

Quo vadis charm physics?

Marco Gersabeck (The University of Manchester)

Heavy Flavour 2016, Ardbeg, 14 July 2016

Outline

2

- Mixing
- Indirect CPV
- Direct CPV
- Rare decays

Tasting evening with Alex and Moritz 2012

Mixing discovery

PRL 110 (2013) 101802

MANCHESTER

The University of Manchester

Using roughly 8.4×10⁶ RS and 3.6×10⁴ WS candidates

$$R(t) \equiv \frac{N_{WS}(t)}{N_{RS}(t)} \approx R_d + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} (\frac{t}{\tau})^2$$

- Mixing established with 2007 B-factory measurements
- Here: first single-experiment measurement with $>5\sigma$
- Rotation of mixing parameters by strong phase difference between CF and DCS amplitudes: x,y → x',y'

On strong phases

 Measurements of strong phases are only possible with quantum-entangled charm states

⇒ ψ(3770) → DD

- Only running experiment
 - BESIII at BEPC collider in Beijing
- Essential input to exploit large LHCb charm samples fully
 - Need best possible sensitivity to measure tiny effects in charm

MANCHESTER 1824 The University of Manchester Woorld average decoded

MANCHESTER 1824 The University of Manchester Woorld average decoded

on y ($\delta_{K\pi}$ near O)

The University of Manchester World average decoded

Mixing overview

Mixing established x still unknown

Theory

- What are we measuring here?
- No precise theory prediction in sight
- Dearly missing: Lattice input
 - → Martinelli @ June 2016 LHCb week: Working on mixing with $D^0 \rightarrow \leq 3$ -body
 - Full predictions are extremely challenging
 - Need to ensure predictions are available when Belle-II & LHCb upgrade results come in around early/mid 2020s

Mixing-related CP violation

$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$

Mixing:CP viola $x \equiv (m_2 - m_1)/\Gamma$ $|q/p| \neq 0$ $y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$ $\varphi \equiv \arg(q)$

CP violation: $|q/p| \neq 0$ $\phi \equiv \arg(q/p) \neq 0, \pi$

Indirect CP violation: $a_{CP}^{ind} = -a_m y \cos \phi - x \sin \phi$ with $a_m \approx \pm (|q/_P|^2 - 1)$

MANCHESTER Indirect CP violation

- Measurements based on $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays
- Measure asymmetries of effective lifetimes of decays to CP eigenstates:
 - → $A_{\Gamma} \approx a_{m} y \cos \phi + x \sin \phi = -a_{CP}^{ind}$
- Measures ability of both mass eigenstates to decay to CP eigenstate
- Prompt D^{*+}-tagged, Ifb⁻¹ [PRL 112 (2014) 041801]

⇒ $A_{\Gamma}(KK) = (-0.35 \pm 0.62 \pm 0.12) \times 10^{-3}; A_{\Gamma}(\pi\pi) = (0.33 \pm 1.06 \pm 0.14) \times 10^{-3}$

- D from semi-leptonic B decays, μ⁺-tagged, 3 fb⁻¹ [JHEP 04 (2015) 043]
 - ⇒ $A_{\Gamma}(KK) = (-1.34 \pm 0.77 \pm 0.30) \times 10^{-3}; A_{\Gamma}(\pi\pi) = (-0.92 \pm 1.45 \pm 0.29) \times 10^{-3}$

CP violation with DCS

PRL III (2013) 251801

- $D \rightarrow K\pi$ again
- Update with 3 fb⁻¹
- Split by flavour to search for CP violation
 - $\Rightarrow x'^{\pm} = |q/p|^{\pm 1} (x' \cos \Phi \pm y' \sin \Phi)$ $\Rightarrow y'^{\pm} = |q/p|^{\pm 1} (y' \cos \Phi \mp x' \sin \Phi)$
- Very good sensitivity to |q/p| for small φ
- No indication for CP violation

R_D^+ [10 ⁻³]	$3.545 \pm 0.082 \pm 0.048$
y'^+ [10 ⁻³]	$5.1 \pm 1.2 \pm 0.7$
x'^{2+} [10 ⁻⁵]	$4.9 \pm 6.0 \pm 3.6$
R_D^- [10 ⁻³]	$3.591 \pm 0.081 \pm 0.048$
y'^{-} [10 ⁻³]	$4.5 \pm 1.2 \pm 0.7$
$x^{\prime 2-} [10^{-5}]$	$6.0 \pm 5.8 \pm 3.6$

Dalitz plots

 $D^0 \rightarrow K_S \pi^- \pi^+$

Dalitz plots

Dalitz plots

- Dalitz plot is a sum of complex amplitudes $A_{tot} = \sum A_r$, with r summing over resonances
- Interference regions contain rapid phase variation
- Mixing sensitivity e.g. through K*+π- and K*-π+ resonances

- CP violation requires non-zero strong phases
 - ➡ Plenty phase variation available
- Direct access to x, y, |q/p|, φ
 - Decay-time dependent Dalitz plot analysis
- Run I results expected soon
- 11

Contributions

Direct access to |q/p| and φ

from K_shh

Contributions

Contributions

CP violation overview

No sign of CP violation

MANCHESTER 1824

The University of Manchester

Can we do better?

