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Motivation

I In lattice calculations for QCD and QCD-like theories, the expectation values of a
large class of physical quantities have a natural interpretation in terms of ratios of
partition functions

〈O〉 =

∫
DφO exp (−S)∫
Dφ exp (−S)

=
ZO
Z

I By “natural” we mean, that ZO can be easily written as a partition function of a
physical system with a well-defined set of local fields and (generalized) couplings

I Examples:
• Equilibrium thermodynamic observables (p, ε, s, . . . )
• Some non-local operators (e.g. ’t Hooft loops; Wilson loops and Polyakov loop

correlators in a dual formulation of the theory, et c.)

I The numerical evaluation of 〈O〉 becomes challenging, whenever an overlap
problem between the simulated and target ensemble exists

I Under certain circumstances, the computation can be simplified, by factoring 〈O〉
into a product of simpler terms [de Forcrand et al., 2001]

ZO
Z

=
Z1

Z
·

Z2

Z1
·

Z3

Z2
· · · · ·

ZO
Zn−1

I However, the possibility of performing this reformulation in a
computationally efficient way is highly non-generic
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Non-equilibrium methods for Monte Carlo simulations

I The factorization of 〈O〉 into a product of partition-function ratios requires the
existence of a sequence of well-defined intermediate equilibrium ensembles

I An alternative computational strategy completely bypasses this requirement, and
allows one to evaluate 〈O〉 through a statistical average over realizations of
non-equilibrium transformations
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Jarzynski’s theorem in a nutshell

I Jarzynski’s theorem [Jarzynski, 1997] states the equality of the exponential average
of the work done on a system in non-equilibrium processes, and the ratio of the
partition functions of the final (Zfin) and initial (Zin) ensembles, respectively
realized at “times” tf and ti〈

exp

(
−
∫ fin

in

δW

T

)〉
=

Zfin

Zin

I The average is over a large number of realizations of non-equilibrium evolutions
from the initial to the final ensembles

I “Time” can either refer to
• Monte Carlo time in a numerical simulation
• Real time in an experiment

I Related ideas date back to the 1970’s [Bochkov and Kuzovlev, 1977]

I Connection to entropy-production fluctuation theorems [Evans et al., 1993]

encoded in a generalization [Crooks, 1999]
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Proof – I: Notation

I Consider a statistical system of degrees of freedom φ, described by the partition
function Z

Z =
∑
φ

exp

(
−

H

T

)

I Consider the normalized Boltzmann distribution π = exp (−H/T ) /Z and assume
the detailed-balance condition

I Let λ denote the parameters (Hamiltonian couplings, temperature, et c.) on
which π and Z depend

I Take λ to be time-dependent: λ = λ(t), for ti ≤ t ≤ tf, and discretize
∆t = tf − ti = N · τ

I The exponential of minus the work (over T ) from ti to tf is obtained as

lim
N→∞

exp

(
−

N−1∑
n=0

{
Hλ(tn+1) [φ (tn)]

T (tn+1)
−

Hλ(tn) [φ (tn)]

T (tn)

})

M. Panero UniTo & INFN

Lattice QCD averages from non-equilibrium transformations



Introduction Jarzynski’s theorem Benchmark study I: Interface free energy Benchmark study II: Equation of state Conclusions

Proof – I: Notation

I Consider a statistical system of degrees of freedom φ, described by the partition
function Z

I Consider the normalized Boltzmann distribution π = exp (−H/T ) /Z and assume
the detailed-balance condition

π[φ]P[φ→ φ′] = π[φ′]P[φ′ → φ]

where P[φ→ φ′] denotes the transition probability from φ to φ′

I Let λ denote the parameters (Hamiltonian couplings, temperature, et c.) on
which π and Z depend

I Take λ to be time-dependent: λ = λ(t), for ti ≤ t ≤ tf, and discretize
∆t = tf − ti = N · τ

I The exponential of minus the work (over T ) from ti to tf is obtained as

lim
N→∞

exp

(
−

N−1∑
n=0

{
Hλ(tn+1) [φ (tn)]

