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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Determining the fundamental parameters of the SM.

SQCD[Aµ, ψ, ψ] =

∫
d4x

1
4g2 Fa

µνFa
µν +

∑
f
ψf γµ(∂µ + mq + ıAµ)ψf

I Fundamental parameters (mMS, αMS) naturally defined at high energies (MZ).
I Well measured and clean QCD quantities naturally defined at low energies

(Mp,Mπ).
I In principle one-to-one correspondence, but. . .
I Relating fundamental parameters with low energy hadronic quantities requires

non-perturbative formulation of QFT =⇒ Lattice QCD

A theoretical problem in strongly coupled QFT

Λ = µ×
[
b0g2(µ)

]−b1/2b2
0 e
− 1

2b0g2(µ) exp

{
−
∫ g2(µ)

0
du
[

1
β(u)

+
1

b0u3 −
b1
b0u

]}

M = m̄(µ)[2b0ḡ2(µ)]−d0/2b0 exp

{
−
∫ ḡ(µ)

0
dx
[
τ(x)

β(x)
−

d0
b0x

]}
,
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Lattice YM in one slide
Lattice field theory −→ Non Perturbative definition of QFT.
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Uµ(x) = eiagAµ(x) ψ(x)
〈O〉 =

1
Z

∫
D[U] O(U)Wicke−SG[U] det(D)

I Compute the integral numerically→Monte
Carlo sampling.

I Observable computed averaging over samples

〈O〉 =
1

Nconf

Nconf∑
i=1

O(Ui) +O(1/
√

Nconf)

I One to one relation between a and β.

SG[U] =
β

6
∑

p∈Plaquettes
Tr(1− Up − U+

p ) −−−→
a→0

−
1
2

∫
d4x Tr(FµνFµν)
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Finite size scaling and step scaling function [Lüscher, Weisz, Wolff ’91]

α(µ) =
3r2

4
F(r)

∣∣∣
µ=1/r

L/a ∼ 100− 1000.

Huge computer resources

a � 1
µmax

< 1
µmin

� L

a{ L
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Finite size scaling and step scaling function [Lüscher, Weisz, Wolff ’91]

r

q q

r

q q

L

Conditions:
I Small cutoff effects:

r/a� 1 (∼ 10)

I I want to change µ from perturbative
to non-perturbative: Change r by a
factor 10.

I FV effects small:

L/a� r/a (∼ 10)

I Huge lattices

L/a > 1000
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Finite size scaling and step scaling function [Lüscher, Weisz, Wolff ’91]

r

q q

L

r

q q

L

Finite volume renorm. scheme:
I Fix

µL = constant
I No FV corrections.
I Only condition

L/a� 1 (∼ 10)

I Coupling depends on one scale: L

g2(µ) notation : g2(L), g2(1/L)

I Step scaling function: How much
changes the coupling when we
change the renormalization scale:

σs(u) = g2(sL)
∣∣∣
g2(L)=u

achieved by simple changing
L/a→ sL/a!
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Finite size scaling and step scaling function [Lüscher, Weisz, Wolff ’91]

α(µ) =
3r2

4
F(r)

∣∣∣
µ=1/r

L/a ∼ 100− 1000.

Huge computer resources

a � 1
µmax

< 1
µmin

� L

a{ L

I Finite volume as renormalization scale µL = constant.
I Coupling α(µ) depends on no other scale but L (Notation: α(L), α(1/L)).
I Finite Volume effects part of the scheme [Lüscher, Weisz, Wolff. 1991].
I a� 1/µ easily achieved: L/a ∼ 10− 40
I Boundary conditions become relevant:

I Periodic bc. bad for matching with perturbation theory [Gonzalez-Arroyo et al ’81].
I Schrödinger Functional [Lüscher et al. ’92]
I Twisted [de Divitiies ’94]

Finite volume renormalization schemes
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Schrödinger Functional couplings

L

T

Ci(x) C ′
i(x)

