_{\mu}\hat{\tau}_{3}l\,,\\ \mathcal{O}_{RR2} &= \bar{d}\gamma^{\mu}d\,\bar{e}\gamma_{\mu}e\,.\\ LR8 &= \bar{q}\gamma^{\mu}\hat{\tau}_{3}l\,\bar{e}\gamma_{\mu}d\,,\\ \mathcal{O}_{52} &= \epsilon_{ij}\bar{l}^{i}\sigma^{\mu\nu}e\bar{q}^{j}\sigma_{\mu\nu}u\,,\\ \hat{\mathcal{O}}_{54} &= \bar{q}\sigma_{\mu\nu}UP_{+}r\bar{l}\sigma^{\mu\nu}UP_{-}\eta\,,\\ \hat{\mathcal{O}}_{56} &= \bar{q}\sigma_{\mu\nu}\hat{\tau}_{-}Ur\bar{l}\sigma^{\mu\nu}UP_{-}\eta\,,\\ \hat{\mathcal{O}}_{72} &= \bar{q}\sigma_{\mu\nu}UP_{-}r\bar{l}\sigma^{\mu\nu}UP_{-}\eta\,,\\ \hat{\mathcal{O}}_{74} &= \bar{l}UP_{-}r\bar{r}P_{+}U^{\dagger}l\,. \end{aligned}$$

Flavor family indices have been omitted.

Matching for $b \to s\ell\ell$ transitions $\mathcal{N}_{\mathrm{NC}}^{(d)} = \frac{4\pi^2}{e^2\lambda_{\mathrm{ts}}} \frac{v^2}{\Lambda^2}$

$$\delta C_{7(d)}^{(\prime)} = \frac{8\pi^2}{m_b \lambda_{ts}} \frac{v^2}{\Lambda^2} \left[c_{X2}^{(\prime)} + c_{X4}^{(\prime)} \right] ,$$

$$\delta C_{7(u)}^{(\prime)} = \frac{8\pi^2}{m_c \lambda_{bu}} \frac{v^2}{\Lambda^2} \left[c_{X1}^{(\prime)} + c_{X3}^{(\prime)} \right] ,$$

$$\begin{split} \delta C_{9,10}^{(q)} &= \mathcal{N}_{\rm NC}^{(q)} \left[(C_{LR}^{(q)} \pm C_{LL}^{(q)}) \pm 4 g_{V,A} \frac{\Lambda^2}{v^2} C_{VL}^{(q)} \right] \,, \\ C_{9,10}^{\prime(q)} &= \mathcal{N}_{\rm NC}^{(q)} \left[(C_{RR}^{(q)} \pm C_{RL}^{(q)}) \pm 4 g_{V,A} \frac{\Lambda^2}{v^2} C_{VR}^{(q)} \right] \,. \end{split}$$

$$\begin{split} C_{LL}^{(d)} &= c_{LL1} + c_{LL2} - \hat{c}_{LL3} - \hat{c}_{LL4} + \hat{c}_{LL5} + \hat{c}_{LL6} - \hat{c}_{LL7} ,\\ C_{RR}^{(d)} &= c_{RR2} , \ C_{LR}^{(d)} = c_{LR1} - \hat{c}_{LR5} , \ C_{RL}^{(d)} = c_{LR3} - \hat{c}_{LR7} ,\\ C_{VL}^{(d)} &= c_{V1} - c_{V2} , \ C_{VR}^{(d)} = c_{V4} . \end{split}$$

