Calculation of penguin pollution from first principles

Ulrich Nierste

Karlsruhe Institute of Technology Institute for Theoretical Particle Physics

Heavy Flavour 2016 — Quo vadis? Islay, Scotland, 14 July 2016

Time-dependent CP asymmetries (for q = d or s):

 $\begin{aligned} \mathcal{A}_{\mathrm{CP}}^{\mathcal{B}_{q} \to f}(t) &= \\ \frac{S_{f} \sin(\Delta m_{q} t) - C_{f} \cos(\Delta m_{q} t)}{\cosh(\Delta \Gamma_{q} t/2) + \mathcal{A}_{\Delta \Gamma_{q}}^{f} \sinh(\Delta \Gamma_{q} t/2)} \end{aligned}$

 Δm_q : mass difference $\Delta \Gamma_q$: width difference

The coefficients S_f , C_f , and $A^f_{\Delta\Gamma_q}$ encode the information on the decay amplitudes $A_f \equiv A(B_q \rightarrow f)$ and $\overline{A}_f \equiv A(\overline{B}_q \rightarrow \overline{f})$.

Golden mode: *B* decay into a CP eigenstate $f = f_{CP}$ which only involves a single CKM factor ($\Rightarrow |A_{f_{CP}}| = |\overline{A}_{f_{CP}}|$ and $|\lambda_f| = 1$).

 $CP|f_{CP}\rangle = \eta_{f_{CP}}|f_{CP}\rangle$ with $\eta_{f_{CP}} = \pm 1$.

Time-dependent CP asymmetry:

$$a_{f_{\rm CP}}(t) = -\frac{\operatorname{Im} \lambda_f \sin(\Delta m_q t)}{\cosh(\Delta \Gamma_q t/2) - \operatorname{Re} \lambda_f \sinh(\Delta \Gamma_q t/2)}$$

Im λ_f quantifies the CP violation in the interference between mixing and decay:

$$B \xrightarrow{q/p} \overline{B}$$

$$A_f \searrow \swarrow \overline{A}_f$$

$$f$$
Recall: $\lambda_f = \frac{q}{p} \overline{A}_f$

Example 1:

 $B_d \rightarrow J/\psi K_S \Rightarrow |\bar{f}\rangle = -|f\rangle$ (CP-odd eigenstate)

$$egin{aligned} a_{J/\psi \mathcal{K}_{\mathcal{S}}}(t) &\simeq -\sin(2eta)\sin(\Delta m_{d}t), \ eta &= rg\left[-rac{V_{cd}\,V_{cb}^{*}}{V_{td}\,V_{tb}^{*}}
ight] \end{aligned}$$

where

golden mode to measure the angle β of the unitarity triangle

Example 2: $B_s \rightarrow (J/\psi\phi)_{L=0} \implies |\bar{f}\rangle = |f\rangle$ (CP-even eigenstate)

$$\begin{aligned} a_{(J/\psi\phi)_{L=0}}(t) &= -\frac{\sin(2\beta_s)\sin(\Delta m_s t)}{\cosh(\Delta\Gamma_s t/2) - \cos(2\beta_s)\sinh(\Delta\Gamma_s t/2)},\\ \text{where} \qquad \beta_s &= \arg\left[-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right] \simeq \lambda^2 \overline{\eta} \end{aligned}$$

The decay amplitudes $A(B_{d,s} \rightarrow J/\psi X)$ are dominated by the CKM structure $V_{cb}V_{cs}^*$, but have a small contribution with $V_{ub}V_{us}^*$, called penguin pollution.

How golden are these modes?

Experimental world average:

 $\textit{S}_{J/\psi\textit{K}_S}=0.665\pm0.024$

Averaging all charmonia and including final states with K_L gives

 $sin(2\beta) = 0.679 \pm 0.020$, HFAG winter 2015

... if the penguin pollution is set to zero.

 $S(B_q \to f) = \sin(\phi_q + \Delta \phi_q)$

If one neglects $\lambda_u = V_{ub} V_{us}^*$ in the decay amplitude, $S(B_q \to f)$ measures ϕ_q with

$$\begin{array}{ll} B_d \to J/\psi K^0 &: \quad \phi_d = 2\beta \\ B_s \to J/\psi \phi &: \quad \phi_s = -2\beta_s \end{array}$$

The penguin pollution $\Delta \phi_q$ is parametrically suppressed by $\epsilon \equiv \left| \frac{V_{us} V_{ub}}{V_{cs} V_{cb}} \right| = 0.02.$

New method to constrain $\Delta \phi_q$:

Ph. Frings, UN, M. Wiebusch, Phys.Rev.Lett. 115 (2015) 061802, 1503.00859

Overview: Experimental and Theoretical Precision

$$\Delta S_{J/\psi K^0} = S_{J/\psi K^0} - \sin \phi_d \qquad S_{J/\psi K^0} = \sin \left(\phi_d + \Delta \phi_d\right)$$

HFAG 2014:

$$\sigma_{\mathcal{S}_{J/\psi K^0}} = 0.02$$
 $\sigma_{\phi_d} = 1.5^{\circ}$

Author	$\Delta \mathcal{S}_{J/\psi K^0}$	$\Delta \phi_{d}$	Method
De Bruyn, Fleischer 2014	-0.01 ± 0.01	$-\left(1.1^{\circ}^{+0.70}_{-0.85} ight)^{\circ}$	SU(3) flavour
Jung 2012	$ \Delta {\cal S} \lesssim 0.01$	$ \Delta \phi_{d} \lesssim 0.8^{\circ}$	SU(3) flavour
Ciuchini et al. 2011	$\textbf{0.00} \pm \textbf{0.02}$	$0.0^\circ\pm1.6^\circ$	U-spin
Faller <i>et al.</i> 2009	[-0.05, -0.01]	[−3.9, −0.8]°	U-spin
Boos <i>et al.</i> 2004	$-(2\pm 2)\cdot 10^{-4}$	$0.0^\circ\pm0.0^\circ$	perturbative
			calculation

SU(3)

Extract penguin contribution from $b \to c \overline{c} d$ control channels such as $B_d \to J/\psi \pi^0$ or $B_s \to J/\psi K_s$, in which the penguin contribution is Cabibbo-unsuppressed.

Drawbacks:

- statistics in control channels smaller by factor of 20
- size of SU(3) breaking in penguin contributions to B_{d,s} → J/ψX decays unclear

SU(3) breaking can be large, e.g. a *b* quark fragments into a B_d four times more often than into a B_s .

SU(3)

Extract penguin contribution from $b \to c \overline{c} d$ control channels such as $B_d \to J/\psi \pi^0$ or $B_s \to J/\psi K_s$, in which the penguin contribution is Cabibbo-unsuppressed.

Drawbacks:

- statistics in control channels smaller by factor of 20
- size of SU(3) breaking in penguin contributions to B_{d,s} → J/ψX decays unclear

SU(3) breaking can be large, e.g. a *b* quark fragments into a B_d four times more often than into a B_s .

SU(3) does not help in B_s → J/ψφ, because φ is an equal mixture of octet and singlet.

Define $\lambda_q = V_{qb}V_{qs}^*$ and use $\lambda_t = -\lambda_u - \lambda_c$. Generic *B* decay amplitude:

$$A(B
ightarrow f) = \lambda_c t_f + \lambda_u p_f$$

Terms $\propto \lambda_u = V_{ub}V_{us}^*$ lead to the penguin pollution.

Remark: One can include first-order SU(3) breaking in the extraction of t_f from control channels (Jung 2012). This is not possible for p_f . Penguin operators:

 $\langle f|\sum_{i=3}^{6}C_{i}Q_{i}|B
angle pprox C_{8}^{t}\langle f|Q_{8V}|B
angle$

with

$$\begin{array}{rcl} C_8^t &\equiv& 2(C_4+C_6)\\ Q_{8V} &\equiv& (\bar{s}T^ab)_{V-A}(\bar{c}T^ac)_V \end{array}$$

Tree-level operator insertion:

 $\langle f|C_0Q_0^u+C_8Q_8^u|B\rangle$

Idea: employ an operator product expansion,

to factorise the *u*-quark loop into a perturbative coefficient and matrix elements of local operators:

Perturbative approach is due to Bander Soni Silverman (1979) (BSS). Boos, Mannel and Reuter (2004) applied this method to $B_d \rightarrow J/\psi K_S$. Our study:

- Investigate soft and collinear infrared divergences to prove factorization.
- Analyse spectator scattering.
- Organise matrix elements by 1/N_c counting, no further assumptions on magnitudes and strong phases.

or are individually infrared-safe if considered in a physical gauge.

Spectator scattering diagrams...

... factorise up to powersuppressed contributions.

Operator product expansion works!

- Soft divergences factorise.
- Collinear divergences cancel or factorise.
- Non-factorisable spectator scattering is power-suppressed.
 - \Rightarrow Up-quark penguin can be absorbed into a Wilson coefficient C_8^{ν} !