Background field choice

Ci(x) =
ı

L
[diag(−π/3, 0, π/3) + η(λ8 + νλ3)]

C′i (x) =
ı

L
[diag(−π, π/3, 2π/3)− η(λ8 − νλ3)]

12π
g2
ν(L)

=

〈
∂S
∂η

∣∣∣
η=0

〉
=

12π
g2(L)

− 12πνv̄

No background field
Ci(x) = C′i (x) = 0

Gradient flow coupling g2
GF

Schrödinger Functional: Dirichlet bc at x0 = 0,T, periodic in x
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Schrödinger Functional couplings

L

T

Ci(x) C ′
i(x)

Schrödinger Functional: Dirichlet bc at x0 = 0,T, periodic in x

I δstatg2
SF ∼ O(g4) =⇒ high precision for small g2

SF.
I Known 3-loop β− function =⇒ O(α2) corrections in the determination of Λ

I Finite volume =⇒ No IR renormalons. Known NP contributionO(e−2.6/α)

Nice properties of g2
SF

I δstatg2
GF ∼ O(g2) but with a continuum limit =⇒ high precision for large g2

GF.
I Statistical precision largely independent of a or g2.

Nice properties of g2
GF
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Yang-Mills gradient flow: basics [Narayanan, Neuberger ’06; Lüscher ’10]

I Add “extra” (flow) time coordinate t (6= x0). Define gauge field Bµ(x, t)

Gνµ(x, t) = ∂νBµ(x, t)− ∂νBµ(x, t) + [Bν(x, t),Bµ(x, t)]
dBµ(x, t)

dt
= DνGνµ(x, t); Bµ(x, t = 0) = Aµ(x) .

I Since
dBµ(x, t)

dt
= DνGνµ(x, t)

(
∼ −

δSYM[B]

δBµ

)
limt→∞ Bµ(t, x) = Aclassical

µ (x).
I Correlation functions of the “smooth” field Bµ(x, t)

G(x1, x2, . . . ) = 〈B(x1, t)B(x2, t) · · · 〉

are finite after the usual bare parameter renormalization [Lüscher, Weisz. ’11].
I For example, in pure YM

E(x, t) =
1
4
〈Gµν(x, t)Gµν(x, t)〉

is finite (for t > 0) after the usual coupling renormalization.
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Gradient Flow: How it works

dBµ(x, t)
dt

= DνGνµ(x, t); Bµ(x, 0) = Aµ(x)

Expand the flow field in powers of g0.

Bµ(x, t) =
∞∑

n=1
Bµ,n(x, t)gn

0

dBµ,1(x, t)
dt

= ∂2
νBµ,1(x, t)

that has solution

Bµ,1(x, t) =
∑

p
e−p2teıpxÃµ(p)

Bµ,1(x, t) =
1

4πt

∫
d4y e−

(x−y)2
4t Aµ(y)

GF ≡ Heat equation (+ gauge terms)

We are “looking” at world with a
resolution ∼

√
8t.
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

5d Local formulation [Lüscher, Weisz ’11]

We can see the theory as a 5d local field theory [Zinn-Justin ’86, Zinn-Justin, Zwanziger ’88]

Sbulk =
∫ t
0 ds

∫
d4xLa

µ(x, t)
{
∂tB

a
µ −DνG

a
µν

}

Sboundary =
∫
d4x 1

4g2
Ga

µνG
a
µν

0

t
Lagrange multiplier

4d space-time

STotal = Sbulk + Sboundary

I Power counting
I Theory has BRS invariance
I No loops on the bulk⇒No extra counterterms⇒No operator mixing for t > 0.

Theory finite to all orders of perturbation theory
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Gradient flow: coupling [Lüscher ’10]

〈E(t)〉 =
1
4

∫
DAµGa

µν(x, t)Ga
µν(x, t)e−S[A]

In perturbation theory we have:

〈E(t)〉 =
3g2

MS
16π2t2

(1 + c1g2
MS +O(g4

MS))

and in terms of the running coupling α(µ) at scale µ = 1/
√

8t.

t2〈E(t)〉 =
3

4π
αMS(µ)

[
1 + c′1αMS(µ) +O(α2

MS)
]

Therefore one can define the strong coupling at a scale µ = 1/
√

8t = 1/cL

α(µ) =
4π
3

t2〈E(t)〉 = αMS(µ) + . . .

