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Motivation

> In lattice calculations for QCD and QCD-like theories, the expectation values of a
large class of physical quantities have a natural interpretation in terms of ratios of
partition functions
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> However, the possibility of performing this reformulation in a
computationally efficient way is highly non-generic
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Introduction

Non-equilibrium methods for Monte Carlo simulations

> The factorization of (O) into a product of partition-function ratios requires the
existence of a sequence of well-defined intermediate equilibrium ensembles

> An alternative computational strategy completely bypasses this requirement, and
allows one to evaluate (O) through a statistical average over realizations of
non-equilibrium transformations
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Jarzynski’s theorem in a nutshell

> Jarzynski's theorem [Jarzynski, 1997] states the equality of the exponential average
of the work done on a system in non-equilibrium processes, and the ratio of the
partition functions of the final (Z,) and initial (Z,) ensembles, respectively
realized at “times” t; and t;
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> The average is over a large number of realizations of non-equilibrium evolutions
from the initial to the final ensembles

> “Time" can either refer to

e Monte Carlo time in a numerical simulation
e Real time in an experiment

> Related ideas date back to the 1970’s [Bochkov and Kuzovlev, 1977]
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Jarzynski's theorem [Jarzynski, 1997] states the equality of the exponential average
of the work done on a system in non-equilibrium processes, and the ratio of the
partition functions of the final (Z,) and initial (Z,) ensembles, respectively
realized at “times” t; and t;
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The average is over a large number of realizations of non-equilibrium evolutions
from the initial to the final ensembles
“Time" can either refer to

e Monte Carlo time in a numerical simulation
e Real time in an experiment

Related ideas date back to the 1970's [Bochkov and Kuzovlev, 1977]

Connection to entropy-production fluctuation theorems [Evans et al., 1993]
encoded in a generalization [Crooks, 1999]
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Proof — I: Notation

> Consider a statistical system of degrees of freedom ¢, described by the partition
function Z

> Consider the normalized Boltzmann distribution m = exp (—H/T) /Z and assume
the detailed-balance condition

> Let X\ denote the parameters (Hamiltonian couplings, temperature, et c.) on
which 7 and Z depend

> Take )\ to be time-dependent: X\ = A(t), for t; < t < t, and discretize
At:tf_ti:N‘T

> The exponential of minus the work (over T) from t; to t; is obtained as

m e N Haeya) [0 (80)] _ Ha [9 ()]
N TP\ T & T (tnt1) T (tn)
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1I: Manipulations
Since the Boltzmann distribution 7 is such that Z - m = exp (—H/T), the
previous expression can be rewritten as the N — oo limit of

Assume that the configuration at time t = t,4; is obtained by Markov evolution
of the one at t = t, with transition probability Py, ,) [¢(tn) = ¢(tn+1)]

Then the statistical average can be written as
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having simplified the intermediate Zy(;,) and my(y,) factors and used detailed
balance

In this expression, the sum over ¢(t;) can be carried out explicitly, because it
appears only in Py [#(t1) — ¢(t)]; the argument can then be repeated for
#(t1), ... o(tn—1)
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1I: Manipulations
Since the Boltzmann distribution 7 is such that Z - m = exp (—H/T), the
previous expression can be rewritten as the N — oo limit of

Assume that the configuration at time t = t,4; is obtained by Markov evolution
of the one at t = t, with transition probability Py, ) [¢(tn) = ¢(tat1)]

Then the statistical average can be written as
N—1
)
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having simplified the intermediate Zy(;,) and my(y,) factors and used detailed
balance

In this expression, the sum over ¢(t;) can be carried out explicitly, because it
appears only in Py, [#(t1) — ¢(t)]; the argument can then be repeated for
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Finally, one arrives at
having used the normalization of 7y, [¢(t)]
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> The theorem holds under very general conditions, no strong assumptions are
needed



http://science.sciencemag.org/content/296/5574/1832
http://science.sciencemag.org/content/296/5574/1832

’s theorem

Proof — I1I: Comments

> The theorem holds under very general conditions, no strong assumptions are
needed

> For finite 7, the non-symmetric rdles of t, and t,11 in the Markov evolution
induces a discrepancy between “forward” (Ain — Adin) and “reverse” (Afin — Ain)
realizations of the non-equilibrium transformation

Px(ty.) [9(tn) = ¢(tns1)]

M. Paner



http://science.sciencemag.org/content/296/5574/1832
http://science.sciencemag.org/content/296/5574/1832