$b \rightarrow s \ell \ell$ matching continued

$$\begin{split} C^{(d)}_{S,P} &= \mathcal{N}_{\rm NC}^{(d)} \left[\pm c_S^{(d)} + \hat{c}_{Y1} \right] \,, \qquad C^{\prime(d)}_{S,P} = \mathcal{N}_{\rm NC}^{(d)} \left[c_S^{\prime(d)} \pm \hat{c}_{Y1}^{\prime} \right] \,, \\ C^{(d)}_T &= \mathcal{N}_{\rm NC}^{(d)} \left[\hat{c}_{Y2} + \hat{c}_{Y2}^{\prime} \right] \,, \qquad C^{(d)}_{T5} = \mathcal{N}_{\rm NC}^{(d)} \left[\hat{c}_{Y2} - \hat{c}_{Y2}^{\prime} \right] \,, \end{split}$$
where $c^{(\prime)(d)}_S = 2(\hat{c}^{(\prime)}_{LR8} - c^{(\prime)}_{LR4}).$

Matching for $b \rightarrow c \ell \nu$ transitions

$$\begin{split} C_{V_L} &= -\mathcal{N}_{\rm CC} \left[C_L + \frac{2}{v^2} c_{V5} + \frac{2V_{cb}}{v^2} c_{V7} \right] \,, \\ C_{V_R} &= -\mathcal{N}_{\rm CC} \left[\hat{C}_R + \frac{2}{v^2} c_{V6} \right] \,, \\ C_{S_L} &= -\mathcal{N}_{\rm CC} \left(c'_{S1} + \hat{c}'_{S5} \right) , \\ C_{S_R} &= 2 \,\mathcal{N}_{\rm CC} \left(c_{LR4} + \hat{c}_{LR8} \right) , \\ C_T &= -\mathcal{N}_{\rm CC} \left(c'_{S2} + \hat{c}'_{S6} \right) , \end{split}$$

where $\mathcal{N}_{\rm CC} = \frac{1}{2V_{cb}} \frac{v^2}{\Lambda^2}$, $C_L = 2c_{LL2} - \hat{c}_{LL6} + \hat{c}_{LL7}$ and $\hat{C}_R = -\frac{1}{2}\hat{c}_{Y4}$.

The differential distributions $d\Gamma(B \rightarrow D^{(*)} \tau \nu)/dq^2$

- Data stat. uncertainties only, BaBar rescaled
- Bands 68% CL (bins highly correlated): Grey: NP fit including R(D) Red: SM fit (distributions only) Green: Allowed by R(D), excluded by distribution
- Need better experimental precision, ideally $dR(D)/dq^2$
- Parts of NP parameter space clearly excluded

The differential distributions $d\Gamma(B \rightarrow D^{(*)} \tau \nu)/dq^2$

- Data stat. uncertainties only, BaBar rescaled
- Bands 68% CL (bins highly correlated): Grey: NP fit including R(D*) Red: SM fit (distributions only) Green: Allowed by R(D*), excluded by distribution
- Need better experimental precision, ideally $dR(D^*)/dq^2$
- Not very restrictive at the moment

Gauging BGL models

- BGL via discrete symmetries yields accidental U(1)
- Scalars disfavoured as solution for b
 ightarrow s anomalies
- Idea: Gauge BGL models! [Celis/Fuentes-Martín/MJ/Serôdio]

Gauging BGL models

- BGL via discrete symmetries yields accidental U(1)
- Scalars disfavoured as solution for b
 ightarrow s anomalies
- ▶ Idea: Gauge BGL models! [Celis/Fuentes-Martín/MJ/Serôdio]

Require $U(1)_{\rm BGL}$ to be anomaly-free: 5 non-linear conditions

- Automatic in the SU(3)_C sector [Celis+'14]
- Not possible using only the SM quark sector

Include lepton sector

Gauging BGL models

- BGL via discrete symmetries yields accidental U(1)
- Scalars disfavoured as solution for b
 ightarrow s anomalies
- Idea: Gauge BGL models! [Celis/Fuentes-Martín/MJ/Serôdio]

Require $U(1)_{\rm BGL}$ to be anomaly-free: 5 non-linear conditions

- Automatic in the SU(3)_C sector [Celis+'14]
- Not possible using only the SM quark sector
- Include lepton sector

Most general charges: arbitrary $X_{\ell L,R}$ with $\ell = e, \mu, \tau$

Highly non-trivial system to solve, only one class of solutions!