Take the Energy density as a candidate observable

I Non-perturbative definition.
I Easy to evaluate on the lattice.
I precise (smooth observable).

I Fits well with finite size scaling

µ = 1/cL
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Why is a good choice? Nf = 2 and SU(3) simulations [P. Fritzsch, A.R. ’13 ]

L/a 6 8 10 12 16
β 5.2638 5.4689 5.6190 5.7580 5.9631
κsea 0.135985 0.136700 0.136785 0.136623 0.136422

Nmeas 12160 8320 8192 8280 8460

g2
SF(L1) 4.423(75) 4.473(83) 4.49(10) 4.501(91) 4.40(10)

g2
GF(µ) (c = 0.3) 4.8178(46) 4.7278(46) 4.6269(47) 4.5176(47) 4.4410(53)

g2
GF(µ) (c = 0.4) 6.0090(86) 5.6985(86) 5.5976(97) 5.4837(97) 5.410(12)

g2
GF(µ) (c = 0.5) 7.106(14) 6.817(15) 6.761(19) 6.658(19) 6.602(24)

I O(103) less expensive at g2 ∼ 4 (1 CPU day→ some CPU years).
I Finite variance when a→ 0 (i.e. V ∼ 〈E2(t)〉 − 〈E(t)〉2).
I Statistical precision independent of coupling value δg2/g2 ∼ constant.
I Smaller c =⇒ Larger cutoff effects, more precision. (c ∈ [0.3, 0.5])

Advantages of GF coupling definition

Ideal for matching with hadronic regime of QCD
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Solving the flow equation on the lattice
The continuum equation

dBµ(x, t)
dt

= DνGνµ(x, t);
(
∼ −g2

0
δSYM[B]

δBµ

)

a2 d
dt

Vµ(x, t) = −g2
0
δSlatt[V]

δVµ(x, t)
Vµ(x, t)

I Is this the best option?
I Which lattice action Slatt?

How do the links Vµ(x, t) = exp[Bµ(t, x)] change with the t?

a2 d
dt

Vµ(x, t) = −g2
0

(
1 +

a2

12
DµD∗µ

)
δSLW[V]

δVµ(x, t)
Vµ(x, t)

This equation is the result of a computation.

The Zeuthen flow
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Lattice people hate discovering “new physics”

We simulate We obtain QCD

S =
∑
x,µ 6=ν Tr(1− Uµ(x)Uν(x+ µ) · · ·)

Multi gluon interactions:
6,8,10,12,. . . gluon vertices.
at energy scales 1/a

S = − 1
2

∫
Tr (FµνFµν) + . . .

UNIVERSALITY

At low energies (� 1/a)

〈O〉latt = 〈O〉QCD +O(a2)

S = Standard model + Quantum Gravity

〈O〉 = 〈O〉SM +O(1/Mpl)
At low energies (� Mpl)

(Symmetries, dimensions, . . . )

Fine tune (i.e. cook) a lattice action Slatt such that the efective theory at energy scales
much smaller than the cutoff looks as close as possible to the continuum.

Symanzik improvement program
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5d Local formulation [Lüscher, Weisz ’11]

We can see the theory as a 5d local field theory [Zinn-Justin ’86, Zinn-Justin, Zwanziger ’88]

Sbulk =
∫ t
0 ds

∫
d4xLa

µ(x, t)
{
∂tB

a
µ −DνG

a
µν

}

Sboundary =
∫
d4x 1

4g2
Ga

µνG
a
µν

0

t
Lagrange multiplier

4d space-time

STotal = Sbulk + Sboundary

I Power counting
I Theory has BRS invariance
I No loops on the bulk⇒No extra counterterms⇒No operator mixing for t > 0.

