Talk 6: Determining the β -function in $N_f = 3$ QCD

Alberto Ramos <alberto.ramos@cern.ch>

Mattia Dalla Brida, Patrick Fritzsch, Tomasz Korzec, Stefan Sint, Rainer Sommer

June 30, 2016

MOTIVATION	Finite size scaling	Connecting the hadronic regime of QCD	Conclusions

Overview

Motivation

Finite size scaling

Connecting the hadronic regime of QCD

Conclusions

FINITE SIZE SCALING

Determining the fundamental parameters of the SM.

A theoretical problem in strongly coupled QFT

$$S_{\rm QCD}[A_{\mu},\psi,\overline{\psi}] = \int d^4x \, \frac{1}{4g^2} F^a_{\mu\nu} F^a_{\mu\nu} + \sum_f \overline{\psi_f} \gamma_{\mu} (\partial_{\mu} + m_q + iA_{\mu}) \psi_f$$

- Fundamental parameters $(m_{\overline{MS}}, \alpha_{\overline{MS}})$ naturally defined at high energies (M_Z) .
- ▶ Well measured and clean QCD quantities naturally defined at low energies (M_p, M_π) .
- ► In principle one-to-one correspondence, but...
- Relating fundamental parameters with low energy hadronic quantities requires non-perturbative formulation of QFT =>> Lattice QCD

$$\begin{split} \Lambda &= \mu \times \left[b_0 g^2(\mu) \right]^{-b_1/2b_0^2} e^{-\frac{1}{2b_0 g^2(\mu)}} \exp\left\{ -\int_0^{g^2(\mu)} du \left[\frac{1}{\beta(u)} + \frac{1}{b_0 u^3} - \frac{b_1}{b_0 u} \right] \right\} \\ M &= \bar{m}(\mu) [2b_0 \bar{g}^2(\mu)]^{-d_0/2b_0} \exp\left\{ -\int_0^{\bar{g}(\mu)} dx \left[\frac{\tau(x)}{\beta(x)} - \frac{d_0}{b_0 x} \right] \right\} \,, \end{split}$$

Motivation	Finite size scaling	Connecting the hadronic regime of QCD	Conclusions

Overview

Motivation

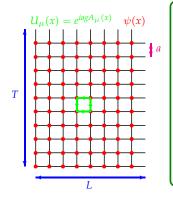
Finite size scaling Lattice QCD Finite size scaling

Connecting the hadronic regime of QCD

Conclusions

Lattice YM in one slide

Lattice field theory \longrightarrow Non Perturbative definition of QFT.



$$\langle O \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[U] O(U)_{\text{Wick}} e^{-S_{\text{G}}[U]} \det(D)$$

- Compute the integral numerically → Monte Carlo sampling.
- Observable computed averaging over samples

$$\langle O \rangle = \frac{1}{N_{\rm conf}} \sum_{i=1}^{N_{\rm conf}} O(U_i) + \mathcal{O}(1/\sqrt{N_{\rm conf}})$$

• One to one relation between a and β .

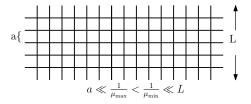
$$S_G[U] = \frac{\beta}{6} \sum_{p \in \text{Plaquettes}} Tr(1 - U_p - U_p^+) \xrightarrow[a \to 0]{} -\frac{1}{2} \int d^4x \operatorname{Tr}(F_{\mu\nu}F_{\mu\nu})$$

Finite size scaling and step scaling function $[{\tt Lüscher}, {\tt Weisz}, {\tt Wolff} \, {\it `91}]$

$$\alpha(\mu) = \frac{3r^2}{4}F(r)\Big|_{\mu=1/r}$$

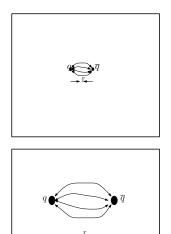
Huge computer resources

 $L/a \sim 100 - 1000.$



Motivation	FINITE SIZE SCALING	Connecting the hadronic regime of QCD	Conclusions
	000	0000000000000000	

FINITE SIZE SCALING AND STEP SCALING FUNCTION [LÜSCHER, WEISZ, WOLFF '91]



Conditions:

Small cutoff effects:

$$r/a \gg 1 \quad (\sim 10)$$

- I want to change μ from perturbative to non-perturbative: Change r by a factor 10.
- ► FV effects small:

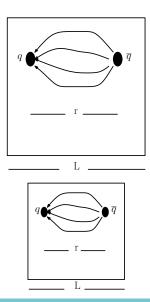
$$L/a \gg r/a \quad (\sim 10)$$

► Huge lattices

L/a > 1000

Motivation	Finite size scaling	Connecting the hadronic regime of QCD	Conclusions

FINITE SIZE SCALING AND STEP SCALING FUNCTION [LÜSCHER, WEISZ, WOLFF '91]



Finite volume renorm. scheme:

► Fix

 $\mu L = \text{constant}$

- No FV corrections.
- Only condition

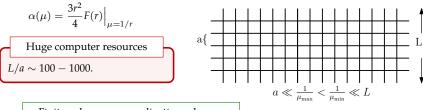
 $L/a \gg 1 \quad (\sim 10)$

- ► Coupling depends on one scale: L $g^2(\mu) \text{ notation } : g^2(L), g^2(1/L)$
- Step scaling function: How much changes the coupling when we change the renormalization scale:

$$\sigma_s(u) = g^2(sL)\Big|_{g^2(L)=u}$$

achieved by simple changing $L/a \rightarrow sL/a!$

FINITE SIZE SCALING AND STEP SCALING FUNCTION [LÜSCHER, WEISZ, WOLFF '91]



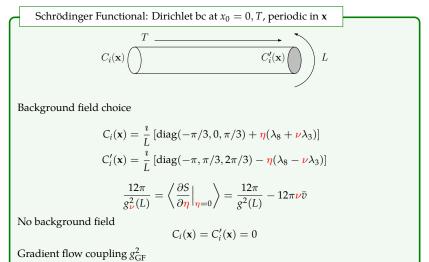
Finite volume renormalization schemes

- Finite volume as renormalization scale $\mu L = \text{constant}$.
- Coupling $\alpha(\mu)$ depends on no other scale but *L* (Notation: $\alpha(L), \alpha(1/L)$).
- ► Finite Volume effects part of the scheme [Lüscher, Weisz, Wolff. 1991].
- $a \ll 1/\mu$ easily achieved: $L/a \sim 10 40$
- Boundary conditions become relevant:
 - Periodic bc. bad for matching with perturbation theory [Gonzalez-Arroyo et al '81].
 - Schrödinger Functional [Lüscher et al. '92]
 - Twisted [de Divitiies '94]

7	ι.	٢	0	-				-		~	2	
-	v	1	v	1	Ľ	v.	2	4	÷	U		٧

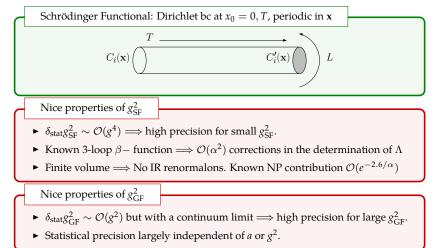
FINITE SIZE SCALING

Schrödinger Functional couplings



FINITE SIZE SCALING

Schrödinger Functional couplings



Overview

Motivation

Finite size scaling

Connecting the hadronic regime of QCD The gradient flow Continuum limit of flow quantities Preliminary results

Conclusions

λ.	1	~	-			-		٥N
1.1	1	v	1	1/	22	4	10	212

Finite size scaling

YANG-MILLS GRADIENT FLOW: BASICS [NARAYANAN, NEUBERGER '06; LÜSCHER '10]

► Add "extra" (flow) time coordinate $t \neq x_0$). Define gauge field $B_{\mu}(x, t)$

$$\begin{aligned} G_{\nu\mu}(x,t) &= \partial_{\nu}B_{\mu}(x,t) - \partial_{\nu}B_{\mu}(x,t) + [B_{\nu}(x,t), B_{\mu}(x,t)] \\ \frac{dB_{\mu}(x,t)}{dt} &= D_{\nu}G_{\nu\mu}(x,t); \quad B_{\mu}(x,t=0) = A_{\mu}(x) \,. \end{aligned}$$

► Since

$$\frac{dB_{\mu}(x,t)}{dt} = D_{\nu}G_{\nu\mu}(x,t) \quad \left(\sim -\frac{\delta S_{\rm YM}[B]}{\delta B_{\mu}}\right)$$

 $\lim_{t\to\infty} B_{\mu}(t,x) = A_{\mu}^{\text{classical}}(x).$

• Correlation functions of the "smooth" field $B_{\mu}(x,t)$

$$G(x_1, x_2, \dots) = \langle B(x_1, t)B(x_2, t) \cdots \rangle$$

are finite after the usual bare parameter renormalization [Lüscher, Weisz. '11].

► For example, in pure YM

$$E(x,t) = \frac{1}{4} \langle G_{\mu\nu}(x,t) G_{\mu\nu}(x,t) \rangle$$

is finite (for t > 0) after the usual coupling renormalization.

OTIVATION

FINITE SIZE SCALING

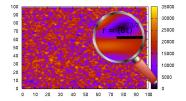
Gradient Flow: How it works

$$\frac{dB_{\mu}(x,t)}{dt} = D_{\nu}G_{\nu\mu}(x,t); \quad B_{\mu}(x,0) = A_{\mu}(x)$$

Expand the flow field in powers of g_0 .

$$B_{\mu}(x,t) = \sum_{n=1}^{\infty} B_{\mu,n}(x,t) g_0^n$$

 $GF \equiv \text{Heat equation (+ gauge terms)}$ $\frac{dB_{\mu,1}(x,t)}{dt} = \partial_{\nu}^{2}B_{\mu,1}(x,t)$ that has solution $B_{\mu,1}(x,t) = \sum_{p} e^{-p^{2}t}e^{ipx}\tilde{A}_{\mu}(p)$ $B_{\mu,1}(x,t) = \frac{1}{4\pi t}\int d^{4}y \, e^{-\frac{(x-y)^{2}}{4t}}A_{\mu}(y)$

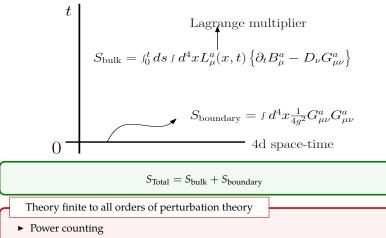


We are "looking" at world with a resolution $\sim \sqrt{8t}$.

Motivation	FINITE SIZE SCALING
	000

5D LOCAL FORMULATION [LÜSCHER, WEISZ '11]

We can see the theory as a 5d local field theory [Zinn-Justin '86, Zinn-Justin, Zwanziger '88]



- Theory has BRS invariance
- No loops on the bulk \Rightarrow No extra counterterms \Rightarrow No operator mixing for t > 0.

Finite size scaling

GRADIENT FLOW: COUPLING [LÜSCHER '10]

Take the Energy density as a candidate observable

$$\langle E(t) \rangle = \frac{1}{4} \int \mathcal{D}A_{\mu} G^{a}_{\mu\nu}(x,t) G^{a}_{\mu\nu}(x,t) e^{-S[A]}$$

In perturbation theory we have:

$$\langle E(t) \rangle = \frac{3g_{\overline{MS}}^2}{16\pi^2 t^2} (1 + c_1 g_{\overline{MS}}^2 + \mathcal{O}(g_{\overline{MS}}^4))$$

and in terms of the running coupling $\alpha(\mu)$ at scale $\mu = 1/\sqrt{8t}$.

$$t^{2}\langle E(t)\rangle = \frac{3}{4\pi}\alpha_{\overline{MS}}(\mu)\left[1 + c_{1}'\alpha_{\overline{MS}}(\mu) + \mathcal{O}(\alpha_{\overline{MS}}^{2})\right]$$

Therefore one can define the strong coupling at a scale $\mu = 1/\sqrt{8t} = 1/cL$

$$\alpha(\mu) = \frac{4\pi}{3} t^2 \langle E(t) \rangle = \alpha_{\overline{MS}}(\mu) + \dots$$

- Non-perturbative definition.
- Easy to evaluate on the lattice.
- precise (smooth observable).

Fits well with finite size scaling

$$\mu = 1/cl$$

12/29

MOTIVATION

Why is a good choice? $N_f=2$ and SU(3) simulations [P. Fritzsch, A.R. '13]

$\begin{array}{c} L/a \\ \beta \\ \kappa_{\rm sea} \\ N_{\rm meas} \end{array}$	6	8	10	12	16
	5.2638	5.4689	5.6190	5.7580	5.9631
	0.135985	0.136700	0.136785	0.136623	0.136422
	12160	8320	8192	8280	8460
$\overline{g}_{\rm SF}^2(L_1)$	4.423(75)	4.473(83)	4.49(10)	4.501(91)	4.40(10)
$ \overline{g}_{\rm CF}^2(\mu) \ (c = 0.3) \overline{g}_{\rm CF}^2(\mu) \ (c = 0.4) \overline{g}_{\rm CF}^2(\mu) \ (c = 0.5) $	4.8178(46)	4.7278(46)	4.6269(47)	4.5176(47)	4.4410(53)
	6.0090(86)	5.6985(86)	5.5976(97)	5.4837(97)	5.410(12)
	7.106(14)	6.817(15)	6.761(19)	6.658(19)	6.602(24)

Advantages of GF coupling definition

- ► $O(10^3)$ less expensive at $g^2 \sim 4$ (1 CPU day \rightarrow some CPU years).
- Finite variance when $a \to 0$ (i.e. $\mathcal{V} \sim \langle E^2(t) \rangle \langle E(t) \rangle^2$).
- ► Statistical precision independent of coupling value $\delta g^2/g^2 \sim \text{constant}$.
- ► Smaller $c \implies$ Larger cutoff effects, more precision. ($c \in [0.3, 0.5]$)

Ideal for matching with hadronic regime of QCD

FINITE SIZE SCALING

Solving the flow equation on the lattice

The continuum equation

$$\frac{dB_{\mu}(x,t)}{dt} = D_{\nu}G_{\nu\mu}(x,t); \quad \left(\sim -g_0^2 \frac{\delta S_{\rm YM}[B]}{\delta B_{\mu}}\right)$$

How do the links $V_{\mu}(x, t) = \exp[B_{\mu}(t, x)]$ change with the *t*?

$$a^2 \frac{d}{dt} V_{\mu}(x,t) = -g_0^2 \frac{\delta S^{\text{latt}}[V]}{\delta V_{\mu}(x,t)} V_{\mu}(x,t)$$

- Is this the best option?
- ► Which lattice action *S*^{latt}?

The Zeuthen flow

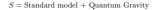
$$a^2 \frac{d}{dt} V_\mu(x,t) = -g_0^2 \left(1 + \frac{a^2}{12} D_\mu D_\mu^*\right) \frac{\delta S^{\text{LW}}[V]}{\delta V_\mu(x,t)} V_\mu(x,t)$$

This equation is the result of a computation.

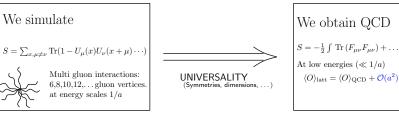
Motivation

FINITE SIZE SCALING

LATTICE PEOPLE HATE DISCOVERING "NEW PHYSICS"



At low energies ($\ll M_{\rm pl}$) $\langle O \rangle = \langle O \rangle_{SM} + O(1/M_{\rm pl})$



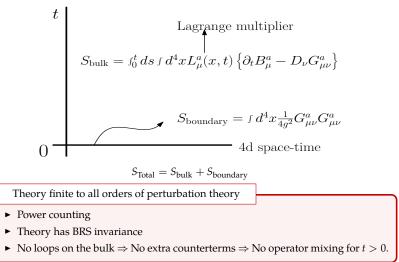
Symanzik improvement program

Fine tune (i.e. cook) a lattice action S^{latt} such that the effective theory at energy scales much smaller than the cutoff looks as close as possible to the continuum.

Motivation	Finite size scaling	CONNECTING THE HADRONIC REGIME OF QCD	Con
	000	000000000000000000000000000000000000000	

5D LOCAL FORMULATION [LÜSCHER, WEISZ '11]

We can see the theory as a 5d local field theory [Zinn-Justin '86, Zinn-Justin, Zwanziger '88]



FINITE SIZE SCALING

The symanzik effective action for the Gradient flow

Action composed of bulk part and boundary part

$$S_{\text{bndry}} = -\frac{1}{2g_0^2} \int d^4x \operatorname{Tr}(F_{\mu\nu}F_{\mu\nu}) + \sum_i \alpha_i \int d^4x \, O_i^{d=6}(x)$$

$$S_{\text{bulk}} = -2 \int_0^\infty dt \int d^4x \operatorname{Tr} \left\{ L_{\mu}(x,t) [\partial_t B_{\mu}(x,t) - D_{\mu}G_{\mu\nu}] \right\}$$

$$+ \sum_i \int_0^\infty dt \int d^4x \, O_i^{d=8}(x,t)$$

Possible bulk counterterms

- Remember: No loops in the bulk \Rightarrow No new counterterms are generated.
- Classical improvement in the bulk is equivalent to non-perturbative improvement.

Motivation

Finite size scaling

CLASSICAL EXPANSION OF THE FLOW EQUATION

$$\begin{pmatrix} a^{2}\partial_{t}V_{\mu} \end{pmatrix} V_{\mu}^{-1} = a^{3}\partial_{t}B_{\mu} + \frac{1}{2}a^{4}D_{\mu}\partial_{t}B_{\mu} + \frac{1}{6}a^{5}D_{\mu}^{2}\partial_{t}B_{\mu} + \mathcal{O}(a^{6})$$

$$-\partial_{x,\mu} \left[g_{0}^{2}S_{\text{lat}}(V) \right] = \sum_{\nu=0}^{3} \left\{ a^{3}D_{\nu}G_{\nu\mu} + \frac{1}{2}a^{4}D_{\mu}D_{\nu}G_{\nu\mu} + \frac{1}{12}a^{5} \left[(1 + 12(c_{1} - c_{2})) \left(2D_{\nu}D_{\mu}^{2} + D_{\nu}^{3} \right) - 12(c_{1} - c_{2})D_{\mu}^{2}D_{\nu} + 12c_{2}\sum_{\rho=0}^{3} \left(3D_{\rho}^{2}D_{\nu} - 4D_{\rho}D_{\nu}D_{\rho} + 2D_{\nu}D_{\rho}^{2} \right) \right] G_{\nu\mu} \right\} + \mathcal{O}(a^{6})$$

Some conclusions

Correct continuum flow equation

$$\partial_t B_\mu = D_\nu G_{\nu\mu}$$

- ► *O*(*a*) corrections cancel.
- ▶ No value of c_1, c_2 for which the $\mathcal{O}(a^2)$ corrections cancel!

Motivation

Finite size scaling

$CLASSICAL EXPANSION OF THE FLOW EQUATION % \label{eq:classical}$

$$\begin{split} \left(a^{2}\partial_{t}V_{\mu}\right)V_{\mu}^{-1} &= a^{3}\partial_{t}B_{\mu} + \frac{1}{2}a^{4}D_{\mu}\partial_{t}B_{\mu} + \frac{1}{6}a^{5}D_{\mu}^{2}\partial_{t}B_{\mu} + \mathcal{O}(a^{6}) \\ -\partial_{x,\mu}\left[g_{0}^{2}S_{\text{lat}}(V)\right] &= \sum_{\nu=0}^{3}\left\{a^{3}D_{\nu}G_{\nu\mu} + \frac{1}{2}a^{4}D_{\mu}D_{\nu}G_{\nu\mu} \\ &+ \frac{1}{12}a^{5}\left[\left(1 + 12(c_{1} - c_{2})\right)\left(2D_{\nu}D_{\mu}^{2} + D_{\nu}^{3}\right) - 12(c_{1} - c_{2})D_{\mu}^{2}D_{\nu} \\ &+ 12c_{2}\sum_{\rho=0}^{3}\left(3D_{\rho}^{2}D_{\nu} - 4D_{\rho}D_{\nu}D_{\rho} + 2D_{\nu}D_{\rho}^{2}\right)\right]G_{\nu\mu}\right\} + \mathcal{O}(a^{6}) \end{split}$$

the Symanzik/LW flow ($c_1 = -1/12$, $c_2 = 0$), is "almost" $\mathcal{O}(a^2)$ improved

$$\partial_t B_{\mu} = \sum_{\nu=0}^3 \left\{ D_{\nu} G_{\nu\mu}(x,t) - \frac{1}{12} a^2 D_{\mu}^2 D_{\nu} G_{\nu\mu} + \mathcal{O}(a^3) \right\}$$

The Zeuthen flow

$$\begin{pmatrix} a^2 \partial_t V_{\mu}(x,t) \end{pmatrix} V_{\mu}(x,t)^{-1} = -g_0^2 \left(1 + \frac{1}{12} a^2 D_{\mu}^* D_{\mu} \right) \partial_{x,\mu} \left[g_0^2 S_{LW}(V) \right]$$

$$a D_{\mu} F(x) = V_{\mu}(x,t) F(x+a\hat{\mu}) V_{\mu}(x,t)^{\dagger} - F(x), \dots$$

8/29

λ.	o	-		4	-		5	

Finite size scaling

CONTINUUM LIMIT OF FLOW QUANTITIES

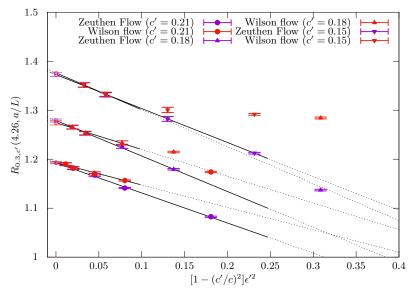
Study the general quantity

$$R_{c,c'}(u,a/L,s) = \left. \frac{g_c^2(L)}{g_{c'}^2(sL)} \right|_{g_c^2(L)=u} = R_{c,c'}(u,0,s) \left\{ 1 + A_{c,c'}(u) [\epsilon^2 - {\epsilon'}^2] + \dots \right\},$$

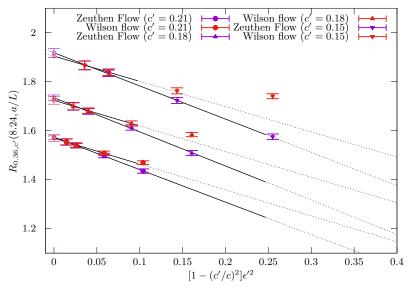
with $\epsilon = a/(cL)$ and $\epsilon' = a/(c'sL)$.

- $R_{c,c'}(u, a/L, s)$ is mainly a function of sc'.
- Step scaling function $\Longrightarrow R_{c,c}(u, a/L, 2)$.
- Instead study $R_{c,c'}(u, a/L, 1) \Longrightarrow$ we can use L/a = 8, 12, 16, 24, 32

Scaling of the ratios $R_{c,c'}(u,a/L,1)$



Scaling of the ratios $R_{c,c'}(u, a/L, 1)$

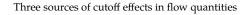


Scaling of the ratios $R_{c,c'}(u,a/L,1)$

Three sources of cutoff effects in flow quantities

- Quantum effects at t = 0. Very complicated dependence on g_0^2
- Integrating the flow equation
- Evaluating an observable

Scaling of the ratios $R_{c,c'}(u, a/L, 1)$



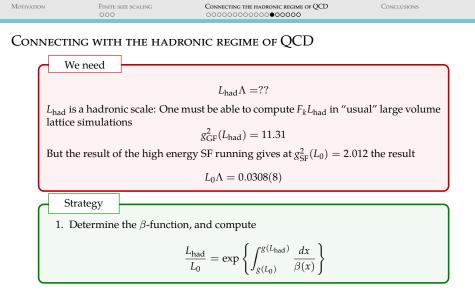
- Quantum effects at t = 0. Very complicated dependence on g_0^2
- Integrating the flow equation Zeuthen flow
- Evaluating an observable Classically improved discretization

Conclusions: Still lot to understand!

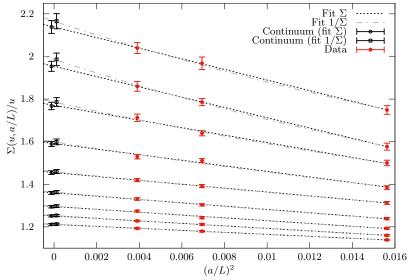
- In our data:
 - Wilson Flow: Breaking of scaling at $(a/cL)^2 = 0.15$
 - Zeuthen Flow: Breaking of scaling at $(a/cL)^2 = 0.3$
 - We use $L/a = 8, c = 0.3 \Longrightarrow (a/cL)^2 = 0.17$
- Zeuthen flow not cooked for this!
- ▶ O(a²) effects still significant!
- ► Main suspect: The "extra" boundary counterterm:

$$O_4(x) = \operatorname{tr}\{L_{\mu}(0, x)D_{\nu}F_{\nu\mu}\}\$$

complicated (i.e. receives quantum corrections).



Step scalling function L/a=8,12,16
ightarrow 16,24,32

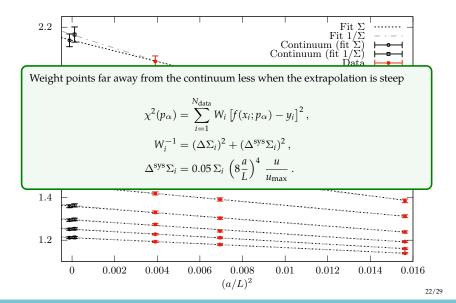


Step scalling function L/a=8, 12, 16 ightarrow 16, 24, 32

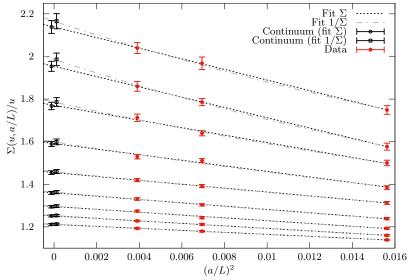
Systematic difference between ansatz for continuum extrapolation $\Sigma(u_i, a/L) = \sigma_i + r(a/L)^2 \text{and} \frac{1}{\Sigma(u_i, a/L)} = \frac{1}{\sigma_i} + \tilde{r}(a/L)^2$ $\frac{u_i \qquad \sigma_i \qquad (1/\sigma_i - 1/u_i) \times 10^2}{6.5489 \qquad 14.005(175) \qquad 14.184(197) \qquad -8.13(10) \qquad -8.22(12)}$ 5.8673 $11.464(123) \qquad 11.654(146) \qquad -8.32(10) \qquad -8.46(13)$ 5.3013 $9.371(79) \qquad 9.468(89) \qquad -8.19(11) \qquad -8.30(12)$ $4.4901 \qquad 7.139(47) \qquad 7.181(51) \qquad -8.26(11) \qquad -8.34(12)$ 3.8643 $5.622(28) \qquad 5.641(30) \qquad -8.09(10) \qquad -8.15(14)$ 3.2029 $4.354(19) \qquad 4.367(21) \qquad -8.25(12) \qquad -8.32(13)$ 2.7359 $3.541(14) \qquad 3.550(15) \qquad -8.31(12) \qquad -8.38(13)$ 2.3900 $2.991(10) \qquad 2.996(10) \qquad -8.40(12) \qquad -8.46(13)$	2.2		·····	1 1		$ \begin{array}{c c} Fit \Sigma & &\\ Fit 1/\Sigma &\\ uum (fit \Sigma) & &\\ m (fit 1/\Sigma) & &\\ \end{array} $
$\Sigma(u_i, a/L) = \sigma_i + r(a/L)^2 \text{and} \frac{1}{\Sigma(u_i, a/L)} = \frac{1}{\sigma_i} + \tilde{r}(a/L)^2$ $\frac{u_i \qquad \sigma_i \qquad (1/\sigma_i - 1/u_i) \times 10^2}{6.5489 \qquad 14.005(175) \qquad 14.184(197) \qquad -8.13(10) \qquad -8.22(12)}$ 5.8673 $11.464(123) \qquad 11.654(146) \qquad -8.32(10) \qquad -8.46(13)$ 5.3013 $9.371(79) \qquad 9.468(89) \qquad -8.19(11) \qquad -8.30(12)$ $4.4901 \qquad 7.139(47) \qquad 7.181(51) \qquad -8.26(11) \qquad -8.34(12)$ $3.8643 \qquad 5.622(28) \qquad 5.641(30) \qquad -8.09(10) \qquad -8.15(14)$ $3.2029 \qquad 4.354(19) \qquad 4.367(21) \qquad -8.25(12) \qquad -8.32(13)$ $2.7359 \qquad 3.541(14) \qquad 3.550(15) \qquad -8.31(12) \qquad -8.38(13)$	Systematic			satz for conti	nuum extrapo	lation
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Σ	$(u_i, a/L)$	$=\sigma_i + r(a/L)$	$)^2$ and	$\frac{1}{\Sigma(u_i, a/L)} =$	$=rac{1}{\sigma_i}+ ilde{r}(a/L)^2$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	<i>u</i> _i	σ	i	$(1/\sigma_i - 1)$	$(u_i) \times 10^2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	6.5489	14.005(175)	14.184(197)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5.8673	11.464(123)	11.654(146)	-8.32(10)	-8.46(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5.3013	9.371(79)	9.468(89)	-8.19(11)	-8.30(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.4901	7.139(47)	7.181(51)	-8.26(11)	-8.34(12)
2.7359 $3.541(14)$ $3.550(15)$ $-8.31(12)$ $-8.38(13)$		3.8643	5.622(28)	5.641(30)	-8.09(10)	-8.15(14)
			4.354(19)	4.367(21)	-8.25(12)	-8.32(13)
2.3900 2.991(10) 2.996(10) -8.40(12) -8.46(13)		2.7359		3.550(15)	-8.31(12)	-8.38(13)
	_			2.578(9)	<u>`</u>	
Constant fit: $-8.233(37) - 8.316(42)$		Constant	fit:		$-8.23\overline{3}(37)$	-8.316(42)

MOTIVATION

Step scalling function L/a=8,12,16
ightarrow 16,24,32



Step scalling function L/a=8,12,16
ightarrow 16,24,32



Determination of $\sigma(u)$

Combined analysis

Combine continuum extrapolation with parametrization of $\sigma(u)$

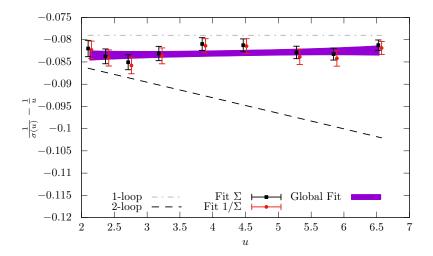
$$\frac{1}{\Sigma(u,a/L)} - \frac{1}{u} = \tilde{P}(u) + \rho(u) \left(\frac{a}{L}\right)^2$$
$$\tilde{P}(x) = \sum_{k=0}^{n_p} c_k x^k; \qquad \rho(x) = \sum_{k=0}^{n_p} r_k x^k$$

<u>Flexible</u>: No need to tune, no need to fit: just simulations at L/a and 2L/a at matching g_0 .

Ν						

FINITE SIZE SCALING

Determination of $\sigma(u)$



Determination of $\sigma(u)$

What have we learned?

- ► Even seing "perfect O(a²) scaling", we need to add systematic uncertainty due to "large" cutoff effects
- ▶ Non-perturbative step scaling function is just a shifted 1-loop in $g^2 \in [2 6.5]!$
- ► PT completely broken. Probably large 3-loop coefficient in this scheme.
- ▶ $\alpha = 0.2$ (~ 4GeV) far from applicability of PT at this level of precision.
- ► Consistents with our conclusions in the SF scheme [arXiv:1604.06193]

FINITE SIZE SCALING

Determination of the β -function

Use the exact relation

$$\log 2 = \int_{g(L)}^{g(2L)} \frac{dx}{\beta(x)}$$

with the ansatz

$$\beta(x; \mathbf{p}) = -\frac{x^3}{P(x)}; \qquad P(x) = \sum p_k x^{2k}$$

Fit your data using

$$\chi^{2}(p) = \sum_{\text{data}} \frac{1}{\delta I^{2}} \left[\log 2 - \int_{\sqrt{u_{i}}}^{\sqrt{\sigma(u_{i})}} \frac{dx}{\beta(x;p)} \right]^{2}$$

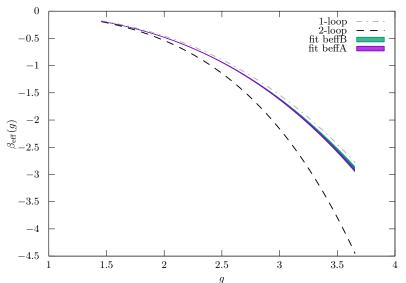
NOTE: Very flexible: No tunning, no fitting: just simulations at different L/a and matching g_0

$$\chi^{2}(p) = \sum_{\text{data}} \frac{1}{\delta I^{2}} \left[\log s - \int_{\sqrt{u_{i}}}^{\sqrt{\sum_{s}(u_{i},a/L) + \rho(u,s)\left(\frac{a}{L}\right)^{2}}} \frac{dx}{\beta(x;p)} \right]^{2}$$
$$\chi^{2}(p) = \sum_{\text{data}} \frac{1}{\delta I^{2}} \left[\log s - \int_{\sqrt{u_{i}}}^{\sqrt{\sum_{s}(u_{i},a/L)}} \frac{dx}{\beta(x;p)} + \tilde{\rho}(u,s)\left(\frac{a}{L}\right)^{2} \right]^{2}$$

4/29

The Jogging coupling in $N_{\rm f}=3~{\rm QCD}$

–Mattia dalla Brida



ΛA	OTIVATION	
111	UTIVATION	

Finite size scaling

Matching with L_0 scale

 L_0 defined via $g_{SF}^2(L_0) = 2.012$

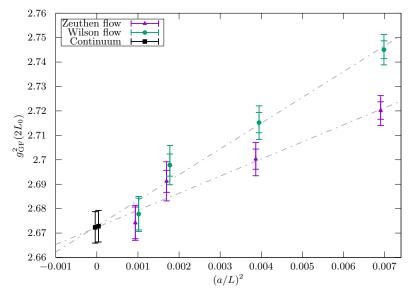
How to relate with g_{GF}^2 ?

- Take a few of β , L/a s.t. $g_{SF}^2(L) = 2.012$
- Compute in β , 2L/a s.t. $g_{GF}^2(L) = ?$

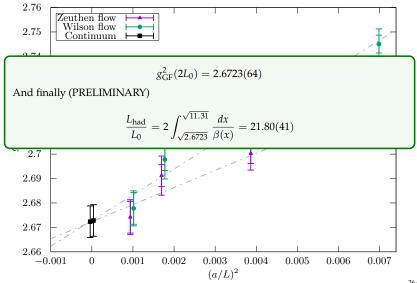
			TIC		
IVI	01	IVA	TIC	N	

Finite size scaling

Matching with L_0 scale



Matching with L_0 scale



Overview

Motivation

Finite size scaling

Connecting the hadronic regime of QCD

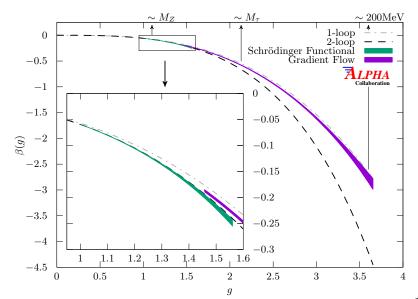
Conclusions

Motivation

Finite size scaling

Conclusions

Determination of β -function in QCD



Motivation	Finite size scaling	Connecting the hadronic regime of QCD	Conclusions

Conclusions

- Finite size scaling key for a first principle determination of the fundamental parameters of the SM.
- Matching with PT requires care when precision increases
- Gradient Flow ideal for matching non-perturbative regimes of strongly coupled QFT
- Determination of β function allows more flexibility than $\sigma(u)$.
- $\mathcal{O}(a^2)$ cutoff effects still large! Better understanding.
- ► 3-loop coefficient?