’s theorem

Proof — I1I: Comments

> The theorem holds under very general conditions, no strong assumptions are
needed

> For finite 7, the non-symmetric rdles of t, and t,11 in the Markov evolution
induces a discrepancy between “forward” (Ain — Adin) and “reverse” (Afin — Ain)
realizations of the non-equilibrium transformation

> The impact of this systematic effect is in general non-negligible, but it vanishes
for N — oo

M. Paner



http://science.sciencemag.org/content/296/5574/1832
http://science.sciencemag.org/content/296/5574/1832

theorem

Proof — I1I: Comments

> The theorem holds under very general conditions, no strong assumptions are
needed

> For finite 7, the non-symmetric rdles of t, and t,11 in the Markov evolution
induces a discrepancy between “forward” (Ain — Adin) and “reverse” (Afin — Ain)
realizations of the non-equilibrium transformation

> The impact of this systematic effect is in general non-negligible, but it vanishes
for N — oo

> The theorem has been widely used in Monte Carlo simulations in statistical
mechanics



http://science.sciencemag.org/content/296/5574/1832
http://science.sciencemag.org/content/296/5574/1832

Jarzynski’s theorem

Proof — I1I: Comments

> The theorem holds under very general conditions, no strong assumptions are
needed

> For finite 7, the non-symmetric rdles of t, and t,11 in the Markov evolution
induces a discrepancy between “forward” (Ain — Adin) and “reverse” (Afin — Ain)
realizations of the non-equilibrium transformation

> The impact of this systematic effect is in general non-negligible, but it vanishes
for N — oo

> The theorem has been widely used in Monte Carlo simulations in statistical
mechanics

> The theorem has been verified even in condensed-matter experiments [Liphardt et
al., 2002]



http://science.sciencemag.org/content/296/5574/1832
http://science.sciencemag.org/content/296/5574/1832

Outline

Benchmark study I: Interface free energy




Interfaces in physics

> Fluctuating interfaces have countless physical realizations of interest in
mesoscopic physics, in chemistry, in biophysics, ...

wilibrium



Interfaces in physics

> Fluctuating interfaces have countless physical realizations of interest in
mesoscopic physics, in chemistry, in biophysics, ...

> In high-energy physics, they appear as various types of “domain walls” in
high-temperature QFT, in cosmology, in the study of 't Hooft loops, et c.




Benchmark study I: Interface free energy

Interfaces in physics

> Fluctuating interfaces have countless physical realizations of interest in
mesoscopic physics, in chemistry, in biophysics, ...

> In high-energy physics, they appear as various types of “domain walls” in
high-temperature QFT, in cosmology, in the study of 't Hooft loops, et c.

> Of particular interest are interfaces whose fluctuations can be described in terms
of ¢ = 1 conformal field theory, using string-theory tools




Benchmark study I: Interface free energy

Interface free energy in a toy gauge theory

> Here we study the interface free energy in a toy model: Z; lattice gauge theory in
three dimensions

Sta= B> S ou(x)ou(x + ap)ou(x + ad)oy (x)

xeEN0<pu<r<2
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regime of the gauge theory corresponds to the ordered phase of the spin model



http://dx.doi.org/10.1088/1126-6708/2009/06/012
http://dx.doi.org/10.1088/1126-6708/2006/02/070

Benchmark study I: Interface free energy

Interface free energy in a toy gauge theory
> Here we study the interface free energy in a toy model: Z, lattice gauge theory in
three dimensions
> Kramers—Wannier duality maps this theory to the 3D Ising model; the confining
regime of the gauge theory corresponds to the ordered phase of the spin model

> An (odd number of) interface(s) can be enforced by antiperiodic boundary
conditions; the associated free energy is defined as

F@ = _Inarctanh(Z,/Z,) + In(Lo/a).
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Interface free energy in a toy gauge theory

> Here we study the interface free energy in a toy model: Z, lattice gauge theory in
three dimensions

» Kramers—Wannier duality maps this theory to the 3D Ising model; the confining
regime of the gauge theory corresponds to the ordered phase of the spin model

> An (odd number of) interface(s) can be enforced by antiperiodic boundary
conditions; the interface free energy can be extracted from Z,/Z,

> The results from Jarzynski's algorithm converge to those obtained from different

methods [Caselle et al., 2007]
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Interface free energy in a toy gauge theory