T (tn+1)
−

Hλ(tn) [φ (tn)]

T (tn)

})

M. Panero UniTo & INFN

Lattice QCD averages from non-equilibrium transformations



Introduction Jarzynski’s theorem Benchmark study I: Interface free energy Benchmark study II: Equation of state Conclusions

Proof – I: Notation

I Consider a statistical system of degrees of freedom φ, described by the partition
function Z

I Consider the normalized Boltzmann distribution π = exp (−H/T ) /Z and assume
the detailed-balance condition

I Let λ denote the parameters (Hamiltonian couplings, temperature, et c.) on
which π and Z depend

I Take λ to be time-dependent: λ = λ(t), for ti ≤ t ≤ tf, and discretize
∆t = tf − ti = N · τ

I The exponential of minus the work (over T ) from ti to tf is obtained as

lim
N→∞

exp

(
−

N−1∑
n=0

{
Hλ(tn+1) [φ (tn)]

T (tn+1)
−

Hλ(tn) [φ (tn)]

T (tn)

})

M. Panero UniTo & INFN

Lattice QCD averages from non-equilibrium transformations



Introduction Jarzynski’s theorem Benchmark study I: Interface free energy Benchmark study II: Equation of state Conclusions

Proof – I: Notation

I Consider a statistical system of degrees of freedom φ, described by the partition
function Z

I Consider the normalized Boltzmann distribution π = exp (−H/T ) /Z and assume
the detailed-balance condition

I Let λ denote the parameters (Hamiltonian couplings, temperature, et c.) on
which π and Z depend

I Take λ to be time-dependent: λ = λ(t), for ti ≤ t ≤ tf, and discretize
∆t = tf − ti = N · τ

tn = ti + nτ for n ∈ {0, 1, 2, . . . ,N − 1,N}

I The exponential of minus the work (over T ) from ti to tf is obtained as

lim
N→∞

exp

(
−

N−1∑
n=0

{
Hλ(tn+1) [φ (tn)]

T (tn+1)
−

Hλ(tn) [φ (tn)]

T (tn)

})

M. Panero UniTo & INFN

Lattice QCD averages from non-equilibrium transformations



Introduction Jarzynski’s theorem Benchmark study I: Interface free energy Benchmark study II: Equation of state Conclusions

Proof – I: Notation

I Consider a statistical system of degrees of freedom φ, described by the partition
function Z

I Consider the normalized Boltzmann distribution π = exp (−H/T ) /Z and assume
the detailed-balance condition

I Let λ denote the parameters (Hamiltonian couplings, temperature, et c.) on
which π and Z depend

I Take λ to be time-dependent: λ = λ(t), for ti ≤ t ≤ tf, and discretize
∆t = tf − ti = N · τ

I The exponential of minus the work (over T ) from ti to tf is obtained as

lim
N→∞

exp

(
−

N−1∑
n=0

{
Hλ(tn+1) [φ (tn)]

T (tn+1)
−

Hλ(tn) [φ (tn)]

T (tn)

})

M. Panero UniTo & INFN

Lattice QCD averages from non-equilibrium transformations



Introduction Jarzynski’s theorem Benchmark study I: Interface free energy Benchmark study II: Equation of state Conclusions

Proof – II: Manipulations
I Since the Boltzmann distribution π is such that Z · π = exp (−H/T ), the

previous expression can be rewritten as the N →∞ limit of

N−1∏
n=0

Zλ(tn+1) · πλ(tn+1) [φ (tn)]

Zλ(tn) · πλ(tn) [φ (tn)]
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Proof – III: Comments

I The theorem holds under very general conditions, no strong assumptions are
needed

I For finite τ , the non-symmetric rôles of tn and tn+1 in the Markov evolution
induces a discrepancy between “forward” (λin → λfin) and “reverse” (λfin → λin)
realizations of the non-equilibrium transformation

I The impact of this systematic effect is in general non-negligible, but it vanishes
for N →∞

I The theorem has been widely used in Monte Carlo simulations in statistical
mechanics

I The theorem has been verified even in condensed-matter experiments [Liphardt et

al., 2002]
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Interfaces in physics

I Fluctuating interfaces have countless physical realizations of interest in
mesoscopic physics, in chemistry, in biophysics, . . .