Theory finite to all orders of perturbation theory
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

The symanzik effective action for the Gradient flow

Sbndry = −
1

2g2
0

∫
d4x Tr(FµνFµν) +

∑
i
αi

∫
d4x Od=6

i (x)

Sbulk = −2
∫ ∞

0
dt
∫

d4x Tr {Lµ(x, t)[∂tBµ(x, t)− DµGµν ]}

+
∑

i

∫ ∞
0

dt
∫

d4x Od=8
i (x, t)

Action composed of bulk part and boundary part

I Remember: No loops in the bulk⇒ No new counterterms are generated.
I Classical improvement in the bulk is equivalent to non-perturbative

improvement.

Possible bulk counterterms
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Classical expansion of the flow equation

(
a2∂tVµ

)
V−1
µ = a3∂tBµ +

1
2

a4Dµ∂tBµ +
1
6

a5D2
µ∂tBµ +O(a6)

−∂x,µ
[
g2

0Slat(V)
]

=
3∑
ν=0

{
a3DνGνµ +

1
2

a4DµDνGνµ

+
1
12

a5
[
(1 + 12(c1 − c2))

(
2DνD2

µ + D3
ν

)
− 12(c1 − c2)D2

µDν

+ 12c2

3∑
ρ=0

(
3D2

ρDν − 4DρDνDρ + 2DνD2
ρ

)]
Gνµ

}
+O(a6)

I Correct continuum flow equation

∂tBµ = DνGνµ

I O(a) corrections cancel.
I No value of c1, c2 for which theO(a2) corrections cancel!

Some conclusions
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Classical expansion of the flow equation
(

a2∂tVµ
)

V−1
µ = a3∂tBµ +

1
2

a4Dµ∂tBµ +
1
6

a5D2
µ∂tBµ +O(a6)

−∂x,µ
[
g2

0Slat(V)
]

=
3∑
ν=0

{
a3DνGνµ +

1
2

a4DµDνGνµ

+
1
12

a5
[
(1 + 12(c1 − c2))

(
2DνD2

µ + D3
ν

)
− 12(c1 − c2)D2

µDν

+ 12c2

3∑
ρ=0

(
3D2

ρDν − 4DρDνDρ + 2DνD2
ρ

)]
Gνµ

}
+O(a6)

the Symanzik/LW flow (c1 = −1/12, c2 = 0), is “almost”O(a2) improved

∂tBµ =
3∑
ν=0

{
DνGνµ(x, t)−

1
12

a2D2
µDνGνµ +O(a3)

}

(
a2∂tVµ(x, t)

)
Vµ(x, t)−1 = −g2

0

(
1 +

1
12

a2D∗µDµ
)
∂x,µ

[
g2

0SLW(V)
]

aDµF(x) = Vµ(x, t)F(x + aµ̂)Vµ(x, t)† − F(x), ...

The Zeuthen flow
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Motivation Finite size scaling Connecting the hadronic regime of QCD Conclusions

Continuum limit of flow quantities

Rc,c′ (u, a/L, s) =
g2

c (L)

g2
c′ (sL)

∣∣∣∣∣
g2

c (L)=u

= Rc,c′ (u, 0, s)
{

1 + Ac,c′ (u)[ε2 − ε′2] + . . .
}
,

with ε = a/(cL) and ε′ = a/(c′sL).
I Rc,c′ (u, a/L, s) is mainly a function of sc′.
I Step scaling function =⇒ Rc,c(u, a/L, 2).
I Instead study Rc,c′ (u, a/L, 1) =⇒we can use L/a = 8, 12, 16, 24, 32

Study the general quantity
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Scaling of the ratios Rc,c′(u, a/L, 1)

1

1.1

1.2

1.3

1.4

1.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
0
.3
,c

′ (
4
.2
6
,a
/
L
)

[1− (c′/c)2]ε′2

Zeuthen Flow (c′ = 0.21)
Wilson flow (c′ = 0.21)