Local operators:

$$\begin{array}{rcl} Q_{0V} &\equiv & (\bar{s}b)_{V-A}(\bar{c}c)_{V} \\ Q_{8V} &\equiv & (\bar{s}T^{a}b)_{V-A}(\bar{c}T^{a}c)_{V} \end{array}$$

 $\begin{array}{rcl} Q_{0A} &\equiv & (\bar{s}b)_{V-A}(\bar{c}c)_A \\ Q_{8A} &\equiv & (\bar{s}T^ab)_{V-A}(\bar{c}T^ac)_A \end{array}$

$1/N_c$ counting

For example: $B_d \rightarrow J/\psi K^0$

$$V_0 = \langle J/\psi K^0 | Q_{0V} | B_d
angle = 2 f_\psi m_B p_{cm} F_1^{BK} \left[1 + \mathcal{O}\left(rac{1}{N_c^2}
ight)
ight]$$

 $1/N_c$ counting for $V_8, A_8 \equiv \langle J/\psi K^0 | Q_{8V,8A} | B_d \rangle$:

- Octet matrix elements are suppressed by 1/N_c w.r.t. singlet V₀
- Motivated by $1/N_c$ counting set the limits: $|V_8|, |A_8| \le V_0/3$

$1/N_c$ counting

For example: $B_d \rightarrow J/\psi K^0$

$$V_0 = \langle J/\psi K^0 | Q_{0V} | B_d
angle = 2 f_\psi m_B p_{cm} F_1^{BK} \left[1 + \mathcal{O}\left(rac{1}{N_c^2}
ight)
ight]$$

 $1/N_c$ counting for $V_8, A_8 \equiv \langle J/\psi K^0 | Q_{8V,8A} | B_d \rangle$:

- Octet matrix elements are suppressed by 1/N_c w.r.t. singlet V₀
- Motivated by $1/N_c$ counting set the limits: $|V_8|, |A_8| \le V_0/3$

Does the $1/N_c$ expansion work?

 $\frac{BR(B_d \to J/\psi K^0)|_{\text{th}}}{BR(B_d \to J/\psi K^0)|_{\text{exp}}} = 1 \quad \Rightarrow \quad 0.06|V_0| \le |V_8 - A_8| \le 0.19|V_0|$

Results

$$A_{\rm CP}^{B_q \to f}(t) = \frac{S_f \sin(\Delta m_q t) - C_f \cos(\Delta m_q t)}{\cosh(\Delta \Gamma_q t/2) + A_{\Delta \Gamma_q}^f \sinh(\Delta \Gamma_q t/2)}$$

B_d decays:

Final State:	$J/\psi K_S$	$\psi(2S)K_S$	$(J/\psi K^*)^0$	$(J/\psi K^*)^\parallel$	$({m J}/\psi{m K}^*)^\perp$	
$\max(\Delta \phi_d)$ [°]	0.68	0.74	0.85	1.13	0.93	
$\max(\Delta S_f) [10^{-2}]$	0.86	0.94	1.09	1.45	1.19	
$\max(C_f) [10^{-2}]$	1.33	1.33	1.65	2.19	1.80	
					and more.	
B _s decays:						

Final State	$(J/\psi\phi)^0$	$(J/\psi\phi)^\parallel$	$(J/\psi\phi)^{\perp}$
$\max(\Delta \phi_{s}) [^{\circ}]$	0.97	1.22	0.99
$\max(\Delta S_f) [10^{-2}]$	1.70	2.13	1.73
$\max(C_f) [10^{-2}]$	1.89	2.35	1.92

We can also constrain p_f/t_f in $b \rightarrow c\overline{c}d$ decays:

B_d decays: $J/\psi\pi^0$ $(J/\psi
ho)^0$ $(J/\psi
ho)^\parallel$ $(J/\psi
ho)^\perp$ Final State $\max(|\Delta S_t|) [10^{-2}]$ 18 22 27 22 $\max(|C_f|)$ [10⁻²] 29 35 41 36 B_s decays: Final State $J/\psi K_S$ $\max(|\Delta S_f|)$ [10⁻²] 26 $\max(|C_f|)$ [10⁻²] 27

	$S_{J/\psi\pi^0}$	$C_{J/\psi\pi^0}$
BaBar (Aubert 2008)	-1.23 ± 0.21	-0.20 ± 0.19
Belle (Lee 2007)	-0.65 ± 0.22	-0.08 ± 0.17

Our results:

$$-0.86 \leq \mathrm{S_{J/\psi\pi^0}} \leq -0.50$$

 $-0.29 \leq C_{J/\psi\pi^0} \leq 0.29$

 \rightarrow Belle favoured

$B \rightarrow DD$ decays

Different compared to $B \rightarrow \psi X$: (i) more topological amplitudes

New: exchange $E_{u,c}$ and penguin annihilation $PA_{u,c}$.