>

Here we study the interface free energy in a toy model: Z, lattice gauge theory in
three dimensions

Kramers—Wannier duality maps this theory to the 3D Ising model; the confining
regime of the gauge theory corresponds to the ordered phase of the spin model
An (odd number of) interface(s) can be enforced by antiperiodic boundary
conditions; the interface free energy can be extracted from Z,/Z,

The results from Jarzynski's algorithm converge to those obtained from different
methods [Caselle et al., 2007]

Our numerical results from interfaces of linear size L confirm the predictions of
low-energy effective string theory [Aharony and Karzbrun, 2009]
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Interface free energy in a toy gauge theory

>

Here we study the interface free energy in a toy model: Z, lattice gauge theory in
three dimensions

Kramers—Wannier duality maps this theory to the 3D Ising model; the confining
regime of the gauge theory corresponds to the ordered phase of the spin model
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>

Here we study the interface free energy in a toy model: Z, lattice gauge theory in
three dimensions

Kramers—Wannier duality maps this theory to the 3D Ising model; the confining
regime of the gauge theory corresponds to the ordered phase of the spin model

An (odd number of) interface(s) can be enforced by antiperiodic boundary
conditions; the interface free energy can be extracted from Z,/Z,

The results from Jarzynski's algorithm converge to those obtained from different
methods [Caselle et al., 2007]
Our numerical results from interfaces of linear size L confirm the predictions of
low-energy effective string theory [Aharony and Karzbrun, 2009]

o Consistency with the Nambu-Gotd model up to O(L~°) [Bill6 et al., 2006]

o Evidence of deviations at the leading, O(L™"), and next-to-leading, O(L™°), order;
consistency with non-linear realization of Lorentz—Poincaré symmetry
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> The thermal properties of QCD at temperatures T of hundreds MeV have major
implications for the evolution of the early Universe—particularly during the quark
epoch (approximately 10712 to 10~° s after the Hot Big Bang)

> These properties are being studied at the LHC and at other experimental
facilities, through ultrarelativistic collisions of heavy nuclei
> Lattice simulations are an efficient tool to study this physics, because of
e The non-perturbative nature of the phenomena involved (deconfinement and
chiral-symmetry restoration)
e The fact that the coupling is not very small: as ~ 0.3 [Qin et al., 2007]

e The challenges faced by thermal perturbation theory, due to infrared effects [Linde,
1980]
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> The thermal properties of QCD at temperatures T of hundreds MeV have major
implications for the evolution of the early Universe—particularly during the quark
epoch (approximately 10712 to 10~ s after the Hot Big Bang)

> These properties are being studied at the LHC and at other experimental
facilities, through ultrarelativistic collisions of heavy nuclei

> Lattice simulations are an efficient tool to study this physics [Meyer, 2015]

> Similar studies for other strongly coupled non-Abelian gauge theories may be of
relevance for New Physics models
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> The sudden increase in pressure, energy and entropy densities at T ~ 160 MeV
indicates liberation of a large number of light degrees of freedom

» By contrast, in the low-temperature phase, the EoS can be modelled by a gas of
massive, essentially non-interacting, hadrons; exponential suppression of all
equilibrium-thermodynamics quantities

> This is most dramatic in the pure-glue theory [Meyer, 2009] [Borsanyi et al., 2012]
[Caselle et al., 2015], due to the existence of a large mass gap (My++ > Mx)

> In a test in SU(2) Yang—Mills theory, Jarzynski's algorithm reproduces the results
[Caselle et al., 2015] from the conventional “integral” method [Engels et al., 1990]

DOS e e

0.025

direct transformation
reverse transformation
integral method, from JHEP 07 (2015) 143

>Ooo

0.005

piT

<

g

=
e e e e

R

B
A B N N B

- n P P n n
20.405 241 2415 242 2425 243 2435



http://journals.aps.org/prd/abstract/10.1103/PhysRevD.80.051502
http://dx.doi.org/10.1007/JHEP07(2012)056
http://dx.doi.org/10.1007/JHEP07(2015)143
http://dx.doi.org/10.1007/JHEP07(2015)143
http://doi.org/10.1016/0370-2693(90)90496-S

Outline

Conclusions




Conclusic

Summary and future work

> Jarzynski's theorem provides a very versatile method to compute observables in
Monte Carlo simulations on the lattice



http://dx.doi.org/10.1016/0920-5632(90)90247-R
http://dx.doi.org/10.1016/0550-3213(92)90466-O
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.182001
http://dx.doi.org/10.1007/JHEP08(2014)177