▶1 physical free charge $\rightarrow X_{\phi_2} \equiv 0$, 6 permutations

Patterns in quark sector imply (independent of charge choice):

- 1. Lepton-flavour non-universality
- 2. Lepton-flavour conservation

Scalar sector of the $U(1)'_{BGL}$ model

Higgs sector has 2 doublets Φ_i and 1 complex singlet S:

- vev for S (v_S) yields U(1)' breaking
 v_S/v ≫ 1 ⇒ characterizes scalar sector
- Parameters: 10 dof \Rightarrow 6 scalars, 4 massive Goldstone bosons
- Spectrum: $H_{1,2,3}, H^{\pm}, A, M_{H_1} \sim v, M_{H^{\pm}, H_{2,3}, A} \sim v_S$
- Potential CP-invariant because of U(1)'
- Spontaneous CP violation is also absent
- H_3 couplings additionally suppressed by v/v_S

Phenomenology:

- BGL structure in 2HDMs viable for $M \sim {\rm few} \times 100 {
 m ~GeV}$ [Botella+'14,Batthacharya+'14]
- Here scalars mostly decoupling \Rightarrow Higgs measurements fine
- Basically one constraint from flavour: B_{d,s} → μ⁺μ⁻
 Uncorrelated to Z' constraints

Gauging BGL models - including leptons

Most general charges: arbitrary $X_{\ell L,R}$ with $\ell = e, \mu, \tau$ Anomaly conditions from 5 combinations:

- Linear: $U(1)'[SU(2)_L]^2$, $U(1)'[U(1)_Y]^2$, $U(1)'[(gravity)]^2$
- Quadratic: $[U(1)']^2 U(1)_Y$
- Cubic: $[U(1)']^3$
- Highly non-trivial system to solve, only one class of solutions!
- Involves one free charge (physical choice) with 6 permutations

• Here: $X_{\phi_2} \equiv 0 \Rightarrow Z - Z'$ mixing suppressed (tan $\beta \gg 1$)

Patterns in quark sector imply (independent of charge choice):

- 1. Lepton-flavour non-universality
- 2. Lepton-flavour conservation

Anomaly-free top-BGL implementation [Slide from J. Fuentes-Martín]

$$\psi^{0} \rightarrow e^{i \mathcal{X}^{\psi}} \psi^{0}$$

Only one class of models (with X_{Φ_2} and X_{dR} free parameters)

$$\begin{split} \mathcal{X}_{L}^{q} &= \operatorname{diag}\left(-\frac{5}{4}, -\frac{5}{4}, 1\right) \qquad \mathcal{X}_{R}^{u} = \operatorname{diag}\left(-\frac{7}{2}, -\frac{7}{2}, 1\right) \\ \mathcal{X}_{R}^{d} &= \mathbb{1} \\ \mathcal{X}_{L}^{\ell} &= \operatorname{diag}\left(\frac{9}{4}, \frac{21}{4}, -3\right) \qquad \qquad \mathcal{X}_{R}^{e} = \operatorname{diag}\left(\frac{9}{2}, \frac{15}{2}, -3\right) \\ \mathcal{X}^{\Phi} &= \operatorname{diag}\left(-\frac{9}{4}, 0\right) \end{split}$$

• $X_{dR} = 1$, unphysical normalization. But it also normalizes g'!

- $X_{\Phi_2} = 0$ to avoid large Z Z' mass mixing (for large t_β)
- Six possible model variations $(e, \mu, \tau) = (i, j, k)$

Z' couplings of the $U(1)'_{ m BGL}$ model

Mass eigenbasis:

- Couplings to u_L, u_R, d_R : diagonal and 2-family universal (1,2)
- Couplings to ℓ_L, e_R : diagonal and family-non-universal
- Couplings to *d*_L:

$$\widetilde{\mathcal{X}}_{L}^{d} = -\frac{5}{4}\mathbb{1} + \frac{9}{4} \begin{pmatrix} |V_{td}|^2 & V_{ts}V_{td}^* & V_{tb}V_{td}^* \\ V_{td}V_{ts}^* & |V_{ts}|^2 & V_{tb}V_{ts}^* \\ V_{td}V_{tb}^* & V_{ts}V_{tb}^* & |V_{tb}|^2 \end{pmatrix}$$

Controlled Z'-mediated FCNCs:

Phenomenological consequences - Generalities

What can we say without a detailed analysis?