I In high-energy physics, they appear as various types of “domain walls” in
high-temperature QFT, in cosmology, in the study of ’t Hooft loops, et c.

I Of particular interest are interfaces whose fluctuations can be described in terms
of c = 1 conformal field theory, using string-theory tools
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Interface free energy in a toy gauge theory
I Here we study the interface free energy in a toy model: Z2 lattice gauge theory in

three dimensions

SZ2
= −βg

∑
x∈Λ

∑
0≤µ<ν≤2

σµ(x)σν(x + aµ̂)σµ(x + aν̂)σν(x)

I Kramers–Wannier duality maps this theory to the 3D Ising model; the confining
regime of the gauge theory corresponds to the ordered phase of the spin model

I An (odd number of) interface(s) can be enforced by antiperiodic boundary
conditions

I The results from Jarzynski’s algorithm converge to those obtained from different
methods [Caselle et al., 2007]

I Our numerical results from interfaces of linear size L confirm the predictions of
low-energy effective string theory [Aharony and Karzbrun, 2009]

• Consistency with the Nambu–Gotō model up to O(L−5) [Billó et al., 2006]

• Evidence of deviations at the leading, O(L−7), and next-to-leading, O(L−9), order;
consistency with non-linear realization of Lorentz–Poincaré symmetry
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• Evidence of deviations at the leading, O(L−7), and next-to-leading, O(L−9), order;
consistency with non-linear realization of Lorentz–Poincaré symmetry
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QCD (and QCD-like theories) at finite temperature

I The thermal properties of QCD at temperatures T of hundreds MeV have major
implications for the evolution of the early Universe—particularly during the quark
epoch (approximately 10−12 to 10−6 s after the Hot Big Bang)

I These properties are being studied at the LHC and at other experimental
facilities, through ultrarelativistic collisions of heavy nuclei

I Lattice simulations are an efficient tool to study this physics

I Similar studies for other strongly coupled non-Abelian gauge theories may be of
relevance for New Physics models
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QCD (and QCD-like theories) at finite temperature

I The thermal properties of QCD at temperatures T of hundreds MeV have major
implications for the evolution of the early Universe—particularly during the quark
epoch (approximately 10−12 to 10−6 s after the Hot Big Bang)

I These properties are being studied at the LHC and at other experimental
facilities, through ultrarelativistic collisions of heavy nuclei

I Lattice simulations are an efficient tool to study this physics, because of
• The non-perturbative nature of the phenomena involved (deconfinement and

chiral-symmetry restoration)
• The fact that the coupling is not very small: αs ' 0.3 [Qin et al., 2007]
• The challenges faced by thermal perturbation theory, due to infrared effects [Linde,

1980]

I Similar studies for other strongly coupled non-Abelian gauge theories may be of
relevance for New Physics models
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F QCD in an external magnetic field [Bonati et al., 2013] [Bali et al., 2014]
F . . . and more

M. Panero UniTo & INFN

Lattice QCD averages from non-equilibrium transformations

http://dx.doi.org/10.1016/0920-5632(90)90247-R
http://dx.doi.org/10.1016/0550-3213(92)90466-O
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.182001
http://dx.doi.org/10.1007/JHEP08(2014)177


Introduction Jarzynski’s theorem Benchmark study I: Interface free energy Benchmark study II: Equation of state Conclusions

Summary and future work

I Jarzynski’s theorem provides a very versatile method to compute observables in
Monte Carlo simulations on the lattice

I The results from two non-trivial benchmark studies prove the algorithm is
competitive in terms of computational efficiency

I An extension to systems with fermionic d.o.f. is straightforward
I Possible future applications:

F Reweighting to finite chemical potential [Toussaint, 1990]
F Schrödinger functional [Lüscher et al., 1992]
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