Summary and future work

> Jarzynski's theorem provides a very versatile method to compute observables in
Monte Carlo simulations on the lattice

> The results from two non-trivial benchmark studies prove the algorithm is
competitive in terms of computational efficiency



http://dx.doi.org/10.1016/0920-5632(90)90247-R
http://dx.doi.org/10.1016/0550-3213(92)90466-O
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.182001
http://dx.doi.org/10.1007/JHEP08(2014)177

Summary and future work

> Jarzynski's theorem provides a very versatile method to compute observables in
Monte Carlo simulations on the lattice

> The results from two non-trivial benchmark studies prove the algorithm is
competitive in terms of computational efficiency

> An extension to systems with fermionic d.o.f. is straightforward



http://dx.doi.org/10.1016/0920-5632(90)90247-R
http://dx.doi.org/10.1016/0550-3213(92)90466-O
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.182001
http://dx.doi.org/10.1007/JHEP08(2014)177

Summary and future work

> Jarzynski's theorem provides a very versatile method to compute observables in
Monte Carlo simulations on the lattice

> The results from two non-trivial benchmark studies prove the algorithm is
competitive in terms of computational efficiency

> An extension to systems with fermionic d.o.f. is straightforward
> Possible future applications:



http://dx.doi.org/10.1016/0920-5632(90)90247-R
http://dx.doi.org/10.1016/0550-3213(92)90466-O
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.182001
http://dx.doi.org/10.1007/JHEP08(2014)177

Summary and future work

> Jarzynski's theorem provides a very versatile method to compute observables in
Monte Carlo simulations on the lattice

> The results from two non-trivial benchmark studies prove the algorithm is
competitive in terms of computational efficiency

> An extension to systems with fermionic d.o.f. is straightforward
> Possible future applications:
* Reweighting to finite chemical potential [Toussaint, 1990]



http://dx.doi.org/10.1016/0920-5632(90)90247-R
http://dx.doi.org/10.1016/0550-3213(92)90466-O
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.182001
http://dx.doi.org/10.1007/JHEP08(2014)177

Summary and future work

> Jarzynski's theorem provides a very versatile method to compute observables in
Monte Carlo simulations on the lattice

> The results from two non-trivial benchmark studies prove the algorithm is
competitive in terms of computational efficiency

> An extension to systems with fermionic d.o.f. is straightforward
> Possible future applications:

% Reweighting to finite chemical potential [Toussaint, 1990]
% Schrédinger functional [Liischer et al., 1992]



http://dx.doi.org/10.1016/0920-5632(90)90247-R
http://dx.doi.org/10.1016/0550-3213(92)90466-O
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.182001
http://dx.doi.org/10.1007/JHEP08(2014)177

Summary and future work

> Jarzynski's theorem provides a very versatile method to compute observables in
Monte Carlo simulations on the lattice

> The results from two non-trivial benchmark studies prove the algorithm is
competitive in terms of computational efficiency

> An extension to systems with fermionic d.o.f. is straightforward
> Possible future applications:

% Reweighting to finite chemical potential [Toussaint, 1990]
% Schrédinger functional [Liischer et al., 1992]
% QCD in an external magnetic field [Bonati et al., 2013] [Bali et al., 2014]



http://dx.doi.org/10.1016/0920-5632(90)90247-R
http://dx.doi.org/10.1016/0550-3213(92)90466-O
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.182001
http://dx.doi.org/10.1007/JHEP08(2014)177

Summary and future work

> Jarzynski's theorem provides a very versatile method to compute observables in
Monte Carlo simulations on the lattice

> The results from two non-trivial benchmark studies prove the algorithm is
competitive in terms of computational efficiency

> An extension to systems with fermionic d.o.f. is straightforward
> Possible future applications:

% Reweighting to finite chemical potential [Toussaint, 1990]

% Schrédinger functional [Liischer et al., 1992]

% QCD in an external magnetic field [Bonati et al., 2013] [Bali et al., 2014]
% ...and more



http://dx.doi.org/10.1016/0920-5632(90)90247-R
http://dx.doi.org/10.1016/0550-3213(92)90466-O
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.182001
http://dx.doi.org/10.1007/JHEP08(2014)177

Conclusions

Summary and future work
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> An extension to systems with fermionic d.o.f. is straightforward

> Possible future applications:
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Thanks for your attention!
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