- Superweak constraint
 - Assumes no new weak phase
 - ➡ Cuichini et al. (2007)
 - ➡ Kagan, Sokoloff (2009)
- Reducing to 3 parameters
 - \Rightarrow tan $\Phi \approx (I |q/p|) x/y$
- Consider WS measurement with $\Phi \approx 0$ $\Rightarrow y'^{\pm} = |q/p|^{\pm 1} (y' \cos \Phi \mp x' \sin \Phi)$
- Different parametrisation
 - $\Rightarrow \mathbf{x}_{12}, \mathbf{y}_{12}, \mathbf{\Phi}_{12}$
- Current sensitivity already very good

 $\Rightarrow \sigma(\Phi_{12}) = 1.7^{\circ}$

Can we do better?

- Superweak constraint
 - Assumes no new weak phase
 - ➡ Cuichini et al. (2007)
 - ➡ Kagan, Sokoloff (2009)
- Reducing to 3 parameters
 - ⇒ tan $\Phi \approx (I |q/p|) x/y$
- Consider WS measurement with $\Phi \approx 0$ $\Rightarrow y'^{\pm} = |q/p|^{\pm 1} (y' \cos \Phi \mp x' \sin \Phi)$
- Different parametrisation
 - $\Rightarrow \mathbf{x}_{12}, \mathbf{y}_{12}, \mathbf{\Phi}_{12}$
- Current sensitivity already very good

 $\Rightarrow \sigma(\Phi_{12}) = 1.7^{\circ}$

Can we do better?

- Superweak constraint
 - Assumes no new weak phase
 - ➡ Cuichini et al. (2007)
 - ➡ Kagan, Sokoloff (2009)
- Reducing to 3 parameters
 - ⇒ tan $\Phi \approx (I |q/p|)x/y$
- Consider WS measurement with $\Phi \approx 0$ $\Rightarrow y'^{\pm} = |q/p|^{\pm 1} (y' \cos \Phi \mp x' \sin \Phi)$
- Different parametrisation
 - $\Rightarrow \mathbf{x}_{12}, \mathbf{y}_{12}, \mathbf{\Phi}_{12}$
- Current sensitivity already very good

 $\Rightarrow \sigma(\Phi_{12}) = 1.7^{\circ}$

Is there more?

- Additional potentially powerful channels available • e.g. $D^0 \rightarrow K\pi\pi\pi$, $D \rightarrow K\pi\pi^0$
- Require time-dependent phase space analyses similar to $D^0 \rightarrow K_s \pi \pi$
- Can LHCb exploit these?
 - Need phase-space model or measurement of CP content (CLEOc/BESIII)
 - Can sufficient purity be achieved in suppressed channels?
- Will Belle-II have enough data to be competitive?

- PRL 116 (2016) 241801
- Measure phase-space integrated WS/RS ratio in bins of decay time
- Candidates / (0.1 MeV/*c*²) 700 0.1 meV/*c*²) 700 0.1 meV/*c*²) • Clear observation of mixing (8.2σ) phase-space averaged

- V 2a

strong phase differences

$$R_D^{K3\pi} e^{-i\delta_D^{K3\pi}} \equiv \langle \cos \delta \rangle + i \langle \sin \delta \rangle \qquad \Delta m \left[N \right]$$

$$R(t) = \frac{\Gamma[D^0 \to K^+ \pi^- \pi^+ \pi^-](t)}{\Gamma[D^0 \to K^- \pi^+ \pi^- \pi^+](t)} \approx (r_D^{K3\pi})^2 - r_D^{K3\pi} R_D^{K3\pi} \cdot y'_{K3\pi} \frac{t}{\tau} + \frac{x^2 + y^2}{4} \left(\frac{t}{\tau}\right)^2$$

$$y'_{K3\pi} \equiv y \cos \delta_D^{K3\pi} - x \sin \delta_D^{K3\pi}$$

<u>×10</u>⁶

140

145

1.4 F

LHCb

· RS candidates

Background

150

- Fit

9Ē

8Ē

LHCb

WS candidates

Background

- Fit

- Can obtain constraints on R & δ from fit including external mixing input
 - \rightarrow Useful for CKM γ measurements
- 3 observables, 5 parameters
 - Phase-space dependent analysis would have more impact on mixing parameters