- Strong direct limits \Rightarrow potential Z' is very heavy $M_W^2/M_{Z'}^2 \lesssim 0.1\%!$
- Most observables are unaffected!
- Effects only for SM suppression in addition to G_F+CKM EW penguin decays, mixing, CP violation, leptonic decays, ...
- Z' gives the dominant NP effect almost everywhere

A bit more detail:

- UT analysis basically unaffected (exceptions ϵ_K and $\Delta m_{d,s}$, but $\Delta m_d / \Delta m_s = \Delta m_d / \Delta m_s |_{\rm SM}$)
- $\Delta m_d, \Delta m_s, \epsilon_K$ give similar bounds.

From Δm_s : $M_{Z'}/g' \ge 16$ TeV (95% CL)

Improvement here just depends on LQCD!

Phenomenological consequences - Generalities

What can we say without a detailed analysis?

- Strong direct limits \Rightarrow potential Z' is very heavy $M_W^2/M_{Z'}^2 \lesssim 0.1\%!$
- Most observables are unaffected!
- Effects only for SM suppression in addition to G_F+CKM EW penguin decays, mixing, CP violation, leptonic decays, ...
- Z' gives the dominant NP effect almost everywhere

A bit more detail:

- UT analysis basically unaffected (exceptions ϵ_K and $\Delta m_{d,s}$, but $\Delta m_d / \Delta m_s = \Delta m_d / \Delta m_s |_{\rm SM}$)
- $\Delta m_d, \Delta m_s, \epsilon_K$ give similar bounds.

From Δm_s : $M_{Z'}/g' \ge 25$ TeV (95% CL)

Improvement here thanks to LQCD! [Bazazov+'16, see Aida's talk]

R_K and its sisters

$$R_M^q \equiv \frac{\operatorname{Br}(B_q \to \bar{M}\mu^+\mu^-)}{\operatorname{Br}(B_q \to \bar{M}e^+e^-)} \qquad M \in \{K, K^*, X_s, \phi, \ldots\}, \ q = u, d, s$$

Note: $R(X_s) = 0.42 \pm 0.25$ (Belle) 0.58 ± 0.19 (BaBar) (but not a consistent picture [cf. Hiller/Schmaltz'15])

Model	$C_9^{NP\mu}(1\sigma)$	$C_9^{NP\mu}(2\sigma)$
(1,2,3)	-	[-2.92, -0.61]
(3,1,2)	[-0.93, -0.43]	[-1.16, -0.17]
(3,2,1)	[-1.20, -0.53]	[-1.54, -0.20]
		-

Fits
$$B \to K^* \mu^+ \mu^-$$

Furthermore:

$$\widehat{R}_M \equiv \frac{R_M}{R_K} = 1$$

• "Easily" verifiable for any charge assignment

R_K and its sisters

$$R_M^q \equiv \frac{\operatorname{Br}(B_q \to \bar{M}\mu^+\mu^-)}{\operatorname{Br}(B_q \to \bar{M}e^+e^-)} \qquad M \in \{K, K^*, X_s, \phi, \ldots\}, \ q = u, d, s$$

Note: $R(X_s) = 0.42 \pm 0.25$ (Belle) 0.58 ± 0.19 (BaBar) (but not a consistent picture [cf. Hiller/Schmaltz'15])

Combination with direct searches and perturbativity

Obvious way to search for $Z': \sigma(pp \to Z'(\to f\bar{f})X)$ Strong semi-model-independent limits from ATLAS and CMS:

[Carena+'04,Accomando+'11,ATLAS'12,'14,CMS'12,'15]

- 2.5 models survive all constraints, $M_{Z'} \ge 3-4 {
 m ~TeV}$
- Strong upper bound on one model from perturbativity
- Differentiable from each other and different models: (i) Flavour (LNU vs. FCNC) (ii) $\mu_{ff'} = \sigma(Z' \to f\bar{f})/\sigma(Z' \to f'\bar{f}')$

Combination with direct searches and perturbativity

Obvious way to search for $Z': \sigma(pp \to Z'(\to f\bar{f})X)$ Strong semi-model-independent limits from ATLAS and CMS:

[Carena+'04,Accomando+'11,ATLAS'12,'14,CMS'12,'15]

- 2.5 models survive all constraints, $M_{Z'} \ge 3 4 \text{ TeV}$
- Strong upper bound on one model from perturbativity
- Differentiable from each other and different models: (i) Flavour (LNU vs. FCNC) (ii) $\mu_{ff'} = \sigma(Z' \to f\bar{f})/\sigma(Z' \to f'\bar{f}')$

Details on direct searches

Approximation for NWA, negligible SM interference and flavour-universal quark couplings:

$$\sigma = \frac{\pi}{48s} \left[c_u^f w_u \left(s, M_{Z'}^2 \right) + c_d^f w_d \left(s, M_{Z'}^2 \right) \right]$$
$$c_{u,d}^f \simeq g'^2 \left(X_{qL}^2 + X_{(u,d)R}^2 \right) \operatorname{Br} \left(Z' \to f \overline{f} \right)$$

Applicable for $g' \leq 0.2!$

First two generations dominate and couple universally CMS model-independent bounds: [CMS-EXO-12-061]

Correlations among the effective operators $\mathcal{O}_{9,10}^\ell$

Model	$C_{10}^{\mathrm{NP}\mu}/C_{9}^{\mathrm{NP}\mu}$	$C_9^{\mathrm{NP}e}/C_9^{\mathrm{NP}\mu}$	$C_{10}^{\mathrm{NP}e}/C_{9}^{\mathrm{NP}\mu}$
(1,2,3)	3/17	9/17	3/17
(1,3,2)	0	-9/8	-3/8
(2,1,3)	1/3	17/9	1/3
(2,3,1)	0	-17/8	-3/8
(3,1,2)	1/3	-8/9	0
(3,2,1)	3/17	-8/17	0

BR measurements and isospin violation

Isospin asymmetries test NP with $\Delta I = 1, 3/2$ (e.g. $b \rightarrow s \bar{u} u$) Again: relevant due to high precision and small NP

Branching ratio measurements require normalization...

• B factories: depends on $\Upsilon o B^+ B^-$ vs. $B^0 ar{B}^0$

• LHCb: normalization mode, usually obtained from *B* factories Assumptions entering this normalization:

- PDG: assumes $r_{+0} \equiv \Gamma(\Upsilon \to B^+B^-)/\Gamma(\Upsilon \to B^0\bar{B}^0) \equiv 1$
- LHCb: assumes $f_u \equiv f_d$, uses $r_{\pm 0}^{\text{HFAG}} = 1.058 \pm 0.024$

Both approaches problematic: [MJ'16 [1510.03423]]

- Potential large isospin violation in $\Upsilon o BB$ [Atwood/Marciano'90]
- Measurements in r₊₀^{HFAG} assume isospin in exclusive decays
 This is one thing we want to test!

• This is one thing we want to test:

- Avoiding this assumption yields $r_{+0} = 1.027 \pm 0.037$
- **b** Isospin asymmetry $B \rightarrow J/\psi K$: $A_I = -0.009 \pm 0.024$

Improvement necessary for high-precision BRs $B \rightarrow J/\Psi K$ can be used to determine $f_u/f_d!$