Different compared to $B \rightarrow \psi X$:

(ii) stronger suppression of spectator scattering

Reason: LCDA $\Phi_D(\xi) \sim \begin{cases} m_c/\Lambda_{\rm QCD} & \text{for } \xi \sim \Lambda_{\rm QCD}/m_c, \\ 0 & \text{for } \xi \sim 1. \end{cases}$

(ξ is the fraction of the *D* meson momentum carried by the spectator quark in the *D* meson)

(iii) leading term in $1/N_c$ expansion has large Wilson coefficient $C_2 \sim 1$

Different compared to $B \rightarrow \psi X$:

(ii) stronger suppression of spectator scattering

Reason: LCDA $\Phi_D(\xi) \sim \begin{cases} m_c/\Lambda_{QCD} & \text{for } \xi \sim \Lambda_{QCD}/m_c, \\ 0 & \text{for } \xi \sim 1. \end{cases}$ (ξ is the fraction of the *D* meson momentum carried by the spectator quark in the *D* meson)

(iii) leading term in $1/N_c$ expansion has large Wilson coefficient $C_2 \sim 1$

The up-penguin annihilation PA_u contribution can be expressed in terms of four-quark operators which also enter E_c , in complete analogy to P_u and T.

Results for decay modes without $PA_{u,c}$ and $E_{u,c}$:

 C_f is the coefficient of $\cos(\Delta m_q t)$ in the time-dependent CP asymmetry.

Results for decay modes with contributions from $P_{u,c}$, T, $PA_{u,c}$, and $E_{u,c}$:

$$egin{array}{rll} -18.0\cdot 10^{-2}&\leq &C_{ar{B}_d o D^+D^-}&\leq &8.4\cdot 10^{-2}\ -0.6^\circ&\leq &\Delta\phi_d(ar{B}_d o D^+D^-)&\leq &11.2^\circ\ -0.65\cdot 10^{-2}&\leq &C_{ar{B}_s o D_s^+D_s^-}&\leq &1.15\cdot 10^{-2}\ -0.81^\circ&\leq &\Delta\phi_s(ar{B}_s o D_s^+D_s^-)&\leq &-0.02^\circ \end{array}$$

 $\Delta \phi_{d,s}$ is the penguin pollution in $\phi_d = 2\beta$ and $\phi_s = -2\beta_s$.

	$\mathcal{S}_{D^+D^-}$	$C_{D^+D^-}$
BaBar (Aubert 2008)	-0.62 ± 0.21	0.08 ± 0.17
Belle (Röhrken 2012)	-1.06 ± 0.22	-0.43 ± 0.17

Our results:

 $-0.82 \le S_{D^+D^-} \le -0.70$

 $-0.18 \leq C_{D^+D^-} \leq 0.08$

 \rightarrow BaBar favoured

Summary

- OPE works for the penguin pollution in B_{d,s} decays to charmonium, defining the "BSS mechanism" for the up-quark loop.
- No mysterious long-distance enhancement of up-quark penguins.
- Matrix elements are the dominant source of uncertainty. The charm-quark loop is contained in the matrix elements, no justification for the "BSS mechanism" for charm loop.
- Belle measurement of S_{J/ψπ⁰} is theoretically favoured over BaBar measurement.
- OPE also works for the penguin pollution in B_{d,s} → DD decays. BaBar measurement of C_{D+D} is theoretically favoured over Belle measurement.

Backup slides

Numerics

Analytic result for the penguin pollution:

$$\frac{p_f}{t_f} = \frac{(C_8^u + C_8^t)V_8}{C_0V_0 + C_8(V_8 - A_8)}$$

$$\tan(\Delta\phi) \approx 2\epsilon \sin(\gamma) \operatorname{Re}\left(\frac{p_f}{t_f}\right) \qquad \quad \epsilon \equiv \left|\frac{V_{us}V_{ub}}{V_{cs}V_{cb}}\right|$$

Scan for largest value of $\Delta \phi$ using

 $V_0 = 2f_{\psi}m_Bp_{cm}F_1^{BK}$

and varying all input quantities within their experimental and theoretical uncertainties.

$1/N_c$ expansion of branching fractions

Leading (LO) and next-to-leading order (NLO) in $1/N_c$ without charm loop, which is also a $1/N_c$ term.