MANCHESTER 1824 The University of Manchester The University of Manchester

- Models to describe multi-body decay phase-space relevant to many mixing and CPV analyses
- Pure isobar models lead to unsatisfactory results
- Few alternatives, which will be insufficient for high-precision datasets
- Need effort from across the community
 - Bigi @ June 2016 LHCb week: Combine input from hadrodynamics and high energy
 - Need to collaborate across experiments: Joint efforts from low and high-energy experiments

MANCHESTER 1824 The University of Manchester BESIII CP content in K_STTT - I

MANCHESTER 1824 The University of Manchester BESIII CP content in K_STTT - II

Connection to B

- CKM angle γ measurements
- Charm mixing constraints important
- For multi-body D final states
 - Similar requirements to charm measurements
 - ⇒ BESIII impact on gamma uncertainty from $K_s\pi\pi$ nearly 50%
 - Can we get more and other channels?

Future sensitivities

- Scaling sensitivities with \sqrt{N}
 - Assumes scaling of systematic uncertainties
 - Ignores potential improvements in selections and analyses
- Δa_{CP} : uncertainty 10^{-4} at 50 fb⁻¹
- Mixing and indirect CPV sensitivities of current world average + LHCb

Run	x [10 ⁻³]	y [10 ⁻³]	q/p [10 ⁻³]	ф [mrad]	
1	1.22	0.53	59	89	
2	0.92	0.37	44	70	
3	0.42	0.15	20 30	33 26	Belle II @ 50/ab
4	0.25	0.09	12	20	from Paolini, FPCP16

The University of Manchester The University o

Direct CP violation

Direct CP violation: $a_{CP}^{dir} \equiv \frac{\Gamma(D^{0} \rightarrow f) - \Gamma(\overline{D}^{0} \rightarrow f)}{\Gamma(D^{0} \rightarrow f) + \Gamma(\overline{D}^{0} \rightarrow f)}$

The Δa_{CP} saga^{*}

• What is
$$\Delta a_{CP}$$
?

 $\Delta a_{CP} \equiv a_{CP}(K^{-}K^{+}) - a_{CP}(\pi^{-}\pi^{+}) = a_{raw}(K^{-}K^{+}) - a_{raw}(\pi^{-}\pi^{+}).$

Interplay of direct and indirect CP violation

$$\Delta a_{CP} = \Delta a_{CP}^{\text{dir}} \left(1 + y_{CP} \frac{\overline{\langle t \rangle}}{\tau} \right) + \overline{A}_{\Gamma} \frac{\Delta \langle t \rangle}{\tau},$$

 Individual asymmetries are expected to have opposite sign due to CKM structure

 $A(\overline{D}{}^{0} \to \pi^{+}\pi^{-}, K^{+}K^{-}) = \mp \frac{1}{2} \left(V_{cs} V_{us}^{*} - V_{cd} V_{ud}^{*} \right) \left(T \pm \delta S \right) - V_{cb} V_{ub}^{*} \left(P \mp \frac{1}{2} \delta P \right),$

^{*}after A. Lenz @ CHARM 2013, arXiv:1311.6447 24

 $(\Delta)_{acp}$ results

Ignoring contribution from indirect CPV

Latest results

- D*-tagged (2011+12 data)
- Completes Run I Δa_{CP} analyses
- Fit $\delta m = m(D^{*+}) m(D^{0})$

PRL 116 (2016) 191601

MANCHESTER

The University of Manchester

$\Delta a_{CP} = (-0.10 \pm 0.08_{stat} \pm 0.03_{syst})\%$

The most precise measurement of a time-integrated CP asymmetry in the charm sector

MANCHESTER 1824 The University of Manchester Latest HFAG averages

 $a_{CP}^{ind} = (0.056 \pm 0.040)\%$ $\Delta a_{CP}^{dir} = (-0.137 \pm 0.070)\%$ Compatible with CP symmetry at 6.5% CL

What's next?

