Instituto de
Teórísica
Teorica
uam-csic

Volume independence beyond large N

Margarita García Pérez

In collaboration with
Antonio González-Arroyo, Liam Keegan,
Matt Koren, Masanori Okawa

Holography, conformal field theories, and lattice
\downarrow Large N Eguchi-Kawai reduction -Volume independence Previous talk by A. González-Arroyo

Finite N ? Volume dependence encoded in

Effective size involving both volume and group degrees of freedom

Some relation to the idea of volume independence by
Kotvun, Unsal \& Yaffe
Amber, Basar, Cherman, Dorigoni, Hanada, Koren, Poppitz, Sharpe,...

Eguchi-Kawai reduction

Large N observable

$$
b=\frac{\beta}{2 N^{2}}=\lambda_{L}^{-1} \quad \text { fixed }
$$

$$
O_{\infty}(b)=\lim _{N \rightarrow \infty} \lim _{L \rightarrow \infty} O(b, N, L)
$$

L^{4} lattice

Eguchi-Kawai reduction

Large N observable

$$
b=\frac{\beta}{2 N^{2}}=\lambda_{L}^{-1} \quad \text { fixed }
$$

$$
O_{\infty}(b)=\lim _{N \rightarrow \infty} \lim _{L^{4} \rightarrow \infty} O(b, N, L)_{\text {lattice }}
$$

Eguchi-Kawai reduction

Large N observable

$$
b=\frac{\beta}{2 N^{2}}=\lambda_{L}^{-1} \quad \text { fixed }
$$

$$
O_{\infty}(b)=\lim _{N \rightarrow \infty} \lim _{L \rightarrow \infty} O(b, N, L)_{L^{4} \text { lattice }}
$$

Eguchi-Kawai reduction

Eguchi-Kawai reduction

Large N observable

$$
b=\frac{\beta}{2 N^{2}}=\lambda_{L}^{-1} \quad \text { fixed }
$$

$$
O_{\infty}(b)=\lim _{N \rightarrow \infty} O(b, N, L)
$$

Eguchi-Kawai reduction

$$
\begin{aligned}
& O_{\infty}(b)=\lim _{N \rightarrow \infty} O(b, N, L=1) \\
& U_{\mu} \in S U(N)
\end{aligned}
$$

Eguchi-Kawai reduction

Large N observable

$$
b=\frac{\beta}{2 N^{2}}=\lambda_{L}^{-1} \quad \text { fixed }
$$

$$
O_{\infty}(b)=\lim _{N \rightarrow \infty} O(b, N, L)
$$

Eguchi-Kawai reduction

$$
O_{\infty}(b)=\lim _{N \rightarrow \infty} O(b, N, L=1)
$$

Thermodynamic limit irrespective of L

$$
\longrightarrow \quad U_{\mu} \in S U(N)
$$

A different limit - Physics on a finite volume

't Hooft, Luscher, Gonzalez-Arroyo e.a., van Baal
Formulate the problem in the continuum on a d-torus of Size I

Twist matrices
G. 't Hooft

Twist tensor

$$
\Omega_{2} \Omega_{1} \quad \exp \left\{2 i \pi \frac{n_{\mu \nu}}{N}\right\}
$$

For orthogonal twists $\quad \Omega_{\mu}(x)=\Gamma_{\mu}$
$\frac{1}{4} n_{\mu \nu} \tilde{n}_{\mu \nu}=0(\bmod N)$
consistency $\quad \Gamma_{\mu} \Gamma_{\nu}=e^{\frac{2 \pi i n_{\mu \nu}}{N}} \Gamma_{\nu} \Gamma_{\mu}$
boundary
conditions

$$
A_{\mu}(x+l \hat{\nu})=\Gamma_{\nu} A_{\mu}(x) \Gamma_{\nu}^{\dagger}
$$

Twist

Twist
Eaters

To implement boundary conditions

$$
\begin{array}{cl}
A_{\nu}(x)=\mathcal{N} \sum_{p}^{\prime} e^{i p \cdot x} \hat{A}_{\nu}(p) \hat{\Gamma}(p) \\
\hat{\Gamma}(p) \propto \Gamma_{1}^{s_{1}} \Gamma_{2}^{s_{2}} \cdots \Gamma_{d}^{s_{d}} & \begin{array}{l}
A_{\mu}^{a}(p) T_{a} \\
\\
\\
\text { basis for the } \operatorname{SU}(\mathrm{N}) \\
\\
\text { Lie algebra }
\end{array}
\end{array}
$$

$$
p_{\mu}=\frac{2 \pi n_{\mu}}{l_{\mathrm{eff}}}
$$

To satisfy b.c. momentum is quantised in units of Effective box - size

$$
\begin{array}{ll}
l_{\mathrm{eff}}=l N & \text { for } \mathrm{d}=2 \\
l_{\mathrm{eff}}=l \sqrt{N} & \text { for } \mathrm{d}=4
\end{array}
$$

Conjecture

Volume and N dependence controlled by $l_{\text {eff }}$

By varying $l_{\text {eff }}$ we can transit from perturbation theory to confinement
$l_{\text {eff }}$ determines the dynamics

Link to Eguchi-Kawai reduction

$l_{\mathrm{eff}}=l \sqrt{N}$
On a lattice $\quad l=L a$

For the one-point lattice in EK reduction - thermodynamic limit

$$
\begin{gathered}
l_{\mathrm{eff}}=a \sqrt{N} \underset{N \rightarrow \infty, a \text { fixed }}{\longrightarrow} l_{\mathrm{eff}}=\infty \\
\end{gathered}
$$

We will instead pursue

$$
l_{\text {eff }} \text { fixed } \quad N \rightarrow \infty \& l \rightarrow 0
$$

Perturbation theory

- Momentum quantized in units of $l_{\text {eff }}$
- Free propagator identical that on a finite volume $l_{\text {eff }}$
- Group structure constants $\Gamma(p)$

$$
F(p, q,-p-q)=-\sqrt{\frac{2}{N}} \sin \left(\frac{\theta_{\mu \nu}}{2} p_{\mu} q_{\nu}\right)
$$

Momentum dependent phases in the vertices

$$
\theta_{\mu \nu}=\left(\frac{l_{\mathrm{eff}}}{2 \pi}\right)^{2} \times \tilde{\epsilon}_{\mu \nu} \tilde{\theta}
$$

Links to non-commutative gauge theories
González-Arroyo, Korthals Altes, Okawa

$$
\begin{gathered}
l_{\mathrm{eff}}=l N \\
\text { in } 2-\mathrm{d} \\
\tilde{\theta}=\frac{2 \pi \bar{k}}{N} \\
n_{i j}=\epsilon_{i j} k \\
k \bar{k}=1(\bmod N)
\end{gathered}
$$

k and N co-prime

$$
l_{\mathrm{eff}}=l \sqrt{N}
$$

$$
\begin{aligned}
& \text { in 4-d } \\
& \tilde{\theta}=\frac{2 \pi \bar{k}}{\sqrt{N}} \\
& n_{\mu \nu}=\epsilon_{\mu \nu} k \sqrt{N} \\
& k \bar{k}=1(\bmod \sqrt{N})
\end{aligned}
$$

k and \sqrt{N} co-prime

Volume independence

$$
\text { Vertices } \alpha \sqrt{\frac{2 \lambda}{V_{\mathrm{eff}}}} \sin \left(\frac{\theta_{\mu \nu}}{2} p_{\mu} q_{\nu}\right)
$$

In perturbation theory, physics depends on

$$
\tilde{\theta}, \lambda, l_{\mathrm{eff}}
$$

For fixed $\tilde{\theta}$, volume and N dependence encoded in the effective size

The perturbative expansion implies an equivalence between different $\mathrm{SU}(\mathrm{N})$ gauge theories

The $\mathrm{SU}(\mathrm{N})$ twisted theory is physically equivalent to a non-commutative $U(1)$ gauge theory defined on a periodic torus with periods $l_{\text {eff }}$ and non-commutativity parameter $\theta \mu \mathrm{v}$.

$$
A_{\nu}(x)=\mathcal{N} \sum_{p}^{\prime} e^{i p \cdot x} \hat{A}_{\nu}(p) \hat{\Gamma}(p)
$$

in $U(1)$
Non-commutativity in the vertices

$$
\sqrt{\frac{2 \lambda}{V_{\mathrm{eff}}}} \sin \left(\frac{\theta_{\mu \nu}}{2} p_{\mu} q_{\nu}\right)
$$

Ambjorn, Makeenko, Nishimura \& Szabo

Comment I

- Certain momenta excluded by the twist in $\operatorname{SU}(\mathrm{N})$

$$
\begin{array}{r}
\operatorname{Tr} \hat{\Gamma}(p)=0 \\
A_{\nu}(x)=\mathcal{N} \sum_{p}^{\prime} e^{i p \cdot x} \hat{A}_{\nu}(p) \hat{\Gamma}(p) \\
p_{\mu}=\frac{2 \pi n_{\mu}}{l_{\text {eff }}} \\
\quad \begin{array}{c}
\text { for } \mathrm{d}=4, \text { exclude } \\
n_{\mu}=0(\bmod \sqrt{N}) \forall \mu
\end{array}
\end{array}
$$

Reintroduces N dependence

Example - $\operatorname{SU}(\mathrm{N})$ Wilson loops on a L^{4} lattice

$$
\log W(b, N, L)=-W_{1}(N, L) \lambda-W_{2}(N, L) \lambda^{2}
$$

For TBC

$$
W_{1}(N, L)=F_{1}(L \sqrt{N})-\frac{1}{N^{2}} F_{1}(L) \underset{N \rightarrow \infty}{\longrightarrow} F_{1}(\infty)
$$

Finite N

$$
\begin{aligned}
& W_{1}(N, L)=F_{1}(L \sqrt{N})-\frac{1}{N^{2}} F_{1}(L) \\
& L \rightarrow \infty \\
& N^{2}-1 \\
& N^{2} N_{1}(\infty)
\end{aligned}
$$

Reintroduces N dependence
Retrieves the correct number of colour degrees of freedom

For PBC

$$
W_{1}(N, L)=F_{1}(L) \frac{N^{2}-1}{N^{2}} \longrightarrow F_{N \rightarrow \infty}
$$

retains L dependence

Comment II

\downarrow Fixed $\tilde{\theta}$

$$
\begin{aligned}
& \tilde{\theta}=\frac{2 \pi \bar{k}}{\sqrt{N}} \\
& k \text { and } \sqrt{N} \text { co-prime }
\end{aligned}
$$

Not possible to keep it exactly fixed when changing N

The conjecture relies on assuming a smooth dependence on $\tilde{\theta}$

Possible caveats

- Non-perturbative effects ?

TEK Symmetry breaking Ishikawa\&Okawa,Teper\&Vairinhos e.a.,Azeyanagi e.a.

- Perturbative instabilities in the large N limit

Negative self-enegy \longrightarrow Tachyonic instabilities
Hayakawa, Guralnik e.a.,Armoni e.a., Bietenholz e.a.,

Avoided if

$$
k \text { and } \bar{k} \propto N \quad \text { as } \quad N \rightarrow \infty
$$

González-Arroyo \& Okawa, MGP \& González-Arroyo \& Okawa

Some applications

Running of the $S U(\infty)$ coupling in 4-dimensions

Spectrum of 2+| Yang-Mills theory

SU(N) running coupling

Yang-Mills gradient flow

Flow of gauge potentials
$\partial_{t} B_{\mu}(x, t)=D_{\nu} G_{\nu \mu}(x, t)$
$B_{\mu}(x, t=0)=A_{\mu}$

$$
G_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}+i\left[B_{\mu}, B_{\nu}\right]
$$

Gauge invariant composite fields at positive flow time Renormalized observables defined at a scale

$$
\mu=1 / \sqrt{8 t}
$$

Twisted gradient flow coupling

$$
\frac{1}{N}\langle E(t)\rangle=\frac{1}{2 N}\left\langle\operatorname{Tr}\left\{G_{\mu \nu}(t) G_{\mu \nu}(t)\right\}\right\rangle \propto \lambda_{\overline{M S}}+\mathcal{O}\left(\lambda_{\overline{M S}}^{2}\right)
$$

Action density

Define a renormalized coupling in terms of $\mathrm{E}(\mathrm{t})$ Luscher, Fodor et al., Fritszch\&Ramos

- Use twisted boundary conditions

Ramos

- Set the scale in terms of the torus size

Scale dependence

Our proposal MGP, González-Arroyo, Keegan, Okawa

For $\operatorname{SU}(\mathrm{N})$ set the scale in terms of the effective size $\quad \lambda(\tilde{l})$

$$
\tilde{l}=l \sqrt{N}
$$

Non-perturbative lattice determination

$$
\tilde{l}=L a \sqrt{N}
$$

For TEK

$$
L=1
$$

$$
\tilde{l}=a \sqrt{N}
$$

Implement step-scaling by changing the rank of the group

Implement step-scaling by changing the rank of the group $\quad \tilde{l}=a \sqrt{N}$
Fix a value of the renormalized coupling u

$$
\begin{aligned}
& u=\lambda(b, L) \\
& L=\sqrt{N} \\
& \Sigma(u, s, L)=\lambda(b, s L) \\
& s L=s \sqrt{N} \\
& S U(N) \\
& \sigma(u, s)=\lim _{1 / N \rightarrow 0} \Sigma(u, s, \sqrt{N}) \quad \text { at fixed } \mathrm{u} \quad \text { (at fixed } \tilde{l} \text {) }
\end{aligned}
$$

Repeat for a sequence $u_{k+1}=\sigma\left(u_{k}, s\right) \longrightarrow s^{n} \tilde{l}$

$$
\sqrt{N}=8 \rightarrow 12,10 \rightarrow 15,12 \rightarrow 18 \quad s=3 / 2
$$

Continuum limit at fixed \tilde{l} by sending $N \rightarrow \infty$

Step scaling function $\mathrm{SU}(\infty)$

$$
c=0.3
$$

Renormalized coupling $\mathbf{S U (\infty)}$

$$
c=0.3
$$

Running coupling vs renormalization scale

Results in 2+l d

MGP, González-Arroyo, Koren, Okawa

$$
\begin{aligned}
& \text { in 2-d } \\
& \qquad \begin{array}{c}
\tilde{\theta}=\frac{2 \pi \bar{k}}{N} \\
n_{i j}=\epsilon_{i j} k \\
k \bar{k}=1(\bmod N)
\end{array}
\end{aligned}
$$

$$
l_{\mathrm{eff}}=l N
$$

Dimensionful 't Hooft coupling

$$
x=\lambda N l /(4 \pi)
$$

$$
\text { Relevant scaling parameter for fixed } \tilde{\theta}=\frac{2 \pi \bar{k}}{N}
$$

Mass Gap in PT

$$
\vec{n} \neq \overrightarrow{0}(\bmod N)
$$

one-gluon states \longrightarrow electric flux $e_{i}=-\bar{k} \epsilon_{i j} n_{j}$
one to one relation between flux and momentum

Lowest state has flux \bar{k}

$$
\frac{\mathcal{E}_{1}}{\lambda}=\frac{1}{2 x}
$$

$$
\frac{4 \pi}{N l}
$$

$$
\frac{\mathcal{E}_{G}}{\lambda}=\frac{1}{x}
$$

Gluon self-energy - Perturbation theory

$$
\frac{\mathcal{E}^{2}}{\lambda^{2}}=\frac{|\vec{n}|^{2}}{4 x^{2}}-\frac{1}{x} G\left(\frac{\vec{e}}{N}\right)
$$

$$
G(\vec{z})=-\frac{1}{16 \pi^{2}} \int_{0}^{\infty} \frac{d t}{\sqrt{t}}\left(\theta_{3}^{2}(0, i t)-\prod_{i=1}^{2} \theta_{3}\left(z_{i}, i t\right)-\frac{1}{t}\right)
$$

$$
\theta_{3}(z, i t)=\sum_{k \in \mathbf{Z}} \exp \left\{-t \pi k^{2}+2 \pi i k z\right\}
$$

Tachyonic instability

Mass squared negative at

$$
x_{t}(\vec{e})=\frac{4 \pi^{2}|\vec{n}|^{2}|\vec{e}|}{N}
$$

$$
\begin{array}{ll}
x_{T}=\frac{4 \pi^{2} k^{2}}{N} & |\vec{e}|=1 \\
x_{T}=\frac{4 \pi^{2} \bar{k}}{N} & |\vec{n}|=1
\end{array}
$$

Electric-flux energies grow linearly with l in the confined region

$$
\begin{aligned}
\frac{\mathcal{E}}{\lambda}=\frac{\sigma_{\vec{e}} l}{\lambda} \int \sigma_{\vec{e}}=N \sigma^{\prime} \phi\left(\frac{\vec{e}}{N}\right) & \phi(z)=\phi(1-z) \\
\phi(z)=z(1-z) & \phi(z)=\sin (\pi z) / \pi
\end{aligned}
$$

Compatible with reduction

$$
\frac{\mathcal{E}(z)}{\lambda}=4 \pi x \frac{\sigma^{\prime}}{\lambda^{2}} \phi(z)
$$ the tachyonic behaviour

Ansazt for electric flux energies

$$
\frac{\mathcal{E}_{n}^{2}}{\lambda^{2}}=\frac{|\vec{n}|^{2}}{4 x^{2}}+\frac{\alpha}{x}+\beta+\gamma^{2} x^{2}
$$

Nambu-Goto with winding e on Kalb-Ramond B-field background
Guralnik

$$
\begin{gathered}
\frac{\mathcal{E}^{2}(\vec{e})}{\lambda^{2}}=\sum_{i}\left(\frac{\epsilon_{i j} e_{j} B}{\lambda l}\right)^{2}-\frac{\pi \sigma}{3 \lambda^{2}}+\left(\frac{4 \pi \sigma \vec{e}}{\lambda^{2} N}\right)^{2} x^{2} \\
B=-\frac{2 \pi k}{N} \quad \text { Gives the tree level term }
\end{gathered}
$$

Low energy - non-commutative field theory

$$
\theta_{i j}=-\epsilon_{i j} l^{2} \frac{1}{B} \longrightarrow \theta_{\mu \nu}=\left(\frac{l_{\mathrm{eff}}}{2 \pi}\right)^{2} \times \tilde{\epsilon}_{\mu \nu} \tilde{\theta}
$$

Energy of electric flux - lightest perturbative state

$$
\begin{gathered}
\frac{\tilde{\theta}}{2 \pi}=\frac{5}{17} \\
\frac{\tilde{\theta}}{2 \pi}=\frac{2}{7}
\end{gathered}
$$

Energy of electric flux - lightest perturbative state

$$
\begin{gathered}
\frac{\tilde{\theta}}{2 \pi}=\frac{5}{17} \\
\frac{\tilde{\theta}}{2 \pi}=\frac{2}{7}
\end{gathered}
$$

Energy of electric flux - lightest perturbative state

$$
\begin{gathered}
\frac{\tilde{\theta}}{2 \pi}=\frac{5}{17} \\
\frac{\tilde{\theta}}{2 \pi}=\frac{2}{7}
\end{gathered}
$$

Energy of electric flux - lightest perturbative state

Glueball spectrum

Operators

Glueball spectrum $\quad 0^{++} \quad S U(17), \bar{k}=4$ vs $S U(5), \bar{k}=1$

For larger N more flux states, not all of them can be matched with the small N spectra

Glueball spectrum $\quad 0^{++} \quad S U(17), \bar{k}=4$ vs $S U(5), \bar{k}=1$

Glueball spectrum $\quad 0^{++} \quad S U\left(1^{\prime}\right.$

Glueball spectrum $\quad 0^{++} \quad S U(17), \bar{k}=4$ vs $S U(5), \bar{k}=1$

Glueball spectrum $\quad 0^{++} \quad S U(17), \bar{k}=4$ vs $S U(5), \bar{k}=1$

Glueball spectrum $\quad 0^{++}$

Summary

- For finite N - Perturbation theory indicates physical quantities depend on

$$
\tilde{\theta}, \lambda, l_{\mathrm{eff}}
$$

(up to possible $1 / N^{2}$ corrections)
$l_{\text {eff }}$ combines N and I dependence
\checkmark Non-perturbative tests