Zeuthen Flow (c′ = 0.18)

Wilson flow (c′ = 0.18)
Zeuthen Flow (c′ = 0.15)
Wilson flow (c′ = 0.15)
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Scaling of the ratios Rc,c′(u, a/L, 1)

1.2

1.4

1.6

1.8

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
0
.3
6
,c

′ (
8
.2
4
,a
/
L
)

[1− (c′/c)2]ε′2

Zeuthen Flow (c′ = 0.21)
Wilson flow (c′ = 0.21)

Zeuthen Flow (c′ = 0.18)

Wilson flow (c′ = 0.18)
Zeuthen Flow (c′ = 0.15)
Wilson flow (c′ = 0.15)
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Scaling of the ratios Rc,c′(u, a/L, 1)

I Quantum effects at t = 0. Very complicated dependence on g2
0

I Integrating the flow equation
I Evaluating an observable

Three sources of cutoff effects in flow quantities
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Scaling of the ratios Rc,c′(u, a/L, 1)

I Quantum effects at t = 0. Very complicated dependence on g2
0

I Integrating the flow equation Zeuthen flow
I Evaluating an observable Classically improved discretization

Three sources of cutoff effects in flow quantities

I In our data:
I Wilson Flow: Breaking of scaling at (a/cL)2 = 0.15
I Zeuthen Flow: Breaking of scaling at (a/cL)2 = 0.3
I We use L/a = 8, c = 0.3 =⇒ (a/cL)2 = 0.17

I Zeuthen flow not cooked for this!
I O(a2) effects still significant!
I Main suspect: The “extra” boundary counterterm:

O4(x) = tr{Lµ(0, x)DνFνµ}

complicated (i.e. receives quantum corrections).

Conclusions: Still lot to understand!
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Connecting with the hadronic regime of QCD

LhadΛ =??

Lhad is a hadronic scale: One must be able to compute FkLhad in “usual” large volume
lattice simulations

g2
GF(Lhad) = 11.31

But the result of the high energy SF running gives at g2
SF(L0) = 2.012 the result

L0Λ = 0.0308(8)

We need

1. Determine the β-function, and compute

Lhad
L0

= exp

{∫ g(Lhad)

g(L0)

dx
β(x)

}
Strategy
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Step scalling function L/a = 8, 12, 16 → 16, 24, 32

1.2

1.4

1.6

1.8

2

2.2

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

Σ
(u
,a

/
L

)/
u

(a/L)2

Fit Σ
Fit 1/Σ

Continuum (fit Σ)
Continuum (fit 1/Σ)

Data
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Step scalling function L/a = 8, 12, 16 → 16, 24, 32

1.2

1.4

1.6

1.8

2

2.2

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

Σ
(u
,a

/
L

)/
u

(a/L)2

Fit Σ
Fit 1/Σ

Continuum (fit Σ)
Continuum (fit 1/Σ)

Data
Systematic difference between ansatz for continuum extrapolation

Σ(ui, a/L) = σi + r(a/L)2 and
1

Σ(ui, a/L)
=

1
σi

+ r̃(a/L)2

ui σi (1/σi − 1/ui)× 102

6.5489 14.005(175) 14.184(197) −8.13(10) −8.22(12)
5.8673 11.464(123) 11.654(146) −8.32(10) −8.46(13)
5.3013 9.371(79) 9.468(89) −8.19(11) −8.30(12)
4.4901 7.139(47) 7.181(51) −8.26(11) −8.34(12)
3.8643 5.622(28) 5.641(30) −8.09(10) −8.15(14)
3.2029 4.354(19) 4.367(21) −8.25(12) −8.32(13)
2.7359 3.541(14) 3.550(15) −8.31(12) −8.38(13)
2.3900 2.991(10) 2.996(10) −8.40(12) −8.46(13)
2.1257 2.575(9) 2.578(9) −8.21(14) −8.26(14)
Constant fit: −8.233(37) −8.316(42)
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Step scalling function L/a = 8, 12, 16 → 16, 24, 32

1.2

1.4

1.6

1.8

2

2.2

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

Σ
(u
,a

/
L

)/
u

(a/L)2

Fit Σ
Fit 1/Σ

Continuum (fit Σ)
Continuum (fit 1/Σ)

Data
Weight points far away from the continuum less when the extrapolation is steep

χ2(pα) =

Ndata∑
i=1

Wi
[
f (xi; pα)− yi

]2
,

W−1
i = (∆Σi)

2 + (∆sysΣi)
2 ,

∆sysΣi = 0.05 Σi
(

8
a
L

)4 u
umax

.
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Step scalling function L/a = 8, 12, 16 → 16, 24, 32

1.2

1.4

1.6

1.8

2

2.2

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

Σ
(u
,a

/
L

)/
u

(a/L)2

Fit Σ
Fit 1/Σ

Continuum (fit Σ)
Continuum (fit 1/Σ)

Data
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Determination of σ(u)

Combine continuum extrapolation with parametrization of σ(u)

1
Σ(u, a/L)

−
1
u

= P̃(u) + ρ(u)
( a

L

)2

P̃(x) =

np∑
k=0

ckxk; ρ(x) =

np∑
k=0

rkxk

Flexible: No need to tune, no need to fit: just simulations at L/a and 2L/a at matching
g0.

Combined analysis
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Determination of σ(u)
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Determination of σ(u)

I Even seing “perfectO(a2) scaling”, we need to add systematic uncertainty due
to “large” cutoff effects

I Non-perturbative step scaling function is just a shifted 1-loop in g2 ∈ [2− 6.5]!
I PT completely broken. Probably large 3-loop coefficient in this scheme.
I α = 0.2 (∼ 4GeV) far from applicability of PT at this level of precision.
I Consistents with our conclusions in the SF scheme [arXiv:1604.06193]

What have we learned?
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Determination of the β-function

Use the exact relation

log 2 =

∫ g(2L)

g(L)

dx
β(x)

with the ansatz
β(x; p) = −

x3

P(x)
; P(x) =

∑
pkx2k

Fit your data using

χ2(p) =
∑
data

1
δI2

[
log 2−

∫ √σ(ui)

√ui

dx
β(x; p)

]2

NOTE: Very flexible: No tunning, no fitting: just simulations at different L/a and
matching g0

χ2(p) =
∑
data

1
δI2

log s−
∫ √

Σs(ui,a/L)+ρ(u,s)( a
L )2

√ui

dx
β(x; p)

2

χ2(p) =
∑
data

1
δI2

[
log s−

∫ √Σs(ui,a/L)

√ui

dx
β(x; p)

+ ρ̃(u, s)
( a

L

)2
]2
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The jogging coupling in Nf = 3 QCD
–Mattia dalla Brida
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Matching with L0 scale

How to relate with g2
GF?

I Take a few of β, L/a s.t. g2
SF(L) = 2.012

I Compute in β, 2L/a s.t. g2
GF(L) =?

L0 defined via g2
SF(L0) = 2.012
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Matching with L0 scale
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Matching with L0 scale

2.66

2.67

2.68

2.69

2.7

2.71

2.72

2.73

2.74

2.75

2.76

−0.001 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

g
2 G
F
(2
L

0
)

(a/L)2

Zeuthen flow
Wilson flow
Continuum

g2
GF(2L0) = 2.6723(64)

And finally (PRELIMINARY)

Lhad
L0

= 2
∫ √11.31

√
2.6723

dx
β(x)

= 21.80(41)
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Determination of β-function in QCD
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Conclusions
I Finite size scaling key for a first principle determination of the fundamental

parameters of the SM.
I Matching with PT requires care when precision increases
I Gradient Flow ideal for matching non-perturbative regimes of strongly

coupled QFT
I Determination of β- function allows more flexibility than σ(u).
I O(a2) cutoff effects still large! Better understanding.
I 3-loop coefficient?
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