- More individual asymmetries
 - Requires control of production and detection asymmetries
- CPV in (charm) baryons
 - Requires knowledge of proton detection asymmetry
- Relying on large Cabibbo-favoured control samples
 - Require detailed understanding of subtle detector effects
 - Analyses will never be plug (data) and play (publish)
- General aim
 - Measure CP asymmetries in as many complementary channels as possible
 - Keep in mind interplay of direct and indirect CPV observables

Rare decays

Rare and charming

Phys. Lett. B745 (2016) 167

- Search for $D^0 \rightarrow e^{\pm} \mu^{\mp}$
- Normalised to $D^0 \rightarrow K^- \pi^+$
- BDT selection to suppress combinatorial background
 - Analysis in 3 bins of BDT output
- Peaking background $D^0 \rightarrow \pi^- \pi^+$
- Limit set via CL_s method
 ► 1.3×10⁻⁸ at 90% CL

MANCHESTER 1824 The University of Manchester The University of Manchester

- $D^0 \rightarrow e^+ \mu^-$
 - More than one order of magnitude improvement
 - → Not far behind $D^0 \rightarrow \mu^+ \mu^-$

- First charm decay into electrons, many more to follow
- Other possibilities arise
 - e.g. lepton universality tests

Future challenges

Challenges ahead

- Challenges driven by charm
 - ⇒ Expect e.g. $O(10^{10})$ reconstructed $D^{0} \rightarrow K\pi$ by Run 4
- Data size
 - ➡ No storage capacity for full event information
 - Need to store high statistics samples with reduced information
 - Crucial to ensure all necessary information available
 - Need to maintain high selection efficiency and purity
- Simulation
 - May become increasingly important to understand data features
 - Generating very large samples that accurately describe detector effects will be key

More work...

- Analysis processing
 - Most fits have 50-100 parameters
 - Unbinned fits may be prohibitively slow
 - Often benefiting from data-driven checks with control samples
 - Can we afford to collect larger control samples?
 - Can commercial computing help?
 - Can we learn from colleagues (astronomy, meteorology, ...)?
- Systematic uncertainties
 - Second order effects may become important
 - Decay-time dependence of detector effects
 - Detection asymmetries

Conclusions

- Charm mixing long established
 - Sign of x should be confirmed soon by LHCb
- No hint for indirect CP violation
 - Tight constraints with superweak approximation
- No hint for direct CP violation
- Future work
 - Improvement of phase-space models
 - Measurement of CP content in phase space
 - Explore new decay modes
- LHCb exploring reach in rare decays
 - ➡ Also for electrons in final state
- Significant technical challenges ahead
 - Several solutions for LHCb upgrade already being commissioned

Thank you!

BACKUP

MANCHESTER The University of Manchester Character Charac

- Only up-type quark to form weakly decaying hadrons
 - Unique physics access
- Mixing
 - Huge cancellations
 - Theoretically difficult
- CP violation
 - Predictions even smaller
- Need highest precision
- Huge LHCb dataset
 - Blessing and a curse

LHCb summary of CPV searches in $D^0 \rightarrow h^+h^-$

slide from E. Gersabeck, CERN EP seminar, 19/1/16

Run	√s in TeV	L in fb ⁻¹	ε _{trig}	L _{eq}	ΣL _{eq}
1 (2011)	7	1	1	1	1
1 (2012)	8	2	1	2.3	3.3
2	13	5	0.5	4.6	7.9
3	14	15	2	60	68
4	14	25	2	100	168

MANCHESTER

The University of Manchester

- Calculate equivalent luminosities to 7 TeV
- Extrapolate signal yields accordingly
- Based on existing run-1 measurements where available

MANCHESTER 1824 The University of Manchester Future charm measurements

- A_{Γ} , WS K π , ΔA_{CP}
 - Inherently robust against systematics due to cancellations
 - Not all at the same level, but no limiting uncertainty known
- $y_{CP} \equiv \tau_{K\pi} / \tau_{KK} I \approx y$
 - Comparison of two different final states
 - Less robust but controllable if lifetime bias easier to account for
- Κ_Sππ
 - Leading systematics are either model uncertainties or measurements of CP content at threshold
 - Relies on input from BESIII

Results

 $\Delta a_{CP} = (+0.14 \pm 0.16 \,(\text{stat}) \pm 0.08 \,(\text{syst}))\%,$

JHEP 07 (2014) 014

B

- I.5mb x 3/fb = 4.5e12 in acc/y in Run I
 Ie8 D->Kpi selected (0.05% effy)
- 3mb x 2/fb = 6e12 in acc/y Run 2
- I.5eI3 in acc/y in Run 3
 - ⇒ 2e9 in 3 years (0.1% eff)
- Iel4 in acc/y in Run 4/5

➡ 4e9/y selected (0.1